Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Authors’ Research
3. Material Characterization
3.1. Post-Coagulation Residuals
3.2. Groundwater Treatment Residuals
3.3. Physicochemical Properties and Textural Parameters
4. Results
4.1. Adsorption Capacity of Post-Coagulation Residuals
4.2. Adsorption Capacity of Groundwater Treatment Residual
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salem, H.M.; Eweida, E.A.; Farag, A. Heavy metals in drinking water and their environmental impact of human health. In Proceedings of the International Conference for Environmental Hazards Mitigation, Cairo, Egypt, 9–12 September 2000; pp. 542–556. [Google Scholar]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, E.; Mahdy, A.; Sherif, F.; Hamadeen, H. Evaluation of a Novel Water Treatment Residual Nanoparticles as a Sorbent for Arsenic Removal. J. Nanomater. 2015, 2015, 10. [Google Scholar] [CrossRef]
- Caporale, A.G.; Punamiya, P.; Pigna, M.; Violante, A.; Sarkar, D. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions. J. Hazard. Mater. 2013, 260, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Yu, S.-H.; Jiang, H.-F.; Yao, Q.-Z.; Fu, S.-Q.; Zhou, G.-T. Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites. Appl. Surf. Sci. 2018, 444, 224–234. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Z.; Ao, H.; Yuan, B. Removal of Cr(VI) by corn stalk based anion exchanger: The extent and rate of Cr(VI) reduction as side reaction. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 424–432. [Google Scholar] [CrossRef]
- Dinari, M.; Haghighi, A. Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrason. Sonochem. 2018, 41, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.-L.; Chang, Y.-Y.; Yang, J.-K. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar] [CrossRef]
- Hu, H.M.; Li, X.W.; Huang, P.W.; Zhang, Q.W.; Yuan, W.Y. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. J. Environ. Manag. 2017, 203, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Tyagi, S.; Rawtani, D. Recent strategies for the removal of iron from water: A review. J. Water Process. Eng. 2017, 19, 291–304. [Google Scholar] [CrossRef]
- Liu, J.; Mwamulima, T.; Wang, Y.; Fang, Y.; Song, S.; Peng, C. Removal of Pb(II) and Cr(VI) from aqueous solutions using the fly ash-based adsorbent material-supported zero-valent iron. J. Mol. Liq. 2017, 243, 205–211. [Google Scholar] [CrossRef]
- Dubey, R.; Bajpai, J.; Bajpai, A. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ. Nanotechnol. Monit. Manag. 2016, 6, 32–44. [Google Scholar] [CrossRef]
- Ali, I. The Quest for Active Carbon Adsorbent Substitutes: Inexpensive Adsorbents for Toxic Metal Ions Removal from Wastewater. Sep. Purif. Rev. 2010, 39, 95–171. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, X.M. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite. PLoS ONE 2015, 10, e0117077. [Google Scholar] [CrossRef]
- Hoseinian, F.S.; Rezai, B.; Kowsari, E.; Safari, M. Kinetic study of Ni(II) removal using ion flotation: Effect of chemical interactions. Miner. Eng. 2018, 119, 212–221. [Google Scholar] [CrossRef]
- Omraei, M.; Esfandian, H.; Katal, R.; Ghorbani, M. Study of the removal of Zn(II) from aqueous solution using polypyrrole nanocomposite. Desalination 2011, 271, 248–256. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Mauchauffée, S.; Meux, E. Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere 2007, 69, 763–768. [Google Scholar] [CrossRef]
