Key Factors Impacting the Decomposition Rate of REE Silicates During Sulfuric Acid Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Techniques
2.1.1. X-Ray Diffraction
2.1.2. Electron Probe X-Ray Microanalysis
2.1.3. Automated Mineralogy
2.1.4. Solution Chemistry
2.2. Materials
2.2.1. Pristine Allanite-(Ce)
2.2.2. Heat-Treated Allanite-(Ce)
| Allanite-(Ce) | ||||
|---|---|---|---|---|
| Pristine | Heat-Treated (610 °C) | |||
| Mean (N = 30) | 1 σ * | Mean (N = 25) | 1 σ | |
| Oxides (wt%) | ||||
| SiO2 | 30.37 | 0.52 | 30.82 | 0.47 |
| TiO2 | 0.35 | 0.07 | 0.39 | 0.05 |
| Al2O3 | 14.64 | 0.93 | 14.73 | 0.23 |
| Fe2O3 ** | 14.80 | 1.14 | 15.66 | 1.24 |
| MgO | 0.21 | 0.11 | 0.18 | 0.09 |
| MnO | 1.56 | 0.58 | 1.53 | 0.59 |
| CaO | 9.68 | 1.08 | 10.06 | 0.66 |
| La2O3 | 4.48 | 0.37 | 4.60 | 0.25 |
| Ce2O3 | 10.82 | 0.84 | 11.23 | 0.31 |
| Pr2O3 | 1.24 | 0.11 | 1.27 | 0.05 |
| Nd2O3 | 4.23 | 0.33 | 4.41 | 0.12 |
| Sm2O3 | 0.66 | 0.06 | 0.69 | 0.03 |
| Gd2O3 | 0.35 | 0.03 | 0.36 | 0.02 |
| Dy2O3 | 0.13 | 0.03 | 0.14 | 0.03 |
| Y2O3 | 0.49 | 0.09 | 0.49 | 0.04 |
| ThO2 | 1.32 | 0.23 | 1.38 | 0.24 |
| Total | 95.33 | 97.93 | ||
| apfu *** | ||||
| Si | 3.054 | 3.029 | ||
| Ti | 0.027 | 0.029 | ||
| Al | 1.735 | 1.706 | ||
| Fe3+ **** | 0.218 | 1.158 | ||
| Fe2+ **** | 0.902 | 0.000 | ||
| Mg | 0.032 | 0.026 | ||
| Mn3+ **** | 0.000 | 0.125 | ||
| Mn2+ **** | 0.133 | 0.003 | ||
| Ca | 1.043 | 1.059 | ||
| La | 0.166 | 0.167 | ||
| Ce | 0.398 | 0.404 | ||
| Pr | 0.046 | 0.045 | ||
| Nd | 0.152 | 0.155 | ||
| Sm | 0.023 | 0.023 | ||
| Gd | 0.012 | 0.012 | ||
| Dy | 0.004 | 0.004 | ||
| Y | 0.026 | 0.026 | ||
| Th | 0.030 | 0.031 | ||
| Σcations *** | 8.000 | 8.000 | ||
| O **** | 12.5 | 13.0 | ||
2.2.3. Synthetic REE Silicates and Phosphates
| Nd-Disilicate | Ca-Nd-Orthosilicate | Nd-Orthophosphate | ||||
|---|---|---|---|---|---|---|
| N = 20 | 1 σ * | N = 20 | 1 σ | N = 20 | 1 σ | |
| Oxides (wt%) | ||||||
| SiO2 | 26.35 | 0.10 | 19.75 | 0.06 | ||
| CaO | 6.25 | 0.03 | ||||
| Nd2O3 | 73.23 | 0.35 | 73.51 | 0.28 | 70.17 | 0.24 |
| Gd2O3 | ||||||
| Y2O3 | ||||||
| P2O5 | 29.83 | 0.24 | ||||
| Total | 99.58 | 99.50 | 100.00 | |||
| apfu ** | ||||||
| Si | 2.006 | 6.000 | ||||
| Ca | 2.033 | |||||
| Nd | 1.992 | 7.977 | 0.995 | |||
| Gd | ||||||
| Y | ||||||
| P | 1.003 | |||||
| O * | 7.000 | 26.000 | 4.000 | |||


