Mixture of Shanker Distributions: Estimation, Simulation and Application
Abstract
:1. Introduction
2. 2-Component Mixture of Shanker Model (2-CMSM)
Identifiability
3. Statistical and Mathematical Characteristics
3.1. Mode
3.2. Median
3.3. Moments about Origin
3.4. Moment Generating Function
3.5. Cumulants
3.6. Cumulant Generating Function
3.7. Probability-Generating Function
3.8. Factorial-Moment-Generating Function
4. Reliability Measures
4.1. Reliability Function
4.2. Hazard Function
4.3. Mills Ratio
4.4. Cumulative Hazard Rate Function
4.5. Reversed-Hazard-Rate Function
4.6. Mean Time to Failure
4.7. Mean Residual Life
5. Estimation Inference via Simulation
5.1. Maximum Likelihood Estimation
5.2. Least Square Estimators
5.3. Weighted Least Squares Estimators
6. Simulation Study
- By varying the mixing proportion and the model parameters , and , generate random samples of sizes from the 2-CMSM The simulation’s random samples are generated as described in the next stage.
- Using the R uniform generator (runif), create one variate u from the uniform distribution .
- If , then generate a random variate from the first component, which is a Shanker distribution . If , the second component, the Shanker distribution , is used to generate a random variate.
- Follow (2) until you have the required sample size n.
- Using 1000 replications, repeat steps 1–4 again. Compute the MLEs, LSEs, and WLSEs for the 1000 samples, say for using the optima function and the Nelder-Mead technique in R to calculate the estimator values.
- Determine biases and MSEs. These goals are accomplished using the following formulas:
- The estimated bias of parameters , decreases as n increases under all three estimation approaches.
- For parametric Set-II, we can see that the estimated bias of parameters and is over-estimated in all three estimation methods, while is under-estimated in the LSE and WLSE estimation method (see Figure 9).
- The MSE of is strongly stimulated and higher under the LSE and WLSE estimation methods when (see Figure 10).
- Some big shifts in MSEs of under LSE and WLSE are observed when and .
- The discrepancy between estimates and assumed parameters goes to zero as the sample size grows in all estimating approaches.
7. Applications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
RF | |
CHRF | |
Mills ratio | |
MGF | |
PGF | |
CGF | |
MTTF | |
CDF | |
HRF | |
QF | |
RF | |
CF | |
FMGF | |
RHRF | |
MRL |
Abbreviations
Probability density function | |
PGF | Probability-generating function |
CDF | Cumulative distribution function |
FMGF | Factorial-moment-generating function |
MLE | Maximum likelihood estimator |
MGF | Moment-generating function |
RHRF | Reversed-hazard-rate function |
WLSE | Weighted least square estimator |
CGF | Cumulant generating function |
CHRF | Cumulative-hazard-rate function |
TTF | Time-to-failure |
QF | Quantile function |
MTTF | Mean time to failure |
HRF | Hazard rate function |
MSE | Mean square error |
CF | Characteristic function |
RF | Reliability function |
MRL | Mean residual life |
MGF | Moment-generating function |
LSE | Least square estimator |
References
- Everitt, B.S. A finite mixture model for the clustering of mixed-mode data. Stat. Probab. Lett. 1988, 6, 305–309. [Google Scholar] [CrossRef]
- Lindsay, B.G. Mixture models: Theory, geometry and applications. In NSF-CBMS Regional Conference Series in Probability and Statistics; Institute of Mathematical Statistics and the American Statistical Association: Beachwood, OH, USA, 1995; pp. 1–163. [Google Scholar]
