The Influence of a Flotation Solution’s Surface Tension on Pyrochlore Flotation
Abstract
1. Introduction
2. Materials and Methods
2.1. Niobium Ore
2.2. Reagents
2.3. Gamma Flotation Experiments
2.4. Measurement of Surface Tension of Solutions
3. Results and Discussion
3.1. Characterization of the Flotation Solutions
3.2. Gamma Flotation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, C.; Zou, W.; Liu, F.; Lu, Y.; Zhang, Z.; Li, Z. A comprehensive review on recent progress in beneficiation of Nb-bearing minerals/Nb ores. Miner. Eng. 2024, 212, 108710. [Google Scholar] [CrossRef]
- Gibson, C.E.; Aghamirian, M.; Kelebek, S. Pyrochlore flotation from silicate gangue minerals: Amine adsorption mechanisms and the effect of modifying reagents. Miner. Eng. 2021, 171, 107100. [Google Scholar] [CrossRef]
- Blengini, G.A.; Latunussa, C.; Eynard, U.; Torres de Matos, C.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; Unguru, M.; et al. Study on the EU’s List of Critical Raw Materials (2020) Final Report; Technical Report; European Commission: Luxembourg, 2020. [Google Scholar]
- Amoah, S.T.; Zhang, L.; Adhikari, K.; Li, H.; Cao, J. Process Applications and Challenges in Mineral Beneficiation and Recovery of Niobium from Ore Deposits—A Review. Miner. Process. Extr. Metall. Rev. 2021, 42, 833–864. [Google Scholar] [CrossRef]
- Hassas, M.; Deblonde, G.; Chagnes, A. Niobium and tantalum recovery from the primary source and from tin slag, an industrial challenge: A review. Can. J. Chem. Eng. 2023, 101, 1743–1761. [Google Scholar] [CrossRef]
- Gibson, C.E.; Kelebek, S.; Aghamirian, M. Niobium oxide mineral flotation: A review of relevant literature and the current state of industrial operations. Int. J. Miner. Process. 2015, 137, 82–97. [Google Scholar] [CrossRef]
- Gouvea Junior, J.T.; Morais, V.J.; Leal Filho, L.S. Decrease of Pyrochlore Loss to the Tailings Pond by Improving Current Flotation Process—Final Report; Technical Report, Grant 600212, agreement; CMOC/Embrapii/USP: São Paulo, Brazil, 2025. [Google Scholar]
- Martins, M.; Leal Filho, L.S.; Parekh, B.K. Surface tension of flotation solution and its influence on the selectivity of the separation between apatite and gangue minerals. Min. Metall. Explor. 2009, 26, 79–84. [Google Scholar] [CrossRef]
- Leja, J. Surface Chemistry of Froth Flotation; Plenum Press: New York, NY, USA, 1982; p. 758. [Google Scholar]
- Rao, S.R.; Leja, J. Surface Chemistry of Froth Flotation: Volume 1—Fundamentals; Volume 2—Reagents and Mechanisms, 2nd ed.; Springer: Boston, MA, USA, 2004. [Google Scholar]
- Liu, S.; Zhang, W.; Ni, J.; Yang, Y.; Yao, R.; Feng, W. Simultaneous Recovery of Niobium and Sulfur from Carbonate Niobite Ore with Flotation. Minerals 2022, 12, 432. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, F.; Deng, X.; Feng, J.; Li, Q.; Guo, W.; Wang, J.; Li, Y. The Distribution Regularity and Flotation Study of Niobium-Bearing Minerals in Baiyun Obo. Minerals 2023, 13, 387. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ralston, J.; Fornasiero, D.; Hayes, R. Bubble-particle attachment and detachment in flotation. Int. J. Miner. Process. 1999, 56, 133–164. [Google Scholar] [CrossRef]
