Microstructures and Anisotropy of Slates from Northern China
Abstract
1. Introduction
2. Geological Context and Sample Locations
3. Microstructures, Mineral Composition, and Shape Preferred Orientation Investigated with SEM
4. Crystallographic Preferred Orientation and Volume Fractions Measured with High Energy Synchrotron X-Ray Diffraction
5. Elastic Anisotropy
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twiss, R.J.; Moores, E.M. Structural Geology; W.H. Freeman and Company: New York, NY, USA, 2006; pp. 55–78. [Google Scholar]
- Marshak, S. Essentials of Geology; W. W. Norton & Company: New York, NY, USA, 2016; pp. 65–96. [Google Scholar]
- Fossen, H. Structural Geology; Cambridge University Press: Cambridge, UK, 2016; pp. 77–105. [Google Scholar]
- Sun, B.; Ren, F.; Wang, H. Experimental investigation on anisotropic characteristics of carbonaceous slate under uniaxial compression. Environ. Earth Sci. 2022, 81, 405. [Google Scholar] [CrossRef]
- Ding, C.; Hu, D.; Zhou, H.; Lu, J.; Lv, T. Investigations of P-Wave velocity, mechanical behavior and thermal properties of anisotropic slate. Int. J. Rock Mech. Min. Sci. 2020, 127, 104176. [Google Scholar] [CrossRef]
- Cárdenes, V.; Rubio-Ordoñez, A.; Wichert, J.; Cnudde, J.P.; Cnudde, V. Petrography of roofing slates. Earth Sci. Rev. 2014, 138, 435–453. [Google Scholar] [CrossRef]
- Cárdenes, V.; Ponce de León, M.; Rodríguez, X.A.; Rubio-Ordoñez, A. Roofing slate industry in Spain: History, geology, and geoheritage. Geoheritage 2019, 11, 19–34. [Google Scholar] [CrossRef]
- Sun, J. The characteristics of black roofing slate deposit in Western Hubei. Chin. Non-Met. Min. Ind. Her. 2010, 2, 52–53. [Google Scholar]
- Chiodi Filho, C.; Rodrigues, E.; Artur, A.C. Ardosias de Minas Gerais, Brasil: Caracteristicas geologicas petrograficas e quimicas. Geociencias 2003, 22, 119–127. [Google Scholar]
- Sorby, H.C. On the origin of slaty cleavage. New Philos. J. 1853, 55, 137–148. [Google Scholar] [CrossRef]
- Sorby, H.C. On the theory of the origin of slaty cleavage. Philos. Mag. 1856, 12, 127–129. [Google Scholar] [CrossRef]
- Oertel, G.; Curtis, C.D. Clay ironstone concretion preserving fabrics due to progressive compaction. Geol. Soc. Am. Bull. 1972, 83, 2597–2606. [Google Scholar] [CrossRef]
- Weber, K. Kinematic and metamorphic aspects of cleavage formation in very low-grade metamorphic slates. Tectonophysics 1981, 78, 291–306. [Google Scholar] [CrossRef]
- Kamil, S.; Tomáš, D.; Martin, V.; Jiří, B. Utilisation of X-Ray computed microtomography for evaluation of iron sulphide distribution in roofing slate. EGU Gen. Assem. 2016, 18, 2779. [Google Scholar]
