Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations
Abstract
:1. Introduction and Motivation
2. Basic Definitions and Preliminaries
- :
- :
- :
- :
- :
- :
- ,
- ,
- ,
- for some , then .
3. Main Results
- (1)
- is bounded;
- (2)
- the sequence is decreasing and convergent ∀
4. Discussion
5. Conclusions
- Whether the condition of boundedness of sequence in Lemma 4 can be relaxed?
- Whether in Lemma 4 a convergent sequence is not enough to prove it?
- In Theorem 1, is it possible that the conditions on will be removed or replaced with less strong conditions?
- What about the proof of Theorem 2 if is KSC mapping instead of SKC mapping?
- What about the proof of Theorem 3 if is CSC mapping instead of SKC mapping?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lippert, K.J.; Cloutier, R. Cyberspace: A Digital Ecosystem. Systems 2021, 9, 48. [Google Scholar] [CrossRef]
- Camelo, M.; Papadimitriou, D.; Fàbrega, L.; Vilà, P. Geometric Routing with Word-Metric Spaces. IEEE Commun. Lett. 2014, 18, 2125–2128. [Google Scholar] [CrossRef]
- Khachay, M.Y.; Ogorodnikov, Y.Y. Efficient Approximation of the Capacitated Vehicle Routing Problem in a Metric Space of an Arbitrary Fixed Doubling Dimension. Dokl. Math. 2020, 102, 324–329. [Google Scholar] [CrossRef]
- Panda, S.K.; Tassaddiq, A.; Agarwal, R.P. A new approach to the solution of non-linear integral equations via various FBe-contractions. Symmetry 2019, 11, 206. [Google Scholar] [CrossRef]
- Khunpanuk, C.; Pakkaranang, N.; Pholasa, N. On solving pseudomonotone equilibrium problems via two new extragradient-type methods under convex constraints. Demonstr. Math. 2022, 55, 297–314. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Shabbir, M.S.; Din, Q.; Naaz, H. Discretization, bifurcation, and control for a class of predator-prey interactions. Fractal Fract. 2022, 6, 31. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Shabbir, M.S.; Din, Q.; Ahmad, K.; Kazi, S. A ratio-dependent nonlinear predator-prey model with certain dynamical results. IEEE Access 2020, 8, 195074–195088. [Google Scholar] [CrossRef]
- Shabbir, M.S.; Din, Q.; Ahmad, K.; Tassaddiq, A.; Soori, A.H.; Khan, M.A. Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism. Adv. Differ. Equ. 2020, 2020, 379. [Google Scholar] [CrossRef]
- Shabbir, M.S.; Din, Q.; Alabdan, R.; Tassaddiq, A.; Ahmad, K. Dynamical complexity in a class of novel discrete-time predator-prey interaction with cannibalism. IEEE Access 2020, 8, 100226–100240. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Kanwal, S.; Perveen, S.; Srivastava, R. Fixed points of single-valued and multi-valued mappings in sb-metric spaces. J. Inequal. Appl. 2022, 2022, 85. [Google Scholar] [CrossRef]
- Shoaib, A.; Kazi, S.; Tassaddiq, A.; Alshoraify, S.S.; Rasham, T. Double controlled quasi-metric type spaces and some results. Complexity 2020, 2020, 3460938. [Google Scholar] [CrossRef]
- Olatinwo, M.O.; Omidire, O.J. Some new convergence and stability results for Jungck generalized pseudo-contractive and Lipschitzian type operators using hybrid iterative techniques in the Hilbert space. Rend. Circ. Mat. Palermo II 2022. [Google Scholar] [CrossRef]
- Kwelegano, K.M.T.; Zegeye, H.; Boikanyo, O.A. An Iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. Rend. Circ. Mat. Palermo II 2022, 71, 325–348. [Google Scholar] [CrossRef]
- Tassaddiq, A. General escape criteria for the generation of fractals in extended Jungck–Noor orbit. Math. Comput. Simul. 2022, 196, 1–14. [Google Scholar] [CrossRef]
- Li, D.; Shahid, A.A.; Tassaddiq, A.; Khan, A.; Guo, X.; Ahmad, M. CR iteration in generation of antifractals with s-convexity. IEEE Access 2020, 8, 61621–61630. [Google Scholar] [CrossRef]
- Zou, C.; Shahid, A.A.; Tassaddiq, A.; Khan, A.; Ahmad, M. Mandelbrot sets and Julia sets in Picard–Mann orbit. IEEE Access 2020, 8, 64411–64421. [Google Scholar] [CrossRef]
- Ogwo, G.N.; Alakoya, T.O.; Mewomo, O.T. Inertial iterative method with self-adaptive step size for finite family of split monotone variational inclusion and fixed point problems in Banach spaces. Demonstr. Math. 2022, 55, 193–216. [Google Scholar] [CrossRef]
- Kim, J.K. Samir Dashutre: Fixed point approximation for SKC-mappings in hyperbolic spaces. J. Inequal. Appl. 2015, 2015, 341. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Inthakon, W.; Kaewkhao, A. Edelsteins method and fixed point theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2009, 350, 12–17. [Google Scholar] [CrossRef]
- Nanjaras, B.; Panyanak, B.; Phuengrattana, W. Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Anal. Hybrid Syst. 2010, 4, 25–31. [Google Scholar] [CrossRef]
- Abbas, M.; Khan, S.H.; Postolache, M. Existence and approximation results for SKC mappings in CAT(0) spaces. J. Inequal. Appl. 2014, 2014, 212. [Google Scholar] [CrossRef]
