Origin of Blue Sapphire in Newly Discovered Spinel–Chlorite–Muscovite Rocks within Meta-Ultramafites of Ilmen Mountains, South Urals of Russia: Evidence from Mineralogy, Geochemistry, Rb-Sr and Sm-Nd Isotopic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sapphires
2.2. Host Rocks
3. Results
3.1. Geology and Petrology of Sapphire-Bearing Rocks and Meta-Ultramafic Host Rocks
3.2. Mineralogy of Sapphire-Hosted Micaceous Lenses
3.2.1. Major Minerals
3.2.2. Minor Minerals
3.2.3. Accessory Minerals
3.3. Sapphire Mineralogy, Geochemistry, and UV-Vis-NIR Spectroscopy
3.4. Whole-Rock Geochemistry
3.5. Rb-Sr and Sm-Nd Isotope Measurements
4. Discussion
4.1. Suggested Petrogenesis of Sapphire in the Meta-Ultramafic Host Rocks of the Ilmen Mountains
4.2. Comparison with Sapphire and Ruby from Metasomatites
4.3. Comparison of Chemical Data with Sapphires from Other Geological Environments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barbot-de-Marni, P.N. About a new deposit of zircon, tantalite and corundum. Min. J. 1828, 3, 171–172. (In Russian) [Google Scholar]
- Polyakov, V.O.; Bazhenov, A.G.; Petrov, V.I. Mineral associations of corundum of the Ilmen Mountains. In New Data on the Mineralogy of Endogenous Deposits and Zones of Technogenesis in the Urals; Ural Branch RAS: Sverdlovsk, Russia, 1991; pp. 15–21. [Google Scholar]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, A.G. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Groat, L.A., Ed.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Tucson, AZ, USA, 2014; Volume 44, pp. 29–112. [Google Scholar]
- Lennikh, V.I.; Valizer, P.M. To the geological scheme of the Ilmenogorsky complex. In Geology and Mineralogy of the Ilmenogorsky Complex: Situation and Problems; Ilmen State Reserve Ural Branch RAS: Miass, Russia, 2006; pp. 20–27. (In Russian) [Google Scholar]
- Krasnobaev, A.A.; Puzhakov, B.A.; Petrov, V.I.; Busharina, S.V. Zirconology of metamorphites of the Kyshtym-Arakulian strata of the Sysert-Ilmenogorsky complex. Proc. Zavaritsky Inst. Geol. Geochem. (Trudy Instituta Geologii i Geokhimii im. Akademika A.N. Zavaritskogo) 2009, 156, 264–268. [Google Scholar]
- Sorokina, E.S.; Karampelas, S.; Nishanbaev, T.P.; Nikandrov, S.N.; Semiannikov, B.S. Sapphire Megacrysts in Syenite Pegmatites from the Ilmen Mountains, South Urals, Russia: New Mineralogical Data. Can Mineral. 2017, 55, 823–843. [Google Scholar] [CrossRef]
- Medvedeva, E.V.; Rusin, A.I.; Murdasova, N.M.; Kotlyarov, V.A. Mineralogy of andalusite-kyanite-sillimanite rocks of the Saitovsky series in Ilmeny Mountains, the South Urals. Zapiski RMO 2012, 141, 50–60. (In Russian) [Google Scholar]