- Verma, V.; Tewari, S.; Rai, J. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour. Technol. 2008, 99, 1932–1938. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Chang, Y.-R.; Chen, M.-L.; Lo, Y.-K.; Lai, J.-Y.; Lee, D.-J. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour. Technol. 2016, 214, 192–198. [Google Scholar] [CrossRef]
- Cochrane, E.; Lu, S.; Gibb, S.; Villaescusa, I.; Gibb, S. A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J. Hazard. Mater. 2006, 137, 198–206. [Google Scholar] [CrossRef]
- Davarnejad, R.; Panahi, P. Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology. Sep. Purif. Technol. 2016, 158, 286–292. [Google Scholar] [CrossRef]
- Landaburu-Aguirre, J.; Pongracz, E.; Peramaki, P.; Keiski, R.L. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater. 2010, 180, 524–534. [Google Scholar] [CrossRef]
- Rahmanian, B.; Pakizeh, M.; Esfandyari, M.; Heshmatnezhad, F.; Maskooki, A. Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). J. Hazard. Mater. 2011, 192, 585–592. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Yoon, J.; Amy, G.; Chung, J.; Sohn, J.; Yoon, Y. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere 2009, 77, 228–235. [Google Scholar] [CrossRef]
- Lertlapwasin, R.; Bhawawet, N.; Imyim, A.; Fuangswasdi, S. Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants. Sep. Purif. Technol. 2010, 72, 70–76. [Google Scholar] [CrossRef]
- Akbal, F.; Camci, S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 2011, 269, 214–222. [Google Scholar] [CrossRef]
- Dharnaik, A.S.; Ghosh, P.K. Hexavalent chromium Cr(VI) removal by the electrochemical ion-exchange process. Environ. Technol. 2014, 35, 2272–2279. [Google Scholar] [CrossRef]
- Lee, C.G.; Jeon, J.W.; Hwang, M.J.; Ahn, K.H.; Park, C.; Choi, J.W.; Lee, S.H. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin. Chemosphere 2015, 130, 59–65. [Google Scholar] [CrossRef]
- Maneechakr, P.; Karnjanakom, S. Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: Surface chemistry, isotherm, kinetic and thermodynamic studies. J. Chem. Thermodyn. 2017, 106, 104–112. [Google Scholar] [CrossRef]
- Petrus, R.; Warchol, J.K. Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res. 2005, 39, 819–830. [Google Scholar] [CrossRef]
- Bajda, T.; Klapyta, Z. Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Appl. Clay Sci. 2013, 86, 169–173. [Google Scholar] [CrossRef]
- Bajda, T.; Szala, B.; Solecka, U. Removal of lead and phosphate ions from aqueous solutions by organo-smectite. Environ. Technol. 2015, 36, 2872–2883. [Google Scholar] [CrossRef]
- He, Y.; Liu, Q.Q.; Hu, J.; Zhao, C.X.; Peng, C.J.; Yang, Q.; Wang, H.L.; Liu, H.L. Efficient removal of Pb(II) by amine functionalized porous organic polymer through post-synthetic modification. Sep. Purif. Technol. 2017, 180, 142–148. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, Y.X.; Lu, H.H.; Yang, R.Q.; Yang, S.M. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 2018, 261, 53–61. [Google Scholar] [CrossRef]
- Chen, J.G.; Kong, H.N.; Wu, D.Y.; Chen, X.C.; Zhang, D.L.; Sun, Z.H. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J. Hazard. Mater. 2007, 139, 293–300. [Google Scholar] [CrossRef]