- Leu¸stean, L. A quadratic rate of asymptotic regularity for CAT(0) spaces. J. Math. Anal. Appl. 2007, 325, 386–399. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Panyanak, B. On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 2008, 56, 2572–2579. [Google Scholar] [CrossRef]
- Khan, S.H.; Abbas, M. Strong and Δ-convergence of some iterative schemes in CAT(0) spaces. Comput. Math. Appl. 2011, 61, 109–116. [Google Scholar] [CrossRef]
- Laokul, T.; Panyanak, B. Approximating fixed points of nonexpansive mappings in CAT(0) spaces. Int. J. Math. Anal. 2009, 3, 1305–1315. [Google Scholar]
- Karapinar, E.; Tas, K. Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 2011, 61, 3370–3380. [Google Scholar] [CrossRef]
- Chidume, C.E. Global iteration schemes for strongly pseudocontractive maps. Proc. Am. Math. Soc. 1998, 126, 2641–2649. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Jia, Y.T. Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption. Proc. Am. Math. Soc. 1997, 125, 1705–1709. [Google Scholar]
- Gromov, M. Metric Structure of Riemannian and Non-Riemannian Spaces; Birkhäuser: Boston, MA, USA, 1984. [Google Scholar]
- Kim, J.K.; Dashputre, S.; Hyun, H.G. Convergence theorems of S-iteration process for quasi-contractive mappings in Banach spaces. Commun. Appl. Nonlinear Anal. 2014, 21, 89–99. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–610. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Deng, L. Convergence of the Ishikawa iteration process for nonexpansive mappings. J. Math. Anal. Appl. 1996, 199, 769–775. [Google Scholar] [CrossRef]
- Zeng, L.C. A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 1998, 178, 245–250. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Saluja, G.S.; Kim, J.K. On the convergence of modified S-iteration process for asymptotically quasi-nonexpansive type mappings in a CAT(0) space. Nonlinear Funct. Anal. Appl. 2014, 19, 329–339. [Google Scholar] [CrossRef]
- Kohlenbach, U. Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 2005, 357, 89–128. [Google Scholar] [CrossRef]
- Zhao, L.C.; Chang, S.S.; Kim, J.K. Mixed type iteration for total asymptotically nonexpansive mappings in hyperbolic spaces. Fixed Point Theory Appl. 2013, 2013, 363. [Google Scholar] [CrossRef]
- Kim, J.K.; Pathak, R.P.; Dashputre, S.; Diwan, S.D.; Gupta, R. Fixed point approximation of generalized nonexpansive mappings in hyperbolic spaces. Int. J. Math. Math. Sci. 2015, 2015, 368204. [Google Scholar] [CrossRef]
- Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 15, 537–558. [Google Scholar] [CrossRef]
- Chang, S.S.; Agarwal, R.P.; Wang, L. Existence and convergence theorems of fixed points for multi-valued SCC-, SKC-, KSC-, SCS- and C-type mappings in hyperbolic spaces. Fixed Point Theory Appl. 2015, 2015, 83. [Google Scholar] [CrossRef]
- Khan, A.R.; Fukhar-ud-din, H.; Khan, M.A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces. Fixed Point Theory Appl. 2012, 2012, 54. [Google Scholar] [CrossRef]
- Takahashi, W.A. A convexity in metric space and nonexpansive mappings, I. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Iteration processes for nonexpansive mappings. Contemp. Math. 1983, 21, 115–123. [Google Scholar]
- Kirk, W.A. Iteration process in hyperbolic spaces. Numer. Funct. Anal. Optim. 1982, 4, 371–381. [Google Scholar] [CrossRef]
- Itoh, S. Some fixed point theorems in metric spaces. Fundam. Math. 1979, 102, 109–117. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Dekker: New York, NY, USA, 1984. [Google Scholar]
- Tan, K.K.; Xu, H.K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 1993, 178, 301–308. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, K.S.; Nam, Y.M. Convergence of stability of iterative processes for a pair of simultaneously asymptotically quasi-nonexpansive type mappings in convex metric spaces. J. Comput. Anal. Appl. 2007, 9, 159–172. [Google Scholar]
- Leu¸stean, L. Nonexpansive iteration in uniformly convex W-hyperbolic spaces. Contemp. Math. 2010, 513, 193–210. [Google Scholar]
- Senter, H.F.; Doston, W.G., Jr. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Kanwal, S.; Lakhani, F.; Srivastava, R. Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations. Axioms 2023, 12, 271. https://doi.org/10.3390/axioms12030271
Tassaddiq A, Kanwal S, Lakhani F, Srivastava R. Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations. Axioms. 2023; 12(3):271. https://doi.org/10.3390/axioms12030271
Chicago/Turabian StyleTassaddiq, Asifa, Shazia Kanwal, Farha Lakhani, and Rekha Srivastava. 2023. "Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations" Axioms 12, no. 3: 271. https://doi.org/10.3390/axioms12030271
APA StyleTassaddiq, A., Kanwal, S., Lakhani, F., & Srivastava, R. (2023). Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations. Axioms, 12(3), 271. https://doi.org/10.3390/axioms12030271