- Korinevsky, E.V. Chaotic Formations of the Ilmenogorsky Metamorphic Complex of the Southern Urals and Their Nature; Ural Branch RAS: Ekaterinburg, Russia, 2013; p. 112. (In Russian) [Google Scholar]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of reference values for NIST SRM 610-617 glasses following ISO Guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Jochum, K.P.; Scholz, D.; Stoll, B.; Weis, U.; Wilson, S.A.; Yang, Q.; Schwalb, A.; Börner, N.; Jacob, D.E.; Andreae, M.O. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 2012, 318–319, 31–44. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex: A Geochronological Toolkit for Microsoft Excel; Special Publication No. 1a (rev. 3); Berkeley Geochronology Center: Berkeley, CA, USA, 2004. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Nikandrov, S.N.; Rassomakhin, M.A.; Nishanbaev, T.P. List of minerals of Ilmen Mountains (data for 2017). Mineralogy 2017, 1, 52–60. (In Russian) [Google Scholar]
- Peucat, J.J.; Ruffault, P.; Fritch, E.; Bouhnik-Le-Coz, M.; Simonet, C.; Lasnier, B. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos 2007, 98, 261–274. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Abduriyim, A. Geographic typing of gem corundum: A test case from Australia. J. Gemmol. 2009, 31, 203–210. [Google Scholar] [CrossRef]
- Stone-Sundberg, J.; Thomas, T.; Sun, Z.; Guan, Y.; Cole, Z.; Equall, R.; Emmett, J. Accurate Reporting of Key Trace Elements in Ruby and Sapphire Using Matrix-Matched Standards. Gems Gemol. 2017, 53, 438–451. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Koivula, J.I.; Muyal, J.; Karampelas, S. Multiphase fluid inclusions in blue sapphires from the Ilmen Mountains, southern Urals. Gems Gemol. 2016, 52, 209–211. [Google Scholar]
- Giuliani, G.; Caumon, G.; Rakotosamizanany, S.; Ohnenstetter, D.; Rakototondrazafy, M. Classification chimique des corindons par analyse factorielle discriminante: Application à la typologie des gisements de rubis et saphirs. Revue Gemmol. 2014, 188, 14–22. [Google Scholar]
- Zwaan, J.C.; Buter, E.; Mertz-Kraus, R.; Kane, R.E. The origin of Montana’s alluvial sapphires. Gems Gemol. 2015, 51, 370–391. [Google Scholar]
- Sorokina, E.S.; Rassomakhin, M.A.; Nikandrov, S.N.; Anosova, M.O.; Kononkova, N.N.; Kuz’mina, T.G.; Romashova, T.V.; Philippova, K.A. Geochemistry of new blue corundum (sapphire) occurrence in Ilmen Mountains, South Urals of Russia: Clues to “metamorphic” sapphire petrogenesis in placer deposits. In Proceedings of the EGU General Assembly 2018, Vienna, Austria, 8–13 April 2018; Volume 20. [Google Scholar]
- Azimov, P.Y.; Bushmin, S.A. Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: Thermodynamic modeling at 400–800 °C and 1–5 kbar. Geochem. Int. 2007, 45, 1210–1234. [Google Scholar] [CrossRef]
- Pokrovskii, V.A.; Helgeson, H.C. Thermodynamic properties of aqueous species and the solubility of minerals at high pressures and temperatures: The system Al2O3-H2O-NaCI. Chem Geol. 1995, 137, 221–242. [Google Scholar] [CrossRef]
- Pin, C.; Monchoux, P.; Paquette, J.-L.; Azambre, B.; Wang, R.C.; Martin, R.F. Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: A possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Can. Mineral. 2006, 44, 843–856. [Google Scholar] [CrossRef]