- Lim, J.W.; Chang, Y.Y.; Yang, J.K.; Lee, S.M. Adsorption of arsenic on the reused sanding wastes calcined at different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 65–70. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Yang, J.K.; Chang, Y.Y.; Koduru, J.R. Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy 2016, 165, 81–89. [Google Scholar] [CrossRef]
- Ocinski, D.; Jacukowicz-Sobala, I.; Mazur, P.; Raczyk, J.; Kociolek-Balawejder, E. Water treatment residuals containing iron and manganese oxides for arsenic removal from water—Characterization of physicochemical properties and adsorption studies. Chem. Eng. J. 2016, 294, 210–221. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, J.B.; Pei, Y.S. Adsorption of Co(II) from aqueous solutions by water treatment residuals. J. Environ. Sci. 2017, 52, 232–239. [Google Scholar] [CrossRef]
- Rzepa, G.; Bajda, T.; Ratajczak, T. Utilization of bog iron ores as sorbents of heavy metals. J. Hazard. Mater. 2009, 162, 1007–1013. [Google Scholar] [CrossRef]
- Jia, Y.F.; Demopoulos, G.P. Adsorption of arsenate onto ferrihydrite from aqueous solution: Influence of media (sulfate vs nitrate), added gypsum, and pH alteration. Environ. Sci. Technol. 2005, 39, 9523–9527. [Google Scholar] [CrossRef]
- Gao, Y.; Mucci, A. Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem. Geol. 2003, 199, 91–109. [Google Scholar] [CrossRef]
- Violante, A.; Pucci, M.; Cozzolino, V.; Zhu, J.; Pigna, M. Sorption/desorption of arsenate on/from Mg-Al layered double hydroxides: Influence of phosphate. J. Colloid Interface Sci. 2009, 333, 63–70. [Google Scholar] [CrossRef]
- Xie, J.K.; Xu, H.M.; Qu, Z.; Huang, W.J.; Chen, W.M.; Ma, Y.P.; Zhao, S.J.; Liu, P.; Yan, N.Q. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window. J. Colloid Interface Sci. 2014, 428, 121–127. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.H.; Zheng, T.; Ma, J.; Zhang, G.S.; Ren, G.H.; Wang, L.; Liu, Y.L. Efficient oxidation and sorption of arsenite using a novel titanium (IV)-manganese(IV) binary oxide sorbent. J. Hazard. Mater. 2018, 353, 410–420. [Google Scholar] [CrossRef]
- Mikhaylov, V.I.; Maslennikova, T.P.; Krivoshapkina, E.F.; Tropnikov, E.M.; Krivoshapkin, P.V. Express Al/Fe oxide-oxyhydroxide sorbent systems for Cr(VI) removal from aqueous solutions. Chem. Eng. J. 2018, 350, 344–355. [Google Scholar] [CrossRef]
- Altundogan, H.S.; Altundogan, S.; Tumen, F.; Bildik, M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 2002, 22, 357–363. [Google Scholar] [CrossRef]
- Evuti, A.M.; Lawal, M. Recovery of coagulants from water works sludge: A review. Adv. Appl. Sci. Res. 2011, 2, 410–417. [Google Scholar]
- Magdalena, W.; Tomasz, B. Current stage of knowledge relating to the use of ferruginous sludge from water treatment plants—A preliminary review of the literature. Mineralogia 2017, 48, 9–45. [Google Scholar]
- Quinones, K.D.; Hovsepyan, A.; Oppong-Anane, A.; Bonzongo, J.C.J. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals. J. Hazard. Mater. 2016, 307, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Wołowiec, M.; Pruss, A.; Komorowska-Kaufman, M.; Lasocka-Gomuła, I.; Rzepa, G.; Bajda, T. The properties of sludge formed as a result of coagulation of backwash water from filters removing iron and manganese from groundwater. SN Appl. Sci. 2019, 1, 639. [Google Scholar] [CrossRef] [Green Version]