2.3. Sulfuric Acid Treatment and Water Leach
| Feed | Experiment # | Acid Treatment | Water Leach * | |||
|---|---|---|---|---|---|---|
| H2SO4 conc. (wt%) | H2SO4:feed (wt ratio) | T (°C) | Duration (min) | Duration (min) | ||
| Pristine allanite-(Ce) | Al-PR-55-1 | 55 | 1.5:1 | 90 | 120 | 90 |
| Al-PR-55-2 | 55 | 1.5:1 | 90 | 120 | none ** | |
| Al-PR-75-1 | 75 | 1.5:1 | 90 | 120 | 90 | |
| Al-PR-97-1 | 97 | 1.5:1 | 90 | 120 | 90 | |
| Heat-treated allanite-(Ce) | Al-HT-55-1 | 55 | 1.5:1 | 90 | 120 | 90 |
| Nd2Si2O7 | NdSi-55-1 | 55 | 2.5:1 | 90 | 120 | none ** |
| NdSi-55-2 | 55 | 2.5:1 | 90 | 120 | 90 | |
| NdSi-55-3 | 55 | 2.5:1 | 120 | 90 | 60 | |
| NdSi-75-1 | 75 | 2.5:1 | 120 | 90 | 60 | |
| NdSi-97-1 | 97 | 2.5:1 | 120 | 90 | 60 | |
| Ca2Nd8(SiO4)6O2 | CaNdSi-55-1 | 55 | 2.5:1 | 90 | 120 | none ** |
| CaNdSi-55-2 | 55 | 2.5:1 | 90 | 120 | 90 | |
| CaNdSi-55-3 | 55 | 2.5:1 | 120 | 90 | 60 | |
| CaNdSi-75-1 | 75 | 2.5:1 | 120 | 90 | 60 | |
| CaNdSi-97-1 | 97 | 2.5:1 | 120 | 90 | 60 | |
| CaNdSi-97-2 | 97 | 2.5:1 | 120 | 90 | none ** | |
| NdPO4 | NdP-55-1 | 55 | 2.5:1 | 120 | 90 | 60 |
| NdP-75-1 | 75 | 2.5:1 | 120 | 90 | 60 | |
| NdP-97-1 | 97 | 2.5:1 | 120 | 90 | none ** | |
| NdP-97-2 | 97 | 2.5:1 | 120 | 90 | 60 | |
3. Results and Discussion
3.1. Acid Treatment of Allanite-(Ce)



3.2. Acid Treatment of Neodymium Disilicate and Orthosilicate
3.2.1. Neodymium Disilicate: Nd2Si2O7
3.2.2. Neodymium Orthosilicate: Ca2Nd8(SiO4)6O2



3.3. Acid Treatment of Neodymium Orthophosphate

4. Implications and Conclusions
- Although the acid strength is expected to be the driver in promoting mineral decomposition, as clearly observed in NdPO4 (Section 3.3), for the silicates investigated (Section 3.1 and Section 3.2), no matter their crystalline structure and their relative chemical resistance, we observe an inverse trend with a sharp decrease in reactivity with the strongest acidic solution (H2SO497%). Consequently, there is a passivation mechanism at play that prevents efficient interaction between sulfuric acid and silicates which effect can be strongly minimized by water dilution.
- During decomposition, there is evidence of pseudomorphic replacement by a silica layer, which can even be maintained in the case of the most depolymerized silicate structure (Figure 13) where it is tightly intergrown with the produced sulfates.
