Soil Geochemical Characteristics and Prospecting Potential in the Nibao Carlin-Type Gold Deposit and Peripheral Areas, Southwestern Guizhou, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Regional Geology
2.2. Geographical and Geological Setting
2.2.1. Geological Characteristics
2.2.2. Natural Geographic Features
2.3. Sampling and Analytical Methods
3. Results and Discussion
3.1. Geochemical Parameters of Elements
3.2. Element Association Characteristics
3.3. Distribution and Genesis of Geochemical Anomalies
3.3.1. Comprehensive Geochemical Anomalies
3.3.2. Geochemical Combination Anomalies
3.4. Implications for Mineral Exploration Targeting
4. Conclusions
- (1)
- Gold, As, Sb, Hg, W, and Mo exhibit significant positive correlations with high enrichment factors and extreme statistical parameters, forming a coherent pathfinder assemblage for Carlin-type gold exploration.
- (2)
- Based on the analysis of 15 elements, 176 and 12 single-element and integrated anomalies were delineated, respectively. Among them, HS-2, HS-3, and HS-7 have high anomaly intensity and are consistent with those of the concentrated anomaly zones shown in the Au-As-Sb-Hg-W-Mo factor score contour maps.
- (3)
- Combining geochemical anomalies with geological conditions, three favorable ore-prospecting target areas were delineated. The Nibao gold deposit lies in the Nibao target area, showing potential ore-prospecting space in the deep and peripheral zones of the gold deposits. Exploratory trenching in both the Baogudi and Sandaoqou prospective areas revealed mineralized zones. However, the Sandaogou target exhibits extensive outcrops of the Maokou Formation within anomalously enriched areas, suggesting that the deep mineralization potential may be limited.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frimmel, H.E. Earth’s continental crustal gold endowment. Earth Planet. Sci. Lett. 2008, 267, 45–55. [Google Scholar] [CrossRef]
- Muntean, J.L. The carlin gold system: Applications to exploration in Nevada and beyond. In Reviews in Economic Geology: Diversity of Carlintype Gold Deposits; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2018; Volume 20, pp. 39–88. [Google Scholar]
- Hu, R.Z.; Su, W.C.; Bi, X.W.; Tu, G.Z.; Hofstra, A.H. Geology and geochemistry of Carlin-type gold deposits in China. Miner. Depos. 2002, 37, 378–392. [Google Scholar]
- Cline, J.S. Nevada’s Carlin-type gold deposits: What we’ve learned during the past 10 to 15 years. In Reviews in Economic Geology: Diversity of Carlin-Type Gold Deposits; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2018; Volume 20, pp. 7–37. [Google Scholar]
- Cline, J.S.; Muntean, J.L.; Gu, X.X.; Xia, Y. A comparison of the Carlin-type gold deposits: Guizhou Province, Golden Triangle, southwest China, and northern Nevada, USA. Earth Sci. Front. 2013, 20, 5–22. [Google Scholar]
- Muntean, J.L.; Cline, J.S. Diversity of Carlin-style gold deposits. In Reviews in Economic Geology: Diversity of Carlin-Type Gold Deposits; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2018; pp. 1–6. [Google Scholar]
- Pinet, N.; Sack, P.; Mercier-Langevin, P.; Davis, W.J.; Petts, D.C.; Lavoie, D.; Percival, J.B.; Dubé, B.; Colpron, M.; Haeri-Ardakani, O.; et al. Yukon’s Carlin-type gold deposits (Rackla Belt, Canada): Main characteristics and new insights on alteration styles and geochemistry. Econ. Geol. 2022, 117, 875–904. [Google Scholar] [CrossRef]