- Cárdenes, V.; López-Sánchez, M.A.; Barou, F.; Olona, J.; Llana-Fúnez, S. Crystallographic preferred orientation, seismic velocity and anisotropy in roofing slates. Tectonophysics 2021, 808, 228815. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Kanitpanyacharoen, W.; Ren, Y. Slate—A new record for crystal preferred orientation. J. Struct. Geol. 2019, 125, 319–324. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Yu, R.; Cardenes, V.; Lopez-Sanchez, M.A.; Sintubin, M. Review: Fabric and anisotropy of slates: From classical studies to new results. J. Struct. Geol. 2020, 138, 104066. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Huang, J.; Devoe, M.; Gómez-Barreiro, J.; Vasin, R.; Ren, Y.; Barrios-Sánchez, S. Crystallographic and shape preferred orientation producing anisotropy in slates from Northern Spain. J. Struct. Geol. 2022, 164, 104730. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, H.; Rao, J. Research on brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations. Chin. J. Rock Mech. Eng. 2012, 31, 785–791. [Google Scholar]
- Zhu, Y.; Wang, X.; Liu, B.; Xue, H. The anisotropic time-dependent properties and constitutive model analysis of carbonaceous slate with different foliation angles. Appl. Sci. 2025, 15, 236. [Google Scholar] [CrossRef]
- Guo, B.; Wang, H.; Zhao, W.; Ji, S.; Sun, D.; Li, A.; Long, C. Analysis of seismic anisotropy of slate and its application. Chin. J. Geophys. 2014, 57, 837–846, (In Chinese with English abstract). [Google Scholar]
- Zhang, B.; Liu, C.; Yang, Z.; Qin, Y.; Li, M. Shear Wave Velocity Estimation for Shale with Preferred Orientation Clay Minerals. Minerals 2025, 15, 738. [Google Scholar] [CrossRef]
- Deng, T.; Huang, B.; Yang, L. Anisotropy comparison of P wave and S wave velocity for compacted rocks. Rock Soil Mech. 2007, 3, 493–498, (In Chinese with English abstract). [Google Scholar]
- Zhang, S.; Gao, R.; Li, H.; Hou, H.; Wu, H.; Li, Q.; Yang, K.; Li, C.; Li, W.; Zhang, J.; et al. Crustal structures revealed from a deep seismic reflection profile across the Solonker suture zone of the Central Asian Orogenic Belt, northern China: An integrated interpretation. Tectonophysics 2014, 612, 26–39. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Hao, J.; Zhai, M. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Z.; Guo, S.; Li, J.; Feng, Z.; Tang, W. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia. Sci. China Earth Sci. 2012, 55, 39–52, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, B.; Shi, L.; Ruan, Z.; Cui, X.; Luo, L. Sedimentary Characteristics of Elitu formation in Zhengxiangbai Qi of Inner Mongolia identified by Markov chain analysis. Geol. Res. 2023, 32, 21–30, (In Chinese with English abstract). [Google Scholar]
- Yuan, D.; Li, D.; Chen, Q.; Zeng, P.; Xu, Q. Geochronology and geochemical characteristics of amphibolite in Guandi Complex, Zhoukoudian area and its geological significance. Northwest Geol. 2016, 49, 149–164, (In Chinese with English abstract). [Google Scholar]
