Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion
Abstract
:1. Introduction
2. General Assumptions, Settings and Notation
3. Main Result
4. Conclusions and Discussion
- (i)
- (ii)
Funding
Acknowledgments
Conflicts of Interest
References
- Arumugam, G.; Erhardt, A.H. Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion. Electron. J. Differ. Equ. 2020, 2020, 1–13. [Google Scholar]
- Antontsev, S.; Shmarev, S. On a class of fully nonlinear parabolic equations. Adv. Nonlinear Anal. 2019, 8, 79–100. [Google Scholar] [CrossRef]
- Feireisl, E. Mathematical analysis of fluids in motion: From well-posedness to model reduction. Rev. Mat. Complut. 2013, 26, 299–340. [Google Scholar] [CrossRef]
- Díaz, J.I.; Tello, L. On a climate model with a dynamic nonlinear diffusive boundary condition. Discret. Contin. Dyn. Syst. Ser. S 2008, 1, 253–262. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev spaces with variable exponents. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2017, p. x+509. [Google Scholar]
- Růžička, M. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math. 2004, 49, 565–609. [Google Scholar] [CrossRef]
- Acerbi, E.; Mingione, G. Regularity results for electrorheological fluids: The stationary case. C. R. Math. Acad. Sci. Paris 2002, 334, 817–822. [Google Scholar] [CrossRef]
- Acerbi, E.; Mingione, G. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 2002, 164, 213–259. [Google Scholar] [CrossRef]
- Eleuteri, M.; Harjulehto, P.; Lukkari, T. Global regularity and stability of solutions to obstacle problems with nonstandard growth. Rev. Mat. Complut. 2013, 26, 147–181. [Google Scholar] [CrossRef]
- Aboulaich, R.; Meskine, D.; Souissi, A. New diffusion models in image processing. Comput. Math. Appl. 2008, 56, 874–882. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef] [Green Version]
- Harjulehto, P.; Hästö, P.; Latvala, V.; Toivanen, O. Critical variable exponent functionals in image restoration. Appl. Math. Lett. 2013, 26, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Antontsev, S.N.; Shmarev, S.I. A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal. 2005, 60, 515–545. [Google Scholar] [CrossRef]
- Erhardt, A.H. Existence of solutions to parabolic problems with nonstandard growth and irregular obstacles. Adv. Differ. Equ. 2016, 21, 463–504. [Google Scholar]
- Antontsev, S.; Shmarev, S. Evolution PDEs with nonstandard growth conditions. In Atlantis Studies in Differential Equations; Existence, uniqueness, localization, blow-up; Atlantis Press: Paris, France, 2015; Volume 4, p. xviii+409. [Google Scholar]
- Shmarev, S. On the continuity of solutions of the nonhomogeneous evolution p(x,t)-Laplace equation. Nonlinear Anal. 2018, 167, 67–84. [Google Scholar] [CrossRef]
- Arora, R.; Shmarev, S. Double phase parabolic problem with variable growth. arXiv 2020, arXiv:2010.08306. [Google Scholar]
- Ok, J. Regularity for parabolic equations with time dependent growth. J. Math. Pures Appl. 2018, 120, 253–293. [Google Scholar] [CrossRef]
- De Filippis, C. Gradient bounds for solutions to irregular parabolic equations with (p,q)-growth. Calc. Var. Partial Differ. Equ. 2020, 59, 32. [Google Scholar] [CrossRef]
- Giannetti, F.; Passarelli di Napoli, A.; Scheven, C. On higher differentiability of solutions of parabolic systems with discontinuous coefficients and (p,q)-growth. Proc. R. Soc. Edinb. Sect. A 2020, 150, 419–451. [Google Scholar] [CrossRef]
- Arumugam, G.; Erhardt, A.H.; Eswaramoorthy, I.; Krishnan, B. Existence of weak solutions to the Keller–Segel chemotaxis system with additional cross-diffusion. Nonlinear Anal. Real World Appl. 2020, 54, 103090. [Google Scholar] [CrossRef]
- Arumugam, G.; Erhardt, A.H. Existence of weak solutions to a certain homogeneous parabolic Neumann problem involving variable exponents and cross-diffusion. J. Elliptic Parabol. Equ. 2020, 6, 685–709. [Google Scholar] [CrossRef]
- Erhardt, A.H. Compact embedding for p(x,t)-Sobolev spaces and existence theory to parabolic equations with p(x,t)-growth. Rev. Mat. Complut. 2017, 30, 35–61. [Google Scholar] [CrossRef]
- Erhardt, A.H. The stability of parabolic problems with nonstandard p(x,t)-growth. Mathematics 2017, 5, 50. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erhardt, A.H. Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion. Axioms 2021, 10, 14. https://doi.org/10.3390/axioms10010014
Erhardt AH. Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion. Axioms. 2021; 10(1):14. https://doi.org/10.3390/axioms10010014
Chicago/Turabian StyleErhardt, André H. 2021. "Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion" Axioms 10, no. 1: 14. https://doi.org/10.3390/axioms10010014
APA StyleErhardt, A. H. (2021). Stability of Weak Solutions to Parabolic Problems with Nonstandard Growth and Cross–Diffusion. Axioms, 10(1), 14. https://doi.org/10.3390/axioms10010014