- In all the H2SO455% acid treatment products preserved in isopropanol, the sulfates can be observed, often with well-defined crystalline shapes on the outer rim of the produced silica layer. This implies efficient transfer of the sulfate-forming cations across the silica layer, although their solubility limit has been exceeded in the acidic solution, even at this level of water dilution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadri, F.; Nazari, A.M.; Ghahreman, A. A review on the cracking, baking and leaching process of rare earth elements concentrates. J. Rare Earths 2017, 35, 739–752. [Google Scholar] [CrossRef]
- Demol, J.; Ho, E.; Soldenhoff, K.; Senanayake, G. The sulfuric acid bake and leach route for processing rare earth ores and concentrates: A review. Hydrometallurgy 2019, 188, 123–139. [Google Scholar] [CrossRef]
- Notzl, H.; Khan, S.; Verbaan, N. Hydrometallurgical plant design parameters for the Avalon rare earth process. In Proceedings of the 52nd Conference of Metallurgists (COM 2013); London, I.M., Goode, J.R., Moldoveanu, G., Rayat, M.S., Eds.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2013; pp. 201–214. [Google Scholar]
- Dreisinger, D.; Verbaan, N.; Johnson, M. The search minerals direct extraction process for rare earth element recovery. In Rare Metals Technology 2016; Alam, S., Kim, H., Neelameggham, N.R., Ouchi, T., Oosterhof, H., Eds.; Springer: Cham, Switzerland, 2016; pp. 3–16. [Google Scholar] [CrossRef]
- Murata, K.H. Internal structure of silicate minerals that gelatinize with acid. Am. Mineral. 1943, 28, 545–562. [Google Scholar]
- Terry, B. The acid decomposition of silicate minerals part I. Reactivities and modes of dissolution of silicates. Hydrometallurgy 1983, 10, 135–150. [Google Scholar] [CrossRef]
- Dufresne, R.E. Quick leach of siliceous zinc ores. JOM 1976, 28, 8–12. [Google Scholar] [CrossRef]
- Terry, B. The acid decomposition of silicate minerals part II. Hydrometallurgical applications. Hydrometallurgy 1983, 10, 151–171. [Google Scholar] [CrossRef]
- Lebedev, V.N. Sulfuric acid technology for processing of eudialyte concentrate. Russ. J. Appl. Chem. 2003, 76, 1559–1563. [Google Scholar] [CrossRef]
- Voßenkaul, D.; Birich, A.; Müller, N.; Stoltz, N.; Friedrich, B. Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. J. Sustain. Metall. 2017, 3, 79–89. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Bolomen’s, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 2017, 1, 115–122. [Google Scholar] [CrossRef]
- Ma, Y.; Stopic, S.; Gronen, L.; Friedrich, B. Recovery of Zr, Hf, Nb from eudialyte residue by sulfuric acid dry digestion and water leaching with H2O2 as a promoter. Hydrometallurgy 2018, 181, 206–214. [Google Scholar] [CrossRef]
- Balinski, A.; Atanasova, P.; Wiche, O.; Kelly, N.; Reuter, M.A.; Scharf, C. Recovery of REEs, Zr(+Hf), Mn, and Nb by H2SO4 leaching of eudialyte concentrate. Hydrometallurgy 2019, 186, 176–186. [Google Scholar] [CrossRef]
- Apostolidis, C.I.; Distin, P.A. The kinetics of the sulphuric acid leaching of nickel and magnesium from reduction roasted serpentine. Hydrometallurgy 1978, 3, 181–196. [Google Scholar] [CrossRef]