- Liu, J.Z.; Yang, C.F.; Song, W.F.; Li, J.H.; Wang, Z.P.; Zheng, L.L.; Li, S.T.; Tan, Q.P.; Xie, Z.J.; Wang, D.F.; et al. Multi-Level Structural Detachment Metallogenic System of Carlin-Type Gold Deposits in Southern China; China University of Geosciences Press: Beijing, China, 2024; pp. 1–220, (In Chinese with English abstract). [Google Scholar]
- Hofstra, A.H.; Cline, J.S. Characteristics and models for Carlin-type gold deposits. In Gold in 2000. Reviews in Economic Geology; Hagemann, S.G., Brown, P.E., Eds.; Society of Economic Geologists Inc.: Littleton, CO, USA, 2000; pp. 163–220. [Google Scholar]
- Su, W.C.; Dong, W.D.; Zhang, X.C.; Shen, N.P.; Hu, R.Z.; Hofstra, A.H.; Cheng, L.Z.; Xia, Y.; Yang, K.Y. Carlin-type gold deposits in the Dian-QianGui “golden triangle” of Southwest China. In Reviews in Economic Geology: Diversity of Carlin-Type Gold Deposits; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2018; pp. 157–185. [Google Scholar]
- Li, S.T.; Yang, C.F.; Xie, Z.J.; Tan, Q.P.; Wang, Z.P.; Chen, F.E.; Jin, X.Y.; Li, J.H.; Xu, L.Y.; Tan, D.W.; et al. Ore-prospecting breakthrough and research advances on the fully concealed super-large Shuiyindong Carlin-type gold deposit in Guizhou Province, China. Ore Geol. Rev. 2025, 1833, 106674. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Leventhal, J.S.; Northrop, H.R.; Landis, G.P.; Rye, R.O.; Birak, D.J.; Dahl, A.R. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfdization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada. Geology 1991, 19, 36–40. [Google Scholar] [CrossRef]
- Cline, J.S.; Hofstra, A.H. Ore fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. Eur. J. Mineral. 2000, 12, 195–212. [Google Scholar] [CrossRef]
- Zhang, X.C.; Spiro, B.; Halls, C.; Stanley, C.; Yang, K.Y. Sedimenthosted disseminated gold deposits in southwest Guizhou, PRC: Their geological setting and origin in relation to mineralogical, fluid inclusion, and stable isotope characteristics. Int. Geol. Rev. 2003, 45, 407–470. [Google Scholar] [CrossRef]
- Su, W.C.; Heinrich, C.A.; Pettke, T.; Zhang, X.C.; Hu, H.R.; Xia, B. Sediment-hosted gold deposits in Guizhou, China: Products of wallrock sulfdation by deep crustal fluids. Econ. Geol. 2009, 104, 73–93. [Google Scholar] [CrossRef]
- Stenger, D.P.; Kesler, S.E.; Peltonen, D.R.; Tapper, C.J. Deposition of gold in Carlin-type gold deposits; the role of sulfdation and decarbonation at Twin Creeks, Nevada. Econ. Geol. 1998, 93, 201–215. [Google Scholar] [CrossRef]
- Cail, T.L.; Cline, J.S. Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Econ. Geol. 2001, 96, 1343–1359. [Google Scholar] [CrossRef]
- Kesler, S.E.; Fortuna, J.; Ye, Z.J.; Alt, J.C.; Core, D.P.; Zohar, P.; Borhauer, J.; Chryssoulis, S.L. Evaluation of the role of sulfdation in deposition of gold, Screamer section of the Betze-Post Carlin-type deposit, Nevada. Econ. Geol. 2003, 98, 1137–1157. [Google Scholar] [CrossRef]
- Gopon, P.; Douglas, J.O.; Auger, M.A.; Hansen, L.; Wade, J.; Cline, J.S.; Robb, L.J.; Moody, M.P. A nanoscale investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective. Econ. Geol. 2019, 114, 1123–1133. [Google Scholar] [CrossRef]
- Liang, Q.L.; Xie, Z.J.; Song, X.Y.; Wirth, R.; Xia, Y.; Cline, J. Evolution of invisible au in arsenian pyrite in Carlin-type au deposits. Econ. Geol. 2021, 116, 515–526. [Google Scholar] [CrossRef]
- Holley, E.A.; Fulton, A.; Jilly-Rehak, C.; Johnson, C.; Pribil, M. Nanoscale isotopic evidence resolves origins of giant Carlin-type ore deposits. Geology 2022, 50, 660–664. [Google Scholar] [CrossRef]