- McLachlan, G.J.; Basford, K.E. Mixture Models: Inference and Applications to Clustering; M. Dekker: New York, NY, USA, 1988; Volume 38. [Google Scholar]
- McLachlan, G.; Peel, D. Finite Mixture Models; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Shi, J.Q.; Murray-Smith, R.; Titterington, D.M. Bayesian regression and classification using mixtures of Gaussian processes. Int. J. Adapt. Control. Signal Process. 2003, 17, 149–161. [Google Scholar] [CrossRef]
- Mohammad, D.; Muhammad, A. On the Mixture of BurrXII and Weibull Distribution. J. Stat. Appl. Probab. 2014, 3, 251–267. [Google Scholar]
- Sultan, K.S.; Ismail, M.A.; Al-Moisheer, A.S. Mixture of two inverse Weibull distributions: Properties and estimation. Comput. Stat. Data Anal. 2007, 51, 5377–5387. [Google Scholar] [CrossRef]
- Jiang, R.; Murthy, D.N.P.; Ji, P. Models involving two inverse Weibull distributions. Reliab. Eng. Syst. Saf. 2001, 73, 73–81. [Google Scholar]
- Mohamed, M.M.; Saleh, E.; Helmy, S.M. Bayesian prediction under a finite mixture of generalized exponential lifetime model. Pak. J. Stat. Oper. Res. 2014, 10, 417–433. [Google Scholar] [CrossRef]
- Mohammadi, A.; Salehi-Rad, M.R.; Wit, E.C. Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service. Comput. Stat. 2013, 28, 683–700. [Google Scholar] [CrossRef]
- Ateya, S.F. Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data. Stat. Pap. 2014, 55, 311–325. [Google Scholar]
- Sindhu, T.N.; Aslam, M. Preference of prior for Bayesian analysis of the mixed Burr type X distribution under type I censored samples. Pak. J. Stat. Oper. Res. 2014, 10, 17–39. [Google Scholar] [CrossRef]
- Al-Moisheer, A.S.; Daghestani, A.F.; Sultan, K.S. Mixture of Two One-Parameter Lindley Distributions: Properties and Estimation. J. Stat. Theory Pract. 2021, 15, 1–21. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Riaz, M.; Aslam, M.; Ahmed, Z. Bayes estimation of Gumbel mixture models with industrial applications. Trans. Inst. Meas. Control 2016, 38, 201–214. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Aslam, M.; Hussain, Z. A simulation study of parameters for the censored shifted Gompertz mixture distribution: A Bayesian approach. J. Stat. Manag. Syst. 2016, 19, 423–450. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Feroze, N.; Aslam, M.; Shafiq, A. Bayesian inference of mixture of two Rayleigh distributions: A new look. Punjab Univ. J. Math. 2020, 48. [Google Scholar]
- Sindhu, T.N.; Khan, H.M.; Hussain, Z.; Al-Zahrani, B. Bayesian inference from the mixture of half-normal distributions under censoring. J. Natl. Sci. Found. Sri Lanka 2018, 46, 587–600. [Google Scholar] [CrossRef]
- Sindhu, T.N.; Hussain, Z.; Aslam, M. Parameter and reliability estimation of inverted Maxwell mixture model. J. Stat. Manag. Syst. 2019, 22, 459–493. [Google Scholar] [CrossRef]
- Ali, S. Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework. Appl. Math. 2015, 39, 515–530. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y. Finite mixture models and their applications: A review. Austin Biom. Biostat. 2015, 2, 1–6. [Google Scholar]
- Shanker, R. Shanker Distribution and Its Applications. Int. J. Stat. Appl. 2015, 5, 338–348. [Google Scholar] [CrossRef]
- Shanker, R.; Fesshaye, H. On discrete Poisson-Shanker distribution and its applications. Biom. Biostat. Int. J. 2017, 5, 00121. [Google Scholar] [CrossRef]
- Shanker, R.; Hagos, F.; Sujatha, S. On modeling of lifetime data using one parameter Akash, Lindley and exponential distributions. Biom. Biostat. Int. J. 2016, 3, 1–10. [Google Scholar] [CrossRef]
