Iterative Sequences for a Finite Number of Resolvent Operators on Complete Geodesic Spaces
Abstract
:1. Introduction
2. Preliminaries
3. Lemmas for a Finite Number of Resolvent Operators
4. Iterative Schemes for a Finite Resolvents Operators
- (a)
- (b)
- and
- (c)
5. Applications to the Image Recovery Problem
- (a)
- (b)
- and
- (c)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Halpern, B. Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 1967, 73, 957–961. [Google Scholar] [CrossRef] [Green Version]
- Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, W.; Tamura, T. Convergence theorems for a pair of nonexpansive mappings. J. Convex Anal. 1998, 5, 45–56. [Google Scholar]
- Wittmann, R. Approximation of fixed points of nonexpansive mappings. Arch. Math. 1992, 58, 486–491. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Panyanak, B. On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 2008, 56, 2572–2579. [Google Scholar] [CrossRef] [Green Version]
- Saejung, S. Halpern’s iteration in CAT(0) spaces. Fixed Point Theory Appl. 2010, 2010, 471781. [Google Scholar] [CrossRef] [Green Version]
- Pia̧tek, B. Halpern iteration in CAT(κ) spaces. Acta Math. Sin. Engl. Ser. 2011, 27, 635–646. [Google Scholar] [CrossRef]
- Kimura, Y.; Satô, K. Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one. Fixed Point Theory Appl. 2013, 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Saejung, S.; Yotkaew, P. The Mann algorithm in a complete geodesic space with curvature bounded above. Fixed Point Theory Appl. 2013, 2013, 336. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Kohsaka, F. Two modified proximal point algorithms in geodesic spaces with curvature bounded above. Rend. Circ. Mat. Pallemo II Ser. 2019, 68, 83–104. [Google Scholar] [CrossRef]
- Jost, J. Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 1995, 70, 659–673. [Google Scholar] [CrossRef]
- Mayer, U.F. Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 1998, 6, 199–253. [Google Scholar] [CrossRef]
- Kimura, Y.; Kohsaka, F. Spherical nonspreadingness of resolvents of convex functions in geodesic spaces. J. Fixed Point Theory Appl. 2016, 18, 93–115. [Google Scholar] [CrossRef]
- Kimura, Y.; Satô, K. Convergence of subsets of a complete geodesic space with curvature bounded above. Nonlinear Anal. 2012, 75, 5079–5085. [Google Scholar] [CrossRef]
- Aoyama, K.; Kimura, Y. Strong convergence theorems for strongly nonexpansive sequences. Appl. Math. Comput. 2011, 217, 7537–7545. [Google Scholar] [CrossRef]
- Kimura, Y.; Satô, K. Image recovery problem on a geodesic space with curvature bound above by one. In Proceedings of the Third Asian Conference on Nonlinear Analysis and Optimization, Matsue, Japan, 2–6 September 2012; pp. 165–172. [Google Scholar]
- He, J.S.; Fang, D.H.; López, G.; Li, C. Mann’s algorithm for nonexpansive mappings in CAT(κ) spaces. Nonlinear Anal. 2012, 75, 445–452. [Google Scholar] [CrossRef]
- Saejung, S.; Yotkaew, P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 2012, 75, 742–750. [Google Scholar] [CrossRef]
- Aoyama, K.; Kimura, Y.; Kohsaka, F. Strong convergence theorems for strongly relatively nonexpansive sequences and applications. J. Nonlinear Anal. Optim. 2012, 3, 67–77. [Google Scholar]
- Crombez, G. Image recovery by convex combinations of projections. J. Math. Anal. Appl. 1991, 155, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Kitahara, S.; Takahashi, W. Image recovery by convex combinations of sunny nonexpansive retractions. Topol. Methods Nonlinear Anal. 1993, 2, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, K.; Kimura, Y. An iterative sequence for a finite number of metric projections on a complete geodesic space, Nolinear analysis and convex analysis. RIMS Kôkyûroku 2019, 2114, 120–126. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasahara, K.; Kimura, Y. Iterative Sequences for a Finite Number of Resolvent Operators on Complete Geodesic Spaces. Axioms 2021, 10, 15. https://doi.org/10.3390/axioms10010015
Kasahara K, Kimura Y. Iterative Sequences for a Finite Number of Resolvent Operators on Complete Geodesic Spaces. Axioms. 2021; 10(1):15. https://doi.org/10.3390/axioms10010015
Chicago/Turabian StyleKasahara, Kengo, and Yasunori Kimura. 2021. "Iterative Sequences for a Finite Number of Resolvent Operators on Complete Geodesic Spaces" Axioms 10, no. 1: 15. https://doi.org/10.3390/axioms10010015
APA StyleKasahara, K., & Kimura, Y. (2021). Iterative Sequences for a Finite Number of Resolvent Operators on Complete Geodesic Spaces. Axioms, 10(1), 15. https://doi.org/10.3390/axioms10010015