- Zhou, T.; Liu, Y.; Guan, Q.; Liu, B.; Xiao, W.; Li, S.; Chen, Z.; Peskov, A.Y. Tectonic evolution of the eastern Central Asian Orogenic Belt during the Carboniferous–Permian. Earth-Sci. Rev. 2025, 262, 105046. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Feng, Z.; Wen, Q.; Neubauer, F.; Liang, C. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Li, H.; Zhou, J.; Wilde Simon, A. Nature and development of the South Tianshan-Solonker suture zone. Earth Sci. Rev. 2022, 233, 104189. [Google Scholar] [CrossRef]
- Han, J.; Zhou, J.; Wang, B.; Cao, J.-L. The final collision of the CAOB: Constraint from the zircon U–Pb dating of the Linxi Formation, Inner Mongolia. Geosci. Front. 2015, 6, 211–225. [Google Scholar] [CrossRef]
- Du, J.; Qian, C.; Wu, W.; Zhang, Y.; Zhang, C.; Qin, T.; Ma, Y.; You, H. Discovery of ~2.5 Ga zircon U-Pb age from the diabase, Ar Horqin Banner Area, Inner Mongolia: Implications for Neoarchean crystalline basement of Bainaimiao Arc Belt. China Geol. 2023, 6, 531–532. [Google Scholar] [CrossRef]
- Song, H.; Shan, W.; Fu, Z. Structural Analysis of Zhoukoudian Area in Beijing. Geosci. Front. 1995, 2, 246–247. (In Chinese) [Google Scholar]
- Yang, Z.; Chen, Y.; Wang, H. The Geology of China, 3rd ed.; Clarendon Press: Oxford, UK, 1986; pp. 10–116. [Google Scholar]
- Chen, J. Hebei Yixian natural slate association established. China Building Materials News, 3 August 2006; p. 1. (In Chinese) [Google Scholar]
- Wen, B. Beijing slate is popular overseas. China Construction News, 24 March 2001; p. 11. (In Chinese) [Google Scholar]
- Cashman, K.V.; Ferry, J.M. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization Ⅲ: Metamorphic crystallization. Contrib. Mineral. Petr. 1988, 99, 401–415. [Google Scholar] [CrossRef]
- Randolph, A.D.; White, E.T. Modeling size dispersion in the prediction of crystal-size distribution. Chem. Eng. Sci. 1977, 32, 1067–1076. [Google Scholar] [CrossRef]
- Marsh, B.D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: Ⅰ. Theory. Contrib. Mineral. Petr. 1988, 99, 277–291. [Google Scholar] [CrossRef]
- Akker, I.V.; Berger, A.; Schrank, C.E.; Jones, M.W.; Kewish, C.M.; Klaver, J.; Herwegh, M. The evolution of slate microfabrics during progressive accretion of foreland basin sediments. J. Struct. Geol. 2021, 150, 104404. [Google Scholar] [CrossRef]
- Higgins, M.D. Measurement of crystal size distributions. Am. Mineral. 2000, 85, 1105–1116. [Google Scholar] [CrossRef]
- Higgins, M.D. Verification of ideal semi-logarithmic, log-normal or fractal crystal size distributions from 2D datasets. J. Volcanol. Geotherm. Res. 2006, 154, 8–16. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Jiang, X.; Qu, L.; Yuan, Y.; Li, Y.; Peng, H.; Rao, T.; Ma, B.; Xu, Z. Two dimensional quantitative analysis method for igneous rock structure. Geosci. Front. 2020, 27, 23–38, (In Chinese with English abstract). [Google Scholar]