- Rusin, A.I.; Valizer, P.M.; Krasnobaev, A.A.; Baneva, N.N.; Medvedeva, E.V.; Dubinina, E.V. Origin of the garnet-anortite-clinopyroxene-amphibole rocks from the Ilmenogorskii complex (Southern Urals). Lithosphere 2012, 1, 91–109. (In Russian) [Google Scholar]
- Nedosekova, I.L.; Vladykin, N.V.; Pribavkin, S.V.; Bayanova, T.B. The Il’mensky-Vishnevogorsky Miaskite-Carbonatite Complex, the Urals, Russia: Origin, Ore Resource Potential, and Sources. Geol. Ore Depos. 2009, 51, 139–161. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Baneva, N.N.; Medvedeva, E.V.; Rusin, A.I. Geochemical characteristics of ultramafites of the Ilmenogorsky shear zone. Proc. Zavaritsky Inst. Geol. Geochem. (Trudy Instituta Geologii i Geokhimii im. Akademika A.N. Zavaritskogo) 2009, 156, 115–119. (In Russian) [Google Scholar]
- Ivanov, K.S. The Main Features of the Geological History (1.6–0.2 Billion Years) and the Structure of the Urals. Unpublished Ph.D. Thesis, Urb RAS, Yekaterinbur, Russia, 1998; 252p. (In Russian). [Google Scholar]
- Dzikowski, T.J.; Cempirek, J.; Groat, L.A.; Dipple, G.M.; Giuliani, G. Origin of gem corundum in calcite marble: The Revelstoke occurrence in the Canadian Cordillera of British Columbia. Lithos 2014, 198–199, 281–297. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Ding, H.-X.; Dong, X.; Tian, Z.-L.; Mu, H.-C.; Li, M.-M.; Qin, S.-K.; Niu, Z.-X.; Zhang, N. The Eocene corundum-bearing rocks in the Gangdese arc, south Tibet: Implications for tectonic evolution of the Himalayan orogeny. Geosci. Front. 2018, 9, 1337–1354. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Szilas, K. Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geosci. Front. 2018, 9, 727–749. [Google Scholar] [CrossRef]
- Grapes, R.; Palmer, K. (Ruby-sapphire)-chromian mica-tourmaline rocks from Westland, New Zealand. J Petrol. 1996, 37, 293–315. [Google Scholar] [CrossRef]
- Icenhower, J.; London, D. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am. Mineral. 1995, 80, 1229–1251. [Google Scholar] [CrossRef]
- Yoder, H.S.; Eugster, H.P. Synthetic and natural muscovites. Geochim. Cosmochim. Acta 1955, 8, 225–280. [Google Scholar] [CrossRef]
- Storre, B.; Karotke, E. An experimental determination of the upper stability limit of muscovite + quartz in the range 7–20 kb water pressure. Neues Jahrb.Mineral. Monatsh. 1971, 237–240. [Google Scholar]
- Merrill, R.B.; Robertson, J.K.; Wyllie, P.J. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O to 20 kilobars compared with results for the feldspar-quartz-H2O and rock-H2O systems. J. Geol. 1970, 78, 558–569. [Google Scholar] [CrossRef]
- Althaus, E.; Karotke, E.; Nitsch, K.H.; Winkler, H.G.F. An experimental re-examination of the upper stability limit of muscovite plus quartz. Neues Jahrb. Mineral. Monatsh 1970, 7, 325–336. [Google Scholar]
- Hall, A.L. On the marundites and allied corundum-bearing rocks in the Leysdorf district of the Eastern Transvaal. Trans. Geol. Soc. S. Afr. 1923, 24, 43–67. [Google Scholar]