- Komorowska-Kaufman, M. Adsorption properties of sludge arising during processes of groundwater and surface water treatment—A review. In Sorbenty Mineralne—Surowce, Energetyka, Ochrona Środowiska, Nowoczesne Technologie; Bajda, T., Ed.; Wydawnictwo Naukowe AGH: Kraków, Polska, 2017; pp. 65–75. [Google Scholar]
- Babatunde, A.O.; Zhao, Y.Q. Constructive approaches toward water treatment works sludge management: An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol. 2007, 37, 129–164. [Google Scholar] [CrossRef]
- Yang, L.; Wei, J.; Zhang, Y.M.; Wang, J.L.; Wang, D.T. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater. Appl. Surf. Sci. 2014, 305, 337–346. [Google Scholar] [CrossRef]
- Krishna, K.C.B.; Aryal, A.; Jansen, T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J. Environ. Manag. 2016, 180, 17–23. [Google Scholar] [CrossRef]
- Makris, K.C.; Harris, W.G.; O’Connor, G.A.; Obreza, T.A. Phosphorus immobilization in micropores of drinking-water treatment residuals: Implications for long-term stability. Environ. Sci. Technol. 2004, 38, 6590–6596. [Google Scholar] [CrossRef]
- Hovsepyan, A.; Bonzongo, J.C.J. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation. J. Hazard. Mater. 2009, 164, 73–80. [Google Scholar] [CrossRef]
- Gibbons, M.K.; Gagnon, G.A. Understanding removal of phosphate or arsenate onto water treatment residual solids. J. Hazard. Mater. 2011, 186, 1916–1923. [Google Scholar] [CrossRef]
- Wu, K.; Liu, R.P.; Li, T.; Liu, H.J.; Peng, J.M.; Qu, J.H. Removal of arsenic(III) from aqueous solution using a low-cost by-product in Fe-removal plants-Fe-based backwashing sludge. Chem. Eng. J. 2013, 226, 393–401. [Google Scholar] [CrossRef]
- Sales, A.; de Souza, F.R.; Almeida, F.D.R. Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust. Constr. Build. Mater. 2011, 25, 2793–2798. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Ahad, A.; Alam, M. Characterization of water treatment sludge and its reuse as coagulant. J. Environ. Manag. 2016, 182, 606–611. [Google Scholar] [CrossRef]
- Vinitnantharat, S.; Kositchaiyong, S.; Chiarakorn, S. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge. Appl. Surf. Sci. 2010, 256, 5458–5462. [Google Scholar] [CrossRef]
- Yang, Y.; Tomlinson, D.; Kennedy, S.; Zhao, Y.Q. Dewatered alum sludge: A potential adsorbent for phosphorus removal. Water Sci. Technol. 2006, 54, 207–213. [Google Scholar] [CrossRef]
- Kyncl, M.; Číhalová, Š.; Jurokovǎ, M.; Langarová, S. Disposal and reuse of the water processing sludge. Inż. Miner. 2012, 2, 11–20. [Google Scholar]
- Szerzyna, S. Porcjowe Grawitacyjne Zagęszczenie Osadów Powstających W Różnych Układach Oczyszczania Wody; Politechnika Wrocławska: Wrocław, Polska, 2012. [Google Scholar]
- Zhou, Y.F.; Haynes, R.J. A Comparison of Water Treatment Sludge and Red Mud as Adsorbents of As and Se in Aqueous Solution and Their Capacity for Desorption and Regeneration. Water Air Soil Pollut. 2012, 223, 5563–5573. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Haynes, R.J. Removal of Pb(II), Cr(III) and Cr(VI) from Aqueous Solutions Using Alum-Derived Water Treatment Sludge. Water Air Soil Pollut. 2011, 215, 631–643. [Google Scholar] [CrossRef]
- Wang, C.H.; Yuan, N.N.; Pei, Y.S. Effect of pH on Metal Lability in Drinking Water Treatment Residuals. J. Environ. Qual. 2014, 43, 389–397. [Google Scholar] [CrossRef]
- USEPA. The Toxicity Characteristic Leaching Procedure; USEPA: Washington, DC, USA, 1992.