- Yan, J.; Hu, R.; Cline, J.S.; Fu, S.; Liu, S. SEM and FIB-TEM analyses on nanoparticulate arsenian pyrite: Implications for Au enrichment in the Carlin-type giant Lannigou gold deposit, SW China. Am. Mineral. 2024, 109, 215–224. [Google Scholar] [CrossRef]
- Xiao, J.D.; Xie, Z.J.; Xia, Y.; Gopon, P.; Tan, Q.P. Consistent crystal orientation of core and rim pyrites indicates an epitaxial growth of rim in Carlin-type gold deposits. Geosci. Front. 2025, 16, 101966. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S.; Jin, Z. Laterization and its control to gold occurrence in Laowanchang gold deposit, Guizhou Province, Southwest of China. J. Geochem. Explor. 2009, 100, 67–74. [Google Scholar] [CrossRef]
- Li, S.T.; Xu, L.Y.; Wang, Z.P.; Yang, C.F.; Tan, L.J.; Nie, R.; Meng, M.H.; Li, J.H.; Zhang, B.Q.; Liu, J.Z. Application of tectono-geochemistry method for weak information extraction of Carlin-type gold deposits in Yunnan–Guizhou–Guangxi, SW China. Ore Geol. Rev. 2023, 163, 105813. [Google Scholar] [CrossRef]
- Beus, A.A.; Gregorian, S.V. Geochemical Exploration Methods for Mineral Deposits; Applied Publishing: Wilmette, IL, USA, 1977; p. 287. [Google Scholar]
- Chen, Y.Q.; Liu, H.G. Delineation of Potential Mineral Resources Region Based on Geo-anomaly Unit. J. Earth Sci. 2000, 11, 158–163. [Google Scholar]
- Goldberg, I.S.; Abramson, G.Y.; Los, V.L. Depletion and enrichment of primary haloes: Their importance in the genesis of and exploration for mineral deposits. Geochem. Explor. Environ. Anal. 2003, 3, 281–293. [Google Scholar] [CrossRef]
- Ludington, S.; Folger, H.; Kotlyar, B.; Mossotti, V.G.; Coombs, M.J.; Hildenbrand, T.G. Regional surficial geochemistry of the northern Great Basin. Econ. Geol. 2006, 101, 33–57. [Google Scholar] [CrossRef]
- Garrett, R.G.; Reimann, C.; Smith, D.B.; Xie, X.J. From geochemical prospecting to international geochemical map: A historical overview. Geochem. Explor. Environ. Anal. 2008, 8, 205–217. [Google Scholar] [CrossRef]
- Templ, M.; Filzmoser, P.; Reimann, C. Cluster analysis applied to regional geochemical data: Problems and possibilities. Appl. Geochem. 2008, 23, 2198–2213. [Google Scholar] [CrossRef]
- Qian, J.P. Tectono-geochemical prospecting method and its application in searching for sediment-hosted, disseminated gold deposits. Geol. Explor. 2009, 45, 60–67, (In Chinese with English abstract). [Google Scholar]
- Aliyari, F.; Yousefi, T.; Abedini, A.; Calagari, A.A. Primary geochemical haloes and alteration zoning applied to gold exploration in the Zarshuran Carlin-type deposit, northwestern Iran. J. Geochem. Explor. 2021, 231, 106864. [Google Scholar] [CrossRef]
- Li, S.T.; Liu, J.Z.; Xia, Y.; Xie, Z.J.; Tan, Q.P.; Wang, Z.P.; Zhou, G.H.; Yang, C.F.; Meng, M.H.; Tan, L.J.; et al. Tectono-geochemistry weak mineralization information extraction method and its application in the Carlin-type gold accumulation area of Southwestern Guizhou. Gold Sci. Technol. 2021, 29, 53–63, (In Chinese with English abstract). [Google Scholar]
- Li, H.; Yu, B.; Ren, L.L.; Wei, J.; Wang, X.; Zhang, G.Y.; Li, S.; Peng, W.; Yao, Y.W.; Wang, X.J.; et al. The correlation of indicator elements in structural superimposed halos for concealed gold prospecting and its significance. Geol. Explor. 2025, 61, 441–449, (In Chinese with English abstract). [Google Scholar]