- Anhaesseur, C.R. On an Archean marundite occurrence (corundum margarite rock) in the Barberton Mountain Land, Eastern Transvaal. S. Afr. J. Geol. 1978, 81, 211–218. [Google Scholar]
- Morrison, E.R. Corundum in Rhodesia; Rhodesia Geological Survey: Salisbury, Zimbabwe, 1972; 24p. [Google Scholar]
- Schreyer, W.; Werding, G.; Abraham, K. Corundum-fuchsite rocks in greenstone belts of Southern Africa: Petrology, geochemistry and possible origin. J. Petrol. 1981, 22, 191–231. [Google Scholar] [CrossRef]
- Kerrich, R.; Fyfe, W.S.; Barnett, R.L.; Blair, B.B.; Willmore, L.M. Corundum, Cr-muscovite rocks at O’Briens, Zimbabwe: The conjunction of hydrothermal desilicification and LIL-element enrichment–geochemical and isotopic evidence. Contrib. Mineral. Petrol. 1987, 95, 481–498. [Google Scholar] [CrossRef]
- Wang, K.K.; Graham, I.T.; Lay, A.; Harris, S.J.; Cohen, D.R.; Voudouris, P.; Belousova, E.; Giuliani, G.; Fallick, A.E.; Greig, A. The Origin of a new Pargasite-Schist Hosted Ruby Deposit from Paranesti, Northern Greece. Can. Mineral. 2017, 55, 535–560. [Google Scholar] [CrossRef]
- Guo, J.; O’Reilly, S.Y.; Griffin, W.L. Corundum from basaltic terrains: A mineral inclusion approach to the enigma. Contrib. Mineral. Petrol. 1996, 122, 368–386. [Google Scholar] [CrossRef]
- Graham, I.; Sutherland, F.L.; Zaw, K.; Nechaev, V.; Khanchuk, A. Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geol. Rev. 2008, 34, 200–215. [Google Scholar] [CrossRef]
- Palke, A.; Wong, J.; Verdel, C.; Ávila, J.N. A common origin for Thai/Cambodian rubies and blue and violet sapphires from Yogo Gulch, Montana, U.S.A.? Am. Mineral. 2018, 103, 469–479. [Google Scholar] [CrossRef]
- Wong, J.; Verdel, C.; Allen, C. Trace-element compositions of sapphire and ruby from the eastern Australian gemstone belt. Min. Mag. 2017, 81, 1551–1576. [Google Scholar] [CrossRef]
No | Spot | Color | 24Mg | 47Ti | 51V | 53Cr | 57Fe | 71Ga | Ga/Mg | Fe/Mg | Cr/Ga | Fe/Ti | Mg × 100 | Ti × 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Cl | 35.18 | Bdl | 1.05 | 56.17 | 1039.18 | 29.03 | 0.83 | 29.54 | 1.94 | - | 3518 | - |
2 | Cl | 75.09 | Bdl | Bdl | 43.46 | 1121.67 | 32.05 | 0.43 | 14.94 | 1.36 | - | 7509 | - | |
3 | Cl | 46.83 | Bdl | 0.94 | 98.21 | 1072.46 | 35.79 | 0.76 | 22.9 | 2.74 | - | 4683 | - | |
1 | Bl | 13.09 | 279.22 | 1.23 | 81.71 | 973.14 | 28.99 | 2.21 | 74.34 | 2.82 | 3.49 | 1309 | 2792.2 | |
2 | Bl | 22.16 | 218.01 | Bdl | Bdl | 820 | 27.21 | 1.23 | 37.00 | - | 3.76 | 2216 | 2180.1 | |
3 | Bl | 21.93 | 189.74 | Bdl | 70.60 | 979.65 | 31.00 | 1.41 | 44.67 | 2.28 | 5.16 | 2193 | 1897.4 | |
2 | 1 | Cl | 16.03 | 49.25 | 2.46 | Bdl | 793.43 | 29.13 | 1.82 | 49.50 | - | 16.11 | 1603 | 492.5 |
2 | Cl | 17.68 | 267.84 | 1.11 | 40.05 | 915.65 | 31.11 | 1.76 | 51.79 | 1.29 | 3.42 | 1768 | 2678.4 | |
3 | Cl | 16.31 | 206.99 | 1.19 | 80.09 | 931.05 | 28.62 | 1.75 | 57.08 | 2.80 | 4.50 | 1631 | 2069.9 | |
1 | Bl | 22.01 | 167.50 | 0.76 | 520.29 | 981.77 | 30.45 | 1.38 | 44.61 | - | 5.86 | 2201 | 1675 | |
2 | Bl | 22.63 | 109.67 | Bdl | 63.15 | 931.31 | 28.85 | 1.28 | 41.15 | 2.19 | 8.49 | 2263 | 1096.7 | |