- Zisman, W.A. Relation of the equilibrium contact angle to liquid and solid constitution. In Contact Angle, Wettability and Adhesion; Fowkes, F.M., Ed.; American Chemical Society: Washington, DC, USA, 1964; pp. 1–51. [Google Scholar] [CrossRef]
- Shafrin, E.G.; Zisman, W.A. Critical surface tension for spreading on a liquid substrate. J. Phys. Chem. 1967, 71, 1309–1316. [Google Scholar] [CrossRef]
- Kelebek, S.; Smith, G.W.; Finch, J.A.; Yörük, S. Critical surface tension of wetting and flotation separation of hydrophobic solids. Sep. Sci. Technol. 1987, 22, 1527–1546. [Google Scholar] [CrossRef]
- Özcan, O. Classification of minerals according to their critical surface tension of wetting values. Int. J. Miner. Process. 1992, 34, 191–204. [Google Scholar] [CrossRef]
- Kirjavainen, V.; Lehto, H.; Heiskanen, K. Study on the flotation behaviour of low energy materials at low surface tensions. Miner. Eng. 2003, 16, 1193–1196. [Google Scholar] [CrossRef]
- Pugh, R.J. Dynamic surface tension measurement in mineral flotation and de-inking flotation systems and the development of the on line dynamic surface tension detector (DSTD). Miner. Eng. 2001, 14, 1019–1031. [Google Scholar] [CrossRef]
- Kramer, A.; Gaulocher, S.; Martins, M.; Leal Filho, L.S. Surface tension measurement for optimization of flotation control. Procedia Eng. 2012, 46, 111–118. [Google Scholar] [CrossRef]
- Salama, I.E.; Slavchov, R.I.; Marei, N.N.; Canselier, J.P.; Kizling, J.; Kronberg, B. Chemisorption and physisorption of alcohols on iron(III) oxide-terminated surfaces from nonpolar solvents. J. Colloid Interface Sci. 2025, 685, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Sand, K.K.; Stipp, S.L.S.; Hassenkam, T.; Yang, M.; Makovicky, E. Ethanol adsorption on the {104} calcite surface: Preliminary observations with atomic force microscopy. Mineral. Mag. 2008, 72, 353–356. [Google Scholar] [CrossRef]
- Schulz, N.F. Separation efficiency. Trans. Am. Inst. Min. Metall. Pet. Eng. 1970, 247, 81–87. [Google Scholar]
- Somasundaran, P.; Wang, D. Solution Chemistry: Minerals and Reagents, 1st ed.; Developments in Mineral Processing; Elsevier: Amsterdam, The Netherlands, 2006; Volume 17. [Google Scholar]






| Duty | Reagent | Trade Name/Supplier | Dosage (g/t) | Functionality |
|---|---|---|---|---|
| Reverse flotation of carbonates (pH 10) | Stargill® 6191 | Cargill | 800 | Polysaccharide (starch) depressant for pyrochlore |
| Lioflot® 508 | Miracema | 100 | Fatty acid collector for carbonates | |
| Reverse flotation of silicates (pH 10) | Stargill® 6191 | Cargill | 900 | Polysaccharide (starch) depressant for pyrochlore |
| Flotigam® EDA | Clariant | 400 | Ether amine collector for silicates | |
| Direct flotation of pyrochlore (2.5 < pH < 5.5 *) | Hexafluorosilicic acid | CMOC | 2000 | Activator for pyrochlore and pH modifier |
| RV-418 | Dynatec | 30 | Hydrocarbon froth control agent | |
| Acetadiamine T50 | Kao Chemicals | 900 | Tallow diamine collector for pyrochlore | |