- Caglioti, G.; Paoletti, A.; Ricci, F.P. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. Meth. A 1958, 3, 223–228. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R.; Schultz, A.J.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Lutterotti, L.; Vasin, R.; Wenk, H.-R. Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffr. 2014, 29, 76–84. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Lutterotti, L.; Kaercher, P.; Kanitpanyacharoen, W.; Miyagi, L.; Vasin, R. Rietveld texture analysis from synchrotron diffraction images: II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr. 2014, 29, 220–232. [Google Scholar] [CrossRef]
- Matthies, S.; Wenk, H.-R. Transformations for monoclinic crystal symmetry in texture analysis. J. Appl. Cryst. 2009, 42, 564–571. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Matthies, S.; Donovan, J.; Chateigner, D. BEARTEX: A Windows-based program system for quantitative texture analysis. J. Appl. Cryst. 1998, 31, 262–269. [Google Scholar] [CrossRef]
- Haerinck, T.; Wenk, H.-R.; Debacker, T.N.; Sintubin, M. Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric. J. Struct. Geol. 2015, 71, 125–135. [Google Scholar] [CrossRef]
- Matthies, S.; Humbert, M. On the principle of a geometric mean of even-rank symmetric tensors for textured polycrystals. J. Appl. Cryst. 1995, 28, 254–266. [Google Scholar] [CrossRef]
- Matthies, S.; Priesmeyer, H.G.; Daymond, M.R. On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J. Appl. Cryst. 2001, 34, 585–601. [Google Scholar] [CrossRef]
- Vaughan, M.T.; Guggenheim, S. Elasticity of muscovite and its relationship to crystal structure. J. Geophys. Res. 1986, 91, 4657–4664. [Google Scholar] [CrossRef]
- Mookherjee, M.; Mainprice, D. Unusually large shear wave anisotropy for chlorite in subduction zone settings. Geophys. Res. Lett. 2014, 41, 1506–1513. [Google Scholar] [CrossRef]
- Heyliger, P.; Ledbetter, H.; Kim, S. Elastic constants of natural quartz. J. Acoust. Soc. Am. 2003, 114, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Lin, C.C.; Liu, L.-G.; Sinogeikin, S.V.; Bass, J.D. Elasticity of single crystal calcite and rhodochrosite by Brillouin spectroscopy. Am. Min. 2001, 86, 1525–1529. [Google Scholar] [CrossRef]
- Brown, J.M.; Angel, R.J.; Ross, N.L. Elasticity of plagioclase feldspars. J. Geophys. Res. 2016, 121, 663–675. [Google Scholar] [CrossRef]
- Waeselmann, N.; Brown, J.M.; Angel, R.J.; Ross, N.; Zhao, J.; Kamensky, W. The elastic tensor of monoclinic alkali feldspars. Am. Min. 2016, 101, 1228–1231. [Google Scholar] [CrossRef]
- Chheda, T.D.; Mookherjee, M.; Mainprice, D.; dos Santos, A.; Molaison, J.J.; Chantel, J.; Manthilake, G.; Bassett, W. Structure and elasticity of phlogopite under compression: Geophysical implications. Phys. Earth Planet. Int. 2014, 233, 1–12. [Google Scholar] [CrossRef]