3 | Bl | 11.69 | 129.5 | Bdl | 58.41 | 788.16 | 31.82 | 2.72 | 67.42 | 1.83 | 6.09 | 1169 | 1295 | |
3 | 1 | Bl | 15.22 | 215.82 | 1.34 | 87.16 | 1002.05 | 9.22 | 0.61 | 65.84 | 9.45 | 4.64 | 1522 | 2158.2 |
2 | Bl | 19.98 | 174.27 | Bdl | 62.49 | 1021.17 | 27.56 | 1.38 | 51.11 | 2.27 | 5.86 | 1998 | 1742.7 | |
3 | Bl | 21.19 | 265.80 | 1.42 | Bdl | 853.12 | 26.88 | 1.27 | 40.27 | - | 3.21 | 2119 | 2658 | |
1 | Cl | 20.34 | Bdl | 0.92 | 95.93 | 1128.79 | 33.43 | 1.64 | 55.50 | 2.87 | - | 2034 | - | |
2 | Cl | 106.21 | Bdl | 1.56 | 114.49 | 767.40 | 32.59 | 0.31 | 7.23 | 3.51 | - | 10,621 | - | |
3 | Cl | 36.18 | Bdl | 1.19 | Bdl | 892.02 | 32.41 | 0.90 | 24.66 | - | - | 3618 | - | |
4 | 1 | Cl | 16.86 | 185.12 | 1.32 | Bdl | 686.05 | 23.21 | 1.38 | 40.69 | - | 3.71 | 1686 | 1851.2 |
2 | Cl | 15.53 | 127.12 | 1.31 | Bdl | 700.49 | 22.8 | 1.47 | 45.11 | - | 5.51 | 1553 | 1271.2 | |
3 | Cl | 11.91 | 90.24 | Bdl | Bdl | 801.94 | 24.81 | 2.08 | 67.33 | - | 8.88 | 1191 | 902.4 | |
5 | 1 | Cl | 53.17 | Bdl | Bdl | Bdl | 949.86 | 26.94 | 0.51 | 17.86 | - | - | 5317 | - |
2 | Cl | 34.99 | Bdl | 1.1 | Bdl | 934.3 | 30.5 | 0.87 | 26.70 | - | - | 3499 | - | |
3 | Cl | 19.22 | Bdl | Bdl | Bdl | 830.66 | 30.31 | 1.58 | 43.22 | - | - | 1922 | - | |
1 | Bl | 18.58 | 247.54 | Bdl | 39.46 | 800.69 | 26.99 | 1.45 | 43.09 | 1.46 | 3.23 | 1858 | 2475.4 | |
2 | Bl | 11.22 | 117.5 | 1.12 | Bdl | 764.53 | 27.66 | 2.47 | 68.14 | - | 6.5 | 1122 | 1175 | |
3 | Bl | 12.05 | 92.4 | 1.28 | Bdl | 732.68 | 27.34 | 2.27 | 60.80 | - | 7.93 | 1205 | 924 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorokina, E.S.; Rassomakhin, M.A.; Nikandrov, S.N.; Karampelas, S.; Kononkova, N.N.; Nikolaev, A.G.; Anosova, M.O.; Somsikova, A.V.; Kostitsyn, Y.A.; Kotlyarov, V.A. Origin of Blue Sapphire in Newly Discovered Spinel–Chlorite–Muscovite Rocks within Meta-Ultramafites of Ilmen Mountains, South Urals of Russia: Evidence from Mineralogy, Geochemistry, Rb-Sr and Sm-Nd Isotopic Data. Minerals 2019, 9, 36. https://doi.org/10.3390/min9010036
Sorokina ES, Rassomakhin MA, Nikandrov SN, Karampelas S, Kononkova NN, Nikolaev AG, Anosova MO, Somsikova AV, Kostitsyn YA, Kotlyarov VA. Origin of Blue Sapphire in Newly Discovered Spinel–Chlorite–Muscovite Rocks within Meta-Ultramafites of Ilmen Mountains, South Urals of Russia: Evidence from Mineralogy, Geochemistry, Rb-Sr and Sm-Nd Isotopic Data. Minerals. 2019; 9(1):36. https://doi.org/10.3390/min9010036
Chicago/Turabian StyleSorokina, Elena S., Mikhail A. Rassomakhin, Sergey N. Nikandrov, Stefanos Karampelas, Nataliya N. Kononkova, Anatoliy G. Nikolaev, Maria O. Anosova, Alina V. Somsikova, Yuriy A. Kostitsyn, and Vasiliy A. Kotlyarov. 2019. "Origin of Blue Sapphire in Newly Discovered Spinel–Chlorite–Muscovite Rocks within Meta-Ultramafites of Ilmen Mountains, South Urals of Russia: Evidence from Mineralogy, Geochemistry, Rb-Sr and Sm-Nd Isotopic Data" Minerals 9, no. 1: 36. https://doi.org/10.3390/min9010036