- Nicol, M.J.; Akilan, C. The kinetics of the dissolution of chrysocolla in acid solutions. Hydrometallurgy 2018, 178, 7–11. [Google Scholar] [CrossRef]
- Putnis, A. Mineral replacement reactions. Rev. Mineral. Geochem. 2009, 70, 87–124. [Google Scholar] [CrossRef]
- Müller, W.F.; Pentinghaus, B.; Kronimus, B. Lamellar microstructure of amorphous silica from leached labradorite feldspar. Neues Jb. Mineral. Abh. 1998, 172, 145–159. [Google Scholar] [CrossRef]
- Hellmann, R.; Wirth, R.; Daval, D.; Barnes, J.-P.; Penisson, J.-M.; Tisserand, D.; Epicier, T.; Florin, B.; Hervig, R.L. Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: A study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 2012, 294–295, 203–216. [Google Scholar] [CrossRef]
- Putnis, C.V.; Tsukamoto, K.; Nishimura, Y. Direct observations of pseudomorphism: Compositional and textural evolution at a fluid-solid interface. Am. Mineral. 2005, 90, 1909–1912. [Google Scholar] [CrossRef]
- Daval, D.; Martinez, I.; Guigner, J.-M.; Hellman, R.; Corvisier, J.; Findling, N.; Dominici, C.; Goffé, B.; Guyot, F. Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. Am. Mineral. 2009, 94, 1707–1726. [Google Scholar] [CrossRef]
- Cailleteau, C.; Angeli, F.; Devreux, F.; Gin, S.; Jestin, J.; Jollivet, P.; Spalla, O. Insight into silicate-glass corrosion mechanisms. Nat. Mater. 2008, 7, 978–983. [Google Scholar] [CrossRef]
- Daval, D.; Sissmann, O.; Menguy, N.; Saldi, G.D.; Guyot, F.; Martinez, I.; Corvisier, J.; Garcia, B.; Machouk, I.; Knauss, K.G.; et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2. Chem. Geol. 2011, 284, 193–209. [Google Scholar] [CrossRef]
- Thibault, Y.; Gamage McEvoy, J. Minimizing the impact of passivation during allanite-(Ce) decomposition in sulfuric acid media for rare earth recovery. Miner. Petrol. 2020, 11, 559–571. [Google Scholar] [CrossRef]
- Ewing, R.C.; Meldrum, A.; Wang, L.M.; Wang, S.X. Radiation-induced amorphization. In Reviews in Mineralogy & Geochemistry, Transformation Processes in Minerals; Redfern, S., Carpenter, M., Eds.; Mineralogical Society of America: Washington, DC, USA, 2000; Volume 39, pp. 319–361. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals Volume 1B: Disilicates and Ring Silicates; The Geological Society: London, UK, 1997; p. 629. [Google Scholar]
- Kӓrenlampi, K.; Vӓӓnӓnen, E.; Roivainen, T.; Perӓmӓki, P. Low temperature leaching behaviour of allanite-(Ce) in treating an allanite-concentrate by sulfuric acid. J. Sustain. Metall. 2024, 10, 1–9. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, Z.; Das, S.; Zhang, W. Mechanism and kinetic study of rare earth extraction from allanite by direct acid leaching. Miner. Eng. 2024, 205, 108489. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, W. Review of allanite: Properties, occurrence and mineral processing technologies. Green Smart Min. Eng. 2024, 1, 40–52. [Google Scholar] [CrossRef]
- Armstrong, J.T.; Donovan, J.J.; Carpenter, P. CALCZAF, TRYZAF and CITZAF: The use of multi-correction algorithm programs for estimating uncertainties and improving quantitative X-ray analysis of difficult specimens. Microsc. Microanal. 2013, 19, 812–813. [Google Scholar] [CrossRef]