- Fu, D.; Huang, B.; Kusky, T.M.; Li, G.; Wilde, S.A.; Zhou, W.; Yu, Y. A Middle Permian ophiolitic mélange belt in the Solonker suture zone, Western Inner Mongolia, China: Implications for the evolution of the Paleo-Asian Ocean. Tectonics 2017, 37, 1292–1320. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Yang, J.; Ge, J.; Wang, J.; Li, Z. Testing final closure time of the Paleo-Asian Ocean along the Solonker suture by a transition of compressional and extensional setting. Geosci. Front. 2020, 11, 1935–1951. [Google Scholar] [CrossRef]
- Li, K.; Jolivet, M.; Zhang, Z.; Li, J.; Tang, W. Long-term exhumation history of the Inner Mongolian Plateau constrained by apatite fission track analysis. Tectonophysics 2016, 666, 121–133. [Google Scholar] [CrossRef]
- Eizenhöfer, P.R.; Zhao, G.; Zhang, J.; Sun, M. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 2014, 33, 441–463. [Google Scholar] [CrossRef]
- Song, D.; Xiao, W.; Ao, S.; Mao, Q.; Wan, B.; Zeng, H. Contemporaneous closure of the Paleo-Asian Ocean in the Middle-Late Triassic: A synthesis of new evidence and tectonic implications for the final assembly of Pangea. Earth-Sci. Rev. 2024, 253, 104771. [Google Scholar] [CrossRef]
- Xue, F.; Santosh, M.; Kim, S.W. Differential lithospheric evolution during craton destruction: Insights from Mesozoic mafic magmatic suites with transitional features in the North China Craton. Gondwana Res. 2025, 139, 118–135. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Zhao, Y.; Hu, G. Compositionally variable basement and tectonic affinity of the Bainaimiao arc belt: Implications for crustal growth of the Central Asian Orogenic Belt. J. Asian Earth Sci. 2024, 263, 106009. [Google Scholar] [CrossRef]
- Zhai, M.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, S.; Guo, T.; Xu, G. Evolution of a Jurassic basin of the Western Hills, Beijing North China and its tectonic implications. Geol. Bull. China 2002, 21, 211–217, (In Chinese with English abstract). [Google Scholar]
- Hao, W.; Zhu, G.; Zhu, R. Timing of the Yanshan Movement: Evidence from the Jingxi Basin in the Yanshan fold-and-thrust belt, eastern China. Int. J. Earth Sci. 2019, 108, 1961–1978. [Google Scholar] [CrossRef]
- Zhai, M.; Shao, J.; Hao, J.; Peng, P. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Res. 2003, 6, 171–183. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.-G.; Paterson, S. Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J. Struct. Geol. 2009, 31, 615–626. [Google Scholar] [CrossRef]
- Yan, J.; Cui, Y.; Liu, X. Evolution of contact-metamorphic rocks in the Zhoukoudian area: Evidence from phase equilibrium modelling. Minerals 2023, 13, 1056. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, L.; Yao, H.; Jiang, M.; Wang, B. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Res. 2013, 23, 25–38. [Google Scholar] [CrossRef]
- Fu, Y.V.; Chen, Y.J.; Li, A. Seismic anisotropy beneath the Chinese mainland. Earthq. Sci. 2010, 23, 583–595. [Google Scholar] [CrossRef][Green Version]