- Shanker, R.; Hagos, F.; Sujatha, S. On modeling of Lifetimes data using exponential and Lindley distributions. Biom. Biostat. Int. J. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Dey, S.; Kumar, D.; Ramos, P.L.; Louzada, F. Exponentiated Chen distribution: Properties and estimation. Commun. Stat. Simul. Comput. 2017, 46, 8118–8139. [Google Scholar] [CrossRef]
- Dey, S.; Alzaatreh, A.; Zhang, C.; Kumar, D. A new extension of generalized exponential distribution with application to ozone data. Ozone Sci. Eng. 2017, 39, 273–285. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Louzada, F.; Ramos, P.L. Poisson exponential distribution: Different methods of estimation. J. Appl. Stat. 2018, 45, 128–144. [Google Scholar] [CrossRef]
- Dey, S.; Moala, F.A.; Kumar, D. Statistical properties and different methods of estimation of Gompertz distribution with application. J. Stat. Manag. Syst. 2018, 21, 839–876. [Google Scholar] [CrossRef]
- Dey, S.; Josmar, M.J.; Nadarajah, S. Kumaraswamy distribution: Different methods of estimation. Comput. Appl. Math. 2017, 37, 2094–2111. [Google Scholar] [CrossRef]
- Shafiq, A.; Sindhu, T.N.; Dey, S.; Lone, S.A.; Abushal, T.A. Statistical Features and Estimation Methods for Half-Logistic Unit-Gompertz Type-I Model. Mathematics 2023, 11, 1007. [Google Scholar] [CrossRef]
- Swain, J.J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution functions in Johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Generalized exponential distribution: Different method of estimations. J. Stat. Simul. 2001, 69, 315–337. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Atieh, B.; Nadarajah, S. Lindley distribution and its application. Math. Comput. Simul. 2008, 78, 493–506. [Google Scholar] [CrossRef]
- Jorgensen, B. Statistical Properties of the Generalized Inverse Gaussian Distribution; Springer: New York, NY, USA, 1982. [Google Scholar]
- Bantan, R.A.; Jamal, F.; Chesneau, C.; Elgarhy, M. A New Power Topp–Leone Generated Family of Distributions with Applications. Entropy 2019, 21, 1177. [Google Scholar] [CrossRef]
Distributions | MLEs | AIC | BIC | AICC | ||
---|---|---|---|---|---|---|
2-CMSM | 0.134313 | −317.6296 | 641.2591 | 646.0098 | 641.5092 | |
0.198818 | ||||||
0.005594 | ||||||
2-CMLM | 0.18601 | −319.0374 | 644.0748 | 648.8254 | 644.3248 | |
0.18658 | ||||||
0.01055 | ||||||
2-CMEM | 0.10124 | −329.0209 | 664.0418 | 668.7924 | 664.2918 | |
0.10125 | ||||||
0.10561 |
Distributions | MLEs | AIC | BIC | CAIC | ||
---|---|---|---|---|---|---|
2-CMSM | 0.15920 | −93.12697 | 192.2539 | 197.0045 | 192.9206 | |
0.65810 | ||||||
0.14734 | ||||||
2-CMLM | 0.15046 | −93.31165 | 192.6233 | 197.3739 | 193.2900 | |
0.61692 | ||||||
0.14163 | ||||||
2-CMEM | 0.10171 | −94.13504 | 194.2701 | 199.0206 | 194.9367 | |
0.36262 | ||||||
0.17721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abushal, T.A.; Sindhu, T.N.; Lone, S.A.; Hassan, M.K.H.; Shafiq, A. Mixture of Shanker Distributions: Estimation, Simulation and Application. Axioms 2023, 12, 231. https://doi.org/10.3390/axioms12030231
Abushal TA, Sindhu TN, Lone SA, Hassan MKH, Shafiq A. Mixture of Shanker Distributions: Estimation, Simulation and Application. Axioms. 2023; 12(3):231. https://doi.org/10.3390/axioms12030231
Chicago/Turabian StyleAbushal, Tahani A., Tabassum Naz Sindhu, Showkat Ahmad Lone, Marwa K. H. Hassan, and Anum Shafiq. 2023. "Mixture of Shanker Distributions: Estimation, Simulation and Application" Axioms 12, no. 3: 231. https://doi.org/10.3390/axioms12030231
APA StyleAbushal, T. A., Sindhu, T. N., Lone, S. A., Hassan, M. K. H., & Shafiq, A. (2023). Mixture of Shanker Distributions: Estimation, Simulation and Application. Axioms, 12(3), 231. https://doi.org/10.3390/axioms12030231