- Ippolito, J.A.; Scheckel, K.G.; Barbarick, K.A. Selenium adsorption to aluminum-based water treatment residuals. J. Colloid Interface Sci. 2009, 338, 48–55. [Google Scholar] [CrossRef]
- Siswoyo, E.; Mihara, Y.; Tanaka, S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl. Clay Sci. 2014, 97-98, 146–152. [Google Scholar] [CrossRef]
- Postawa, A. Best Practice Guide on the Control of Iron and Manganese in Water Supply; Hayes, C., Ed.; IWA Publishing: London, UK, 2013; p. 131. [Google Scholar]
- Pruss, A.; Jeż-Walkowiak, J.; Sozański, M.M. Concentration of heavy metals on surface of filter materials and in backwash water. In Metals and Related Substances in Drinking Water, COST Action 637, Proceedings of the 4th International Conference of METEAU, Kristianstad, Sweden, 13–15 October 2010; IWA Publishing: London, UK, 2011; pp. 217–222. [Google Scholar]
- Jez-Walkowiak, J.; Pruss, A.; Sozański, M.M. Applied technologies and possibilities of modernization of groundwater treatment plants in Poland. In Metals and Related Substances in Drinking Water, COST Action 637, Proceedings of the 4th International Conference of METEAU, Kristianstad, Sweden, 13–15 October 2010; IWA Publishing: London, UK, 2011; pp. 172–175. [Google Scholar]
- Pruss, A.; Pruss, P.; Jedrzejczak, A. Hydraulic losses generated by modern drainage systems during backwash of rapid filters. Ochr. Śr. 2011, 33, 47–48. [Google Scholar]
- Dixit, S.; Hering, J.G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 2004, 8, 729. [Google Scholar] [CrossRef]
- Rao, M.M.; Ramesh, A.; Rao, G.P.C.; Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 2006, 129, 123–129. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, X.W.; Chen, Y.M.; Zhan, L.T.; Li, Z.Z.; Tang, Q. Adsorption behavior and mechanism of Cd(II) on loess soil from China. J. Hazard. Mater. 2009, 172, 30–37. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, C.K.; Ali, I.; Sharma, M.; Saini, V.K. Removal of cadmium and nickel from wastewater using bagasse fly ash—A sugar industry waste. Water Res. 2003, 37, 4038–4044. [Google Scholar] [CrossRef]
- Axe, L.; Trivedi, P. Intraparticle surface diffusion of metal contaminants and their attenuation in microporous amorphous Al, Fe, and Mn oxides. J. Colloid Interface Sci. 2002, 247, 259–265. [Google Scholar] [CrossRef]
- Wang, C.H.; Guo, W.; Tian, B.H.; Pei, Y.S.; Zhang, K.J. Characteristics and kinetics of phosphate adsorption on dewatered ferric-alum residuals. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 1632–1639. [Google Scholar] [CrossRef]
- McBride, M.B. Chemisorption and precipitation reactions. In Handbook of Soil Science; Sumner, M.E., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 265–302. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Makris, K.C.; Sarkar, D.; Datta, R. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 2006, 64, 730–741. [Google Scholar] [CrossRef]
- Stumm, W. Chemistry of the Solid-Water Interface; John Wiley & Sons, Inc.: Chichester, UK, 1992. [Google Scholar]
- Ong, D.C.; Kan, C.C.; Pingul-Ong, S.M.B.; de Luna, M.D.G. Utilization of groundwater treatment plant (GWTP) sludge for nickel removal from aqueous solutions: Isotherm and kinetic studies. J. Environ. Chem. Eng. 2017, 5, 5746–5753. [Google Scholar] [CrossRef]