- Fu, Y.V.; Gao, Y.; Li, A.; Lu, L.; Shi, Y.; Zhang, Y. The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography. Geophy. J. Int. 2016, 204, 1649–1661. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Yi, G.; Shi, Y. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chin. Sci. Bull. 2010, 55, 3599–3605. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Fukao, Y.; Shi, Y.; Zhu, A. Shear-wave splitting in the crust in North China: Stress, faults and tectonic implications. Geophys. J. Int. 2011, 187, 642–654. [Google Scholar] [CrossRef]
- Chang, L.; Wang, C.; Ding, Z. Upper mantle anisotropy beneath North China from shear wave splitting measurements. Tectonophysics 2012, 552–553, 235–242. [Google Scholar] [CrossRef]
- Fu, Y.V.; Gao, Y.; Li, A.; Shi, Y. Lithospheric shearwave velocity and radial anisotropy beneath the northern part of North China from surface wave dispersion analysis. Geochem. Geophys. Geosyst. 2015, 16, 2619–2636. [Google Scholar] [CrossRef]
- Iidaka, T.; Niu, F. Mantle and crust anisotropy in the eastern China region inferred from waveform splitting of SKS and PpSms. Earth Planets Space 2001, 53, 159–168. [Google Scholar] [CrossRef]
- Liu, K.H.; Gao, S.S.; Gao, Y.; Wu, J. Shear wave splitting and mantle flow associated with the deflected Pacific slab beneath northeast Asia. J. Geophys. Res. 2008, 113, B01305. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, T. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophys. Res. Lett. 2005, 32, L10309. [Google Scholar] [CrossRef]
Sample | Lithology | Unit | Age | Locations | Coordinates |
---|---|---|---|---|---|
BJF-1a | green slate | Benxi | Late Carboniferous | Fangshan, Beijing | 39°41′39.96″ N 115°55′51.94″ E |
BJF-2a | black slate | Jingeryu | Neoproterozoic Era | 39°40′32.54″ N 115°54′02.73″ E | |
BJF-2b | green slate | ||||
BJF-2d | |||||
HBX | rust-colored slate | Xuzhuang | Middle Cambrian | Xushui, Hebei | 39°08′45.42″ N 115°23′17.48″ E |
BT1-1 | green slate | Amushan | Late Carboniferous—Early Permian | Damao Qi, Inner Mongolia | 42°26′21.42″ N 110°12′19.33″ E |
MD-17 | 42°23′25.07″ N 110°14′38.19″ E | ||||
MD-105 | Baotege | Early Permian | 42°38′33.75″ N 110°14′01.50″ E | ||
E47 | Elitu | Middle Permian | Zhengxiangbai Qi, Inner Mongolia | 42°11′39.69″ N 115°16′00.30″ E |
O | Mg | Al | Si | K | Fe | Na | ||
---|---|---|---|---|---|---|---|---|
BJF-1a | M | 63.4 | 1.4 | 11.7 | 18.6 | 4.0 | 1.0 | |
C | 62.6 | 6.3 | 9.6 | 13.5 | 0.3 | 7.8 | ||
BJF-2a | M | 61.3 | 0.5 | 15.4 | 18.4 | 4.2 | 0.4 | |
C | 62.9 | 5.8 | 7.9 | 15.9 | 0.1 | 7.4 | ||
BJF-2b | M | 61.1 | 0.4 | 15.4 | 18.3 | 4.4 | 0.4 | |
C | 62.8 | 1.8 | 18.0 | 10.1 | 0.1 | 7.2 | ||
BJF-2d | M | 61.9 | 1.9 | 11.2 | 18.8 | 4.2 | 0.1 | |
HBX | M | 62.2 | 1.4 | 11.5 | 19.4 | 4.6 | 1.1 | |
C | 63.0 | 3.5 | 9.5 | 16.1 | 1.9 | 5.9 | ||
BT1-1 | M | 58.9 | 1.2 | 14.0 | 20.5 | 4.6 | 0.7 | |
MD-17 | M | 61.3 | 1.4 | 12.4 | 19.7 | 4.4 | 0.9 | |
C | 62.8 | 5.0 | 7.5 | 17.9 | 0.1 | 6.9 | ||