| Lupromin® FPN 315 | BASF | 900 | Ethoxylated fatty acid ancillary collector for pyrochlore |
| Size | Mass % | CaO | Fe2O3 | MgO | Nb2O5 | SiO2 |
|---|---|---|---|---|---|---|
| +105 μm | 32.9 | 20.31 | 7.57 | 7.17 | 0.28 | 28.17 |
| −105 +37 μm | 39.7 | 18.35 | 10.55 | 7.60 | 2.16 | 24.99 |
| −37 μm | 27.4 | 10.25 | 12.38 | 7.32 | 3.11 | 32.02 |
| Total | 100.0 | 16.77 | 10.07 | 7.38 | 1.80 | 27.96 |
| Mineral | Content (%) |
|---|---|
| Biotite | 30 |
| Dolomite | 28 |
| Calcite | 25 |
| Orthoclase | 14 |
| Rutile | 2 |
| Anatase | 1 |
| Quartz | <1 |
| Amphibole | <1 |
| Pyrochlore | <1 |
| Solution | % Water | % Ethyl Alcohol | Surface Tension (mN/m) |
|---|---|---|---|
| 1 | 94 | 6 | 57.3 |
| 2 | 84 | 16 | 45.0 |
| 3 | 75 | 25 | 39.0 |
| 4 | 50 | 50 | 29.7 |
| Reagents | Dosage (g/t) | Conc. (mg/L) | Time (s) |
|---|---|---|---|
| Mixture of 1:1 (w/w) of Acetadiamin® T50 + Lupromin® FPN 315 | 1780 | 1347 | 30 |
| RV 418 | 33 | 50 | 30 |
| Fluosilicic acid (pH 5.5) | 1980 | 1502 | 30 |
| LG (mN/m) | (%) | (%) | Nb2O5 (%) | (%) |
|---|---|---|---|---|
| 29.7 * | 18.8 ± 5.6 | 15.4 ± 5.0 | 15.6 ± 5.6 | 7.1 ± 2.0 |
| 39.0 * | 75.6 ± 1.6 | 81.1 ± 1.8 | 94.1 ± 1.5 | 28.9 ± 0.3 |
| 45.0 * | 85.8 ± 3.0 | 88.8 ± 2.9 | 97.2 ± 0.7 | 36.0 ± 5.2 |
| 48.9 ** | 91.0 ± 4.2 | 92.9 ± 2.5 | 98.9 ± 0.4 | 30.9 ± 3.9 |
| 57.3 * | 82.7 ± 0.8 | 85.9 ± 1.3 | 94.4 ± 0.1 | 32.5 ± 1.0 |
| Identification | Surface Tension (mN/m) at 22 °C | Std. Dev. |
|---|---|---|
| Carbonate flotation feed | 71.79 | 0.26 |
| Silicate flotation feed | 68.55 | 0.51 |
| Niobium flotation feed | 67.35 | 0.88 |
| Sampling Point | Surface Tension (mN/m) | Ca2+ (mg/L) | Mg2+ (mg/L) |
|---|---|---|---|
| Reverse carbonate flotation * | 61.5 ± 0.5 | 5.06 | 6.59 |
| Reverse silicate flotation * | 66.0 ± 0.1 | 8.17 | 16.80 |
| Direct pyrochlore flotation * | 61.2 ± 0.1 | 17.50 | 16.30 |
| Direct pyrochlore flotation ** | 48.9 | Distilled water | |
| LG (mN/m) | ENb2O5/SiO2 (%) | ENb2O5/CaO (%) | ENb2O5/TiO2 (%) |
|---|---|---|---|
| 29.7 * | −3 | 9 | 0 |
| 39.0 * | 19 | 65 | 13 |
| 45.0 * | 11 | 61 | 8 |
| 48.9 ** | 8 | 68 | 6 |
| 57.3 * | 12 | 62 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dias, R.V.; Gouvêa Junior, J.T.; de Salles Leal Filho, L. The Influence of a Flotation Solution’s Surface Tension on Pyrochlore Flotation. Minerals 2026, 16, 135. https://doi.org/10.3390/min16020135
Dias RV, Gouvêa Junior JT, de Salles Leal Filho L. The Influence of a Flotation Solution’s Surface Tension on Pyrochlore Flotation. Minerals. 2026; 16(2):135. https://doi.org/10.3390/min16020135
Chicago/Turabian StyleDias, Rafael Vaz, José Tadeu Gouvêa Junior, and Laurindo de Salles Leal Filho. 2026. "The Influence of a Flotation Solution’s Surface Tension on Pyrochlore Flotation" Minerals 16, no. 2: 135. https://doi.org/10.3390/min16020135
APA StyleDias, R. V., Gouvêa Junior, J. T., & de Salles Leal Filho, L. (2026). The Influence of a Flotation Solution’s Surface Tension on Pyrochlore Flotation. Minerals, 16(2), 135. https://doi.org/10.3390/min16020135