- de Luna, M.D.G.; Flores, E.D.; Genuino, D.A.D.; Futalan, C.M.; Wan, M.W. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-Optimization, isotherm and kinetic studies. J. Taiwan Inst. Chem. Eng. 2013, 44, 646–653. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Rios, R.; Fabris, J.D.; Sapag, K.; Garg, V.K.; Lago, R.M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 2003, 22, 169–177. [Google Scholar] [CrossRef]
- Khalfa, L.; Bagane, M. Cadmium removal from aqueous solution by a Tunisian smectitic natural and activated clay: Thermodynamic study. J. Encapsul. Adsorpt. Sci. 2011, 1, 65–71. [Google Scholar] [CrossRef]
- Ramesh, A.; Hasegawa, H.; Maki, T.; Ueda, K. Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite. Sep. Purif. Technol. 2007, 56, 90–100. [Google Scholar] [CrossRef]
Heavy Metal | Anthropogenic Sources | PMTDI (mg/L) | Symptoms and Diseases | References |
---|---|---|---|---|
As | Pesticides, biosolids, disposal of industrial wastes, mining activities, feed additives, insecticides, ceramics, veterinary medicine, metallurgy, herbicides, electronic components, electrical generation, tanning, and textile | 0.01 | Arsenicosis, cancers of the bladder, skin, lungs, and kidneys | [3,4] |
Cd | Petroleum refining, electroplating and alloying industry, nickel–cadmium batteries, coal combustion, plastic stabilizers | 0.003 | Emphysema, hypertension, nephropathy, diabetes mellitus, skeletal malformation | [5] |
Cr | Pigments, chemicals, electroplating, coasting operations, wood treatment, data storage, textiles and leather tanning, metallurgy | 0.05 | Allergic reactions, skin rash, nose irritations, nosebleed, ulcer, weakened the immune system, genetic material alteration, kidney and liver damage, cancer | [6,7] |
Co | Preparation of semiconductors, nuclear medicine, enamel and painting on glass, grinding wheels, porcelain, hydrometers, electroplating, aerospace materials, Li-ion batteries | 0.002 | Paralysis, diarrhea, lung irritation, bone defects, low blood pressure, genetic changes in cells | [8] |
Cu | Mining operations, chemical, and pharmaceutical equipment, kitchenware, paper manufacturing | 1.5 | Menkes, Wilson, Alzheimer’s, Parkinson’s diseases, damages for eye and liver, vomiting, cramps, convulsions | [9] |
Fe | Iron and steel industries, mining, metal corrosion | No guideline | Hemochromatosis, eyes disorder, cancer, and heart diseases | [10] |
Pb | Fuels, manufacturing of electronic products, metal processing, painting pigments, electroplating, leather tanning and mining | 0.01 | Reproductive system damage, central nervous system damage, liver and kidneys diseases | [11] |
Hg | Mining operations, tanneries, dental filling, solders, Hg vapor lamps, metal plating facilities, amalgamation, catalysts, pharmaceuticals, rectifiers, fungicides | 0.001 | Kidneys, lungs and eyes diseases, skin dermatitis, nervous system dysfunction | [12] |
Mn | Corrosion of iron pipes, production of manganese steels, ferromanganese alloys | 0.5 | Lethargy, tremors, psychological disturbances, respiratory infections | [13] |
Ni | Nickel steel, non-ferrous alloys, superalloys, electroplating, alnico magnets, coinage, microphone capsules, rechargeable batteries, plating on plumbing fixtures, catalysts, dental and surgical prostheses | 0.02 | Anemia, diarrhea, encephalopathy, hepatitis, lung and kidney damage, gastrointestinal distress, pulmonary fibrosis, renal edema, skin dermatitis, central nervous system dysfunction. | [14,15] |
Zn | Batteries, pigments, Zn alloys, rubber industry, chemical industry, paints, cans, anti-corrosion coating | 3 | Depression, lethargy, respiratory incapacitation, appetite loss, diarrhea, headaches | [16] |