- Ambruster, T.; Bonazzi, P.; Akasaka, M.; Bermanec, V.; Chopin, C.; Giéré, R.; Heuss-Assbichler, S.; Liebscher, X.; Mencheti, S.; Pan, Y.; et al. Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 2006, 18, 551–567. [Google Scholar] [CrossRef]
- Giéré, R.; Sorensen, S.S. Allanite and other REE-rich epidote-group minerals. In Reviews in Mineralogy & Geochemistry, Epidotes; Liebscher, A., Franz, G., Eds.; Mineralogical Society of America: Washington, DC, USA, 2004; Volume 56, pp. 431–493. [Google Scholar] [CrossRef]
- Dollase, W.A. Mossbauer spectra and iron distribution in the epidote-group minerals. Z. Kristallogr.-Cryst. Mater. 1973, 138, 41–63. [Google Scholar] [CrossRef]
- Bonazzi, P.; Menchetti, S. Structural variations induced by heat treatment in allanite and REE-bearing piemontite. Am. Mineral. 1994, 79, 1176–1184. [Google Scholar]
- Reissner, C.E.; Bismayer, U.; Kern, D.; Reissner, M.; Park, S.; Zhang, J.; Ewing, R.E.; Shelyug, A.; Navrotsky, A.; Paulmann, C.; et al. Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing. Phys. Chem. Mineral. 2019, 46, 921–933. [Google Scholar] [CrossRef]
- Talla, D.; Beran, A.; Škoda, R.; Losos, Z. On the presence of OH defects in the zircon-type mineral xenotime, (Y, REE)PO4. Am. Mineral. 2011, 96, 1799–1808. [Google Scholar] [CrossRef]
- Lenz, C.; Talla, D.; Ruschel, K.; Škoda, R.; Götze, J.; Nasdala, L. Factors affecting the Nd3+ (REE3+) luminescence of mineral. Miner. Petrol. 2013, 107, 415–428. [Google Scholar] [CrossRef]
- Linke, W.F.; Seidell, A. Solubilities, Inorganic and Metal-Organic Compounds: A Compilation of Solubility Data from the Periodical Literature; Van Nostrand: New York, NY, USA, 1965; p. 1914. [Google Scholar]
- Wise, M.E.; Brooks, S.D.; Garland, R.M.; Cziczo, D.J.; Martin, S.T.; Tolbert, M.A. Solubility and freezing effects of Fe2+ and Mg2+ in H2SO4 solutions representative of upper tropospheric and lower stratospheric sulfate particles. J. Geophys. Res. 2003, 1108, AAC15-1–AAC15-11. [Google Scholar] [CrossRef]
- Kobylin, P.; Kaskiala, T.; Salmien, J. Modeling of H2SO4-FeSO4-H2O and H2SO4-Fe2(SO4)3 systems for metallurgical applications. Ind. Eng. Chem. Res. 2007, 46, 2601–2608. [Google Scholar] [CrossRef]
- Um, N.; Hirato, T. Dissolution behaviour of La2O3, Pr2O3, Nd2O3, CaO and Al2O3 in sulfuric acid solutions and study of cerium recovery from rare earth polishing powder waste via two-stage sulfuric acid leaching. Mater. Trans. 2013, 54, 713–719. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Thibault, Y.; Gamage McEvoy, J.; Duguay, D. Key Factors Impacting the Decomposition Rate of REE Silicates During Sulfuric Acid Treatment. Minerals 2026, 16, 31. https://doi.org/10.3390/min16010031
Thibault Y, Gamage McEvoy J, Duguay D. Key Factors Impacting the Decomposition Rate of REE Silicates During Sulfuric Acid Treatment. Minerals. 2026; 16(1):31. https://doi.org/10.3390/min16010031
Chicago/Turabian StyleThibault, Yves, Joanne Gamage McEvoy, and Dominique Duguay. 2026. "Key Factors Impacting the Decomposition Rate of REE Silicates During Sulfuric Acid Treatment" Minerals 16, no. 1: 31. https://doi.org/10.3390/min16010031
APA StyleThibault, Y., Gamage McEvoy, J., & Duguay, D. (2026). Key Factors Impacting the Decomposition Rate of REE Silicates During Sulfuric Acid Treatment. Minerals, 16(1), 31. https://doi.org/10.3390/min16010031