MD-105 | M | 62.4 | 1.5 | 9.8 | 21.7 | 2.6 | 1.8 | 0,1 |
C | 62.5 | 5.1 | 9.8 | 15.6 | 0.7 | 5.6 | 0.7 | |
E 47 | M | 63.2 | 0.6 | 14.6 | 17.5 | 3.7 | 0.3 | |
B | 62.6 | 2.3 | 10.3 | 19.1 | 3.3 | 2.5 |
BJF-1a | BJF-2a | BJF-2b | BJF-2d | BT1-1 | HBX | MD-17 | MD105 | E47 | Average | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Qtz | N | 244 | 65 | 65 | 39 | 53 | 43 | 47 | 30 | 65 | 72 |
Major/Minor | 5.40 | 6.01 | 4.53 | 3.82 | 3.01 | 3.63 | 6.33 | 2.33 | 1.83 | 4.10 | |
AF | 0.95 | 0.98 | 0.88 | 0.95 | 0.92 | 0.88 | 0.93 | 0.51 | 0.32 | 0.81 | |
Ms | N | 413 | 96 | 120 | 80 | 116 | 166 | 108 | 14 | 93 | 134 |
Major/Minor | 7.14 | 12.47 | 7.68 | 4.91 | 4.77 | 4.87 | 4.81 | 4.54 | 3.97 | 6.13 | |
AF | 0.85 | 0.99 | 0.86 | 0.96 | 0.74 | 0.77 | 0.72 | 0.69 | 0.29 | 0.76 | |
Chl | N | 247 | 57 | 32 | 41 | 41 | 84 | ||||
Major/Minor | 9.46 | 4.76 | 6.73 | 6.47 | 11.45 | 7.77 | |||||
AF | 0.98 | 0.83 | 0.79 | 0.79 | 0.96 | 0.87 | |||||
Ap | N | 526 | |||||||||
Major/Minor | 2.41 | ||||||||||
AF | 0.81 | ||||||||||
Cc | N | 43 | |||||||||
Major/Minor | 1.96 | ||||||||||
AF | 0.42 | ||||||||||
Bi | N | 183 | |||||||||
Major/Minor | 3.19 | ||||||||||
AF | 0.40 | ||||||||||
Or | N | 23 | |||||||||
Major/Minor | 6.13 | ||||||||||
AF | 0.97 |
Quartz | Muscovite | Chlorite | Albite | Apatite | Calcite | Biotite | Orthoclase | |
---|---|---|---|---|---|---|---|---|
BJF-1a | 42.1 (2) | 25.4 (2) | 2.9 (1) | 29.6 (2) | ||||
BJF-2a | 54.8 (2) | 28.2 (3) | 17.0 (3) | |||||
BJF-2b | 61.8 (3) | 34.2 (3) | 4.0 (1) | |||||
BJF-2d | 53.2 (3) | 32.2 (3) | 14.7 (3) | |||||
BT1-1 | 43.5 (5) | 24.7 (5) | 15.6 (5) | 16.2 (5) | ||||
HBX | 46.0 (1) | 51.5 (1) | 2.4 (1) | |||||
MD-17 | 61.4 (5) | 26.4 (5) | 0.9 (5) | 11.3 (5) | ||||
MD105 | 51.0 (2) | 18.8 (2) | 10.9 (2) | 19.4 (2) | ||||
E47 | 47.5 (2) | 37.9 (2) | 6.2 (1) | 8.4 (1) |
Muscovite | Chlorite | Quartz | ||||
---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |
BJF-1a | 0.3 | 51.3 | 0.8 | 1.3 | ||
BJF-2a | 0.0 | 48.9 | 0.1 | 104.4 | 0.1 | 2.9 |
BJF-2b | 0.0 | 17.5 | 0.1 | 13.7 | 0.2 | 2.9 |
BJF-2d | 0.0 | 50.0 | 0.5 | 1.5 | ||
HBX | 0.0 | 13.6 | 0.1 | 9.8 | 0.5 | 1.3 |
BT1-1 | 0.0 | 54.7 | 0.0 | 29.6 | 0.7 | 1.2 |
MD-17 | 0.0 | 13.0 | 0.3 | 29.7 | 0.8 | 1.1 |
MD105 | 0.1 | 12.2 | 0.4 | 7.3 | 0.7 | 1.3 |
E47 | 0.0 | 3.9 | 0.8 | 1.1 |
Cij | Musc [55] | Chl [56] | Biot [61] | Quartz [57] | Albite [59] | Orth [60] | Calc [58] |
---|---|---|---|---|---|---|---|
C11 | 181.0 | 197.8 | 177.9 | 87.3 | 69.9 | 67.8 | 149.4 |
C22 | 178.4 | 202.3 | 181.7 | 87.3 | 183.5 | 181.2 | 149.4 |
C33 | 58.6 | 135.1 | 57.7 | 105.8 | 179.5 | 158.4 | 85.2 |
C44 | 16.5 | 24.5 | 11.1 | 57.2 | 24.9 | 21.1 | 34.1 |
C55 | 19.5 | 24.4 | 16.6 | 57.2 | 26.8 | 19.4 | 34.1 |
C66 | 72.0 | 70.3 | 66.7 | 40.4 | 33.5 | 33.1 | 45.7 |
C12 | 48.8 | 60.7 | 45.5 | 6.6 | 34.0 | 40.4 | 57.9 |
C13 | 25.6 | 34.1 | 9.6 | 12.0 | 5.5 | 20.6 | 53.5 |