Water Origin | Water Treatment Process | Chemical Composition (mg/g) | References | |||||
---|---|---|---|---|---|---|---|---|
Fe | Al | Ca | Mn | Mg | C | |||
Surface water | Fe and Al coagulation | 71.2 | 62.7 | 18.9 | 2.9 | 2.4 | - | [41] |
Al coagulation | 17.8 | 74.7 | 15.7 | 0.8 | 4.5 | - | [72] | |
Al coagulation | 23.9 | 122.0 | 0.4 | - | 0.2 | 103.0 | [69] | |
Al coagulation + AC | 17.2 | 73.5 | 0.4 | - | 1.8 | 346.0 | ||
Al coagulation | 4.0 | 95.3 | - | - | - | 243.0 | [4] | |
Fe coagulation | 161.0 | 1.2 | - | - | - | 155.0 | ||
Al coagulation (PAC) | 17.5 | 63.6 | - | 1.2 | 1.2 | - | [73] | |
Al coagulation + AC (PAC) | 11.5 | 53.3 | - | 1.4 | 2.3 | - | ||
Groundwater | Aeration + pre-chlorination + Al coagulation + filtration | 26.0–90.0 | 105.0–144.0 | 3.2–3.6 | 0.03–1.1 | 0.2–2.3 | - | [57] |
Water Origin | Water Treatment Process | Particle Size | Specific Surface Area (m2/g) | pH | References |
---|---|---|---|---|---|
Surface water | Al & Fe coagulation | <165 µm | 81 | 7.6 | [41] |
Al coagulation | <125 µm | 97 | 6.8 | [69] | |
Al coagulation + AC | <125 µm | 290 | 6.5 | ||
Al coagulation | <125 µm | 435 | 5.5 | [4] | |
Fe coagulation | <125 µm | 217 | 6.1 | ||
Al coagulation (PAC) | <1 mm | 50 | 5.6 | [53,73] | |
Al coagulation + AC (PAC) | <1 mm | 413 | 5.6 | ||
Groundwater | No reagents | <1 mm | 120 | - | [40] |
No reagents | <60 µm | 152 | 7.0 | [61] | |
No reagents | <1 mm | 170 | - | This study |
Adsorbent | Favorable Adsorption Test Conditions | Reference | ||||||
---|---|---|---|---|---|---|---|---|
Type | SSA (m2/g) | Heavy Metals to be Removed | Initial Concentration (mg/L) | pH | Temp. (°C) | Contact Time (min) | Adsorption Capacity (mg/g) | |
Fe-SWTRs | 217.4 | As(III) | 80 | 7.0–9.0 | - | 24 h | 11.2 | [4] |
- | 200 | - | 23 | 60 | 14.5 | [87] | ||
Fe-GWTRs | 152 | 120 | 8.0 | 25 | 60 | 59.7 | [61] | |
120 | 25 | 4.0 | - | 90 | 132.0 | [40] | ||
Al-SWTRs | 435.5 | 105 | 6.0–7.0 | - | 24 h | 40.2 | [4] | |
- | 200 | - | 23 | 60 | 9.0 | [87] | ||
97.3 | 74 | 9.0 | 25 | 120 | 18.73 | [68] | ||
Fe-SWTRs | 217.4 | As(V) | 80 | - | - | 24 h | 9.2 | [4] |
- | 200 | - | 23 | 60 | 10.0 | [87] | ||
Fe-GWTRs | 120 | 25 | 4.0 | - | 90 | 77.0 | [40] | |
Al-SWTRs | 435.5 | 105 | - | - | 24 h | 49.9 | [4] | |
- | 200 | - | 23 | 60 | 15.0 | [87] | ||
97.3 | 74 | 6.0 | 25 | 120 | 20.98 | [68] | ||
- | 160 | 5.0–7.0 | 23 | 15 | 50.0 | [3] | ||
97.3 | Cr(III) | 52 | 6.0–9.0 | 25 | 120 | 19.2 | [69] | |
97.3 | Cr(VI) | 52 | 2.0–4.0 | 25 | 120 | 10.9 | ||
97.3 | Se(IV) | 79 | 5.0 | 25 | 120 | 22.11 | [68] | |
50 | 60 | 6.0–8.0 | 25 | 24 h | 2.1 | [73] | ||
97.3 | Se(VI) | 79 | 4.0 | 25 | 120 | 11.05 | [68] | |
50 | 60 | 6.0–8.0 | 25 | 24 h | 1.9 | [73] | ||
97.3 | Pb(II) | 207 | 6.0–9.0 | 25 | 120 | 53.9 | [69] | |
- | Hg(II) | 40 | 3.0 | - | 32 h | 79.0 | [59] | |
50 | Cd(II) | 100 | 6.0–8.0 | - | 30 | 5.3 | [73] | |
Fe/Al-SWTRs | 81.0 | Co(II) | 800 | 8.0 | 25 | 12 h | 17.3 | [41] |
GWTRs | - | Ni(II) | 200 | 6.5 | 25 | 120 | 11.6 | [89] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9, 487. https://doi.org/10.3390/min9080487
Wołowiec M, Komorowska-Kaufman M, Pruss A, Rzepa G, Bajda T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals. 2019; 9(8):487. https://doi.org/10.3390/min9080487
Chicago/Turabian StyleWołowiec, Magdalena, Małgorzata Komorowska-Kaufman, Alina Pruss, Grzegorz Rzepa, and Tomasz Bajda. 2019. "Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review" Minerals 9, no. 8: 487. https://doi.org/10.3390/min9080487