C14 | 0.0 | 0.0 | 0.0 | 0.0 | −8.7 | 0.0 | 0.0 |
C15 | −14.2 | 0.0 | 0.0 | 0.0 | −2.4 | 0.0 | 0.0 |
C16 | 0.0 | 0.0 | 0.0 | 17.2 | 0.5 | 0.0 | 20.8 |
C23 | 21.2 | 21.1 | 10.6 | 12.0 | 30.8 | 25.0 | 53.5 |
C24 | 0.0 | 0.0 | 0.0 | 17.2 | −3.9 | 0.0 | 20.8 |
C25 | 1.1 | 0.4 | −1.0 | 0.0 | 7.1 | 10.6 | 0.0 |
C26 | 0.0 | 0.1 | −5.9 | 0.0 | −7.2 | −11.6 | 0.0 |
C34 | 0.0 | 0.0 | 0.0 | 0.0 | 5.1 | 0.0 | −20.8 |
C35 | 1.0 | 0.2 | −4.6 | 0.0 | −7.7 | −12.9 | 0.0 |
C36 | 0.0 | 0.0 | 0.0 | 0.0 | −9.8 | 0.0 | 0.0 |
C45 | 0.0 | 3.3 | −16 | 0.0 | −2.4 | −1.1 | 0.0 |
C46 | 0.0 | 0.0 | 0.0 | 0.0 | −5.8 | 0.0 | 0.0 |
C56 | 0.0 | 0.4 | 0.0 | 0.0 | −0.9 | 0.0 | 0.0 |
BJF-1a | BJF-2a | BJF-2b | BJF-2d | HBX | BT1-1 | MD-17 | MD-105 | E47 | |
---|---|---|---|---|---|---|---|---|---|
C11 | 100.7 | 129.6 | 120.9 | 123.1 | 133.0 | 128.1 | 114.1 | 117.3 | 113.5 |
C22 | 101.7 | 126.4 | 109.7 | 111.2 | 116.8 | 121.1 | 107.5 | 109.5 | 108.0 |
C33 | 57.8 | 92.8 | 88.0 | 86.0 | 80.7 | 94.4 | 91.1 | 93.6 | 91.2 |
C44 | 23.6 | 35.9 | 38.2 | 35.6 | 31.9 | 35.8 | 38.0 | 35.9 | 36.7 |
C55 | 24.0 | 35.7 | 37.7 | 35.0 | 32.3 | 35.1 | 38.0 | 35.9 | 36.5 |
C66 | 40.5 | 50.7 | 46.4 | 46.1 | 46.7 | 47.7 | 44.6 | 42.4 | 43.1 |
C12 | 20.3 | 25.3 | 20.1 | 23.3 | 29.9 | 28.5 | 20.4 | 27.2 | 23.8 |
C13 | 14.9 | 20.0 | 19.4 | 21.6 | 27.0 | 25.5 | 19.3 | 26.1 | 22.7 |
C14 | 0.0 | −0.1 | −0.5 | −0.9 | −0.4 | −0.1 | 0.2 | −0.1 | −0.5 |
C15 | −6.0 | 0.1 | 0.3 | 0.0 | 0.1 | 0.0 | 0.0 | −0.1 | −0.1 |
C16 | −0.2 | 0.3 | −1.8 | −2.1 | −0.5 | −0.2 | 0.2 | −0.5 | −1.0 |
C23 | 14.5 | 19.2 | 17.5 | 19.4 | 25.7 | 23.7 | 18.4 | 25.0 | 21.7 |
C24 | −0.4 | 0.4 | −3.2 | −3.9 | −1.0 | −0.4 | 0.1 | −1.1 | −1.8 |
C25 | −1.0 | −0.0 | −0.1 | 0.1 | 0.3 | 0.0 | −0.1 | 0.1 | 0.0 |
C26 | −0.2 | −0.7 | −0.8 | −0.2 | 0.7 | −0.2 | −0.3 | 0.0 | −0.1 |
C34 | −0.1 | 0.2 | −0.7 | −0.8 | −0.2 | −0.1 | 0.1 | −0.2 | −0.3 |
C35 | −0.3 | −0.2 | −0.3 | −0.1 | 0.2 | −0.1 | −0.1 | 0.0 | 0.0 |
C36 | 0.3 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
C45 | −0.03 | −1.8 | −1.8 | −0.9 | 2.0 | −0.4 | −1.1 | 0.0 | −0.5 |
C46 | −2.5 | −0.2 | −0.6 | −0.2 | 0.4 | 0.1 | 0.0 | −0.5 | −0.4 |
C56 | −0.2 | 0.5 | 0.0 | −0.5 | 0.7 | 0.1 | −0.1 | −0.6 | −0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wenk, H.-R.; Devoe, M. Microstructures and Anisotropy of Slates from Northern China. Minerals 2025, 15, 979. https://doi.org/10.3390/min15090979
Huang J, Wenk H-R, Devoe M. Microstructures and Anisotropy of Slates from Northern China. Minerals. 2025; 15(9):979. https://doi.org/10.3390/min15090979
Chicago/Turabian StyleHuang, Jingyi, Hans-Rudolf Wenk, and Michelle Devoe. 2025. "Microstructures and Anisotropy of Slates from Northern China" Minerals 15, no. 9: 979. https://doi.org/10.3390/min15090979
APA StyleHuang, J., Wenk, H.-R., & Devoe, M. (2025). Microstructures and Anisotropy of Slates from Northern China. Minerals, 15(9), 979. https://doi.org/10.3390/min15090979