- Cameron, E.M.; Hamilton, S.M.; Leybourne, M.I.; Hall, G.E.M.; McClenaghan, M.B. Finding deeply buried deposits using geochemistry. Geochem. Explor. Environ. Anal. 2004, 4, 7–32. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Guo, P.; Chen, S.; Han, Z. Delineating geochemical anomalies based on the methods of principal component analysis, multifractal model, and singularity model: A case study of soil geochemical survey in the Hongyahuo area, Qinghai Province. Minerals 2025, 15, 585. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, X.Q.; Zhang, B.M.; Zhou, J.; Wang, W.; Liu, H.L.; Liu, D.S.; Zhou, Y.N.; Chang, C. Characteristics of boron geochemical anomalies and prediction of boron resource potential in China. Earth Sci. Front. 2025, 32, 50–60, (In Chinese with English abstract). [Google Scholar]
- Hou, J.R.; Zhang, R.Q.; Zhang, T.X. Processing of secondary halo data and assessment of geochemical anomalies using lognormal universal kriging. Geol. Explor. 1991, 27, 43–50, (In Chinese with English abstract). [Google Scholar]
- Zhang, D.; Chen, S.; Bayless, R.C.; Hu, Z. Integrating soil geochemistry and machine learning for enhanced mineral exploration at the dayu gold deposit, south China block. Appl. Geochem. 2024, 170, 12. [Google Scholar] [CrossRef]
- Mazzucchelli, R.H. The application of soil geochemistry to gold exploration in the black Flag Area, Yilgarn Block, Western Australia. J. Geochem. Explor. 1996, 57, 175–185. [Google Scholar] [CrossRef]
- Muntean, J.; Taufen, P. Geochemical exploration for gold through transported alluvial cover in Nevada: Examples from the Cortez Mine. Econ. Geol. 2011, 106, 809–833. [Google Scholar] [CrossRef]
- Cluer, J.K. Remobilized geochemical anomalies related to deep gold zones, carlin trend, Nevada. Econ. Geol. 2012, 107, 1343–1349. [Google Scholar] [CrossRef]
- Wang, D.H. New advance in exploration of Carlin-type gold deposits and its significance. Geol. Geochem. 2000, 1, 92–96, (In Chinese with English abstract). [Google Scholar]
- Liu, J.Z.; Wang, Z.P.; Song, W.F.; Wang, D.F.; Yang, C.F.; Li, J.H.; Zheng, L.L.; Li, S.T.; Tan, Q.P.; Xie, Z.J.; et al. Metallogenic series and prospecting direction of carlin-type gold deposit in Guizhou Province. Acta Geosci. Sin. 2023, 69, 513–525, (In Chinese with English abstract). [Google Scholar]
- Han, Z.J.; Wang, Y.G.; Feng, J.Z.; Chen, T.J.; Luo, X.H.; Liu, Y.H. The Geology and Exploration of Gold Deposits in Southwestern Guizhou; Guizhou Science and Technology Press: Guiyang, China, 1999; pp. 135–143, (In Chinese with English abstract). [Google Scholar]
- Zhai, Y.; Zhu, K.; Wan, Z. Study on Geological Characteristics and Prospecting Area Selection of Laterite-Type Gold Deposits in the Adjacent Areas of Guangxi, Guizhou and Yunnan; Geology and Mineral Branch of Guangxi Association of Senior Scientists and Technologists: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Gao, Z.M.; Li, H.Y.; Yang, Z.S.; Tao, Y. Mineralization and Prospecting of Major Types of Gold Deposits in the Yunnan-Guizhou Region; Geological Publishing House: Beijing, China, 2002. (In Chinese) [Google Scholar]
- He, S.L.; Zeng, Z.G.; Luo, M.X.; Liu, Y.Z.; Hu, C.L.; Mou, J. A review of thirty years’ gold geochemical exploration in Southwestern Guizhou and a prospect for future work. Geophys. Geochem. Explor. 2008, 32, 461–464, (In Chinese with English abstract). [Google Scholar]
- Diao, L.P.; Han, R.S.; Fang, W.X. Experiment of soil geochemical survey of valley in the Puan-Qinglong antimony–gold exploration area, southwestern Guizhou, China. Geol. Bull. China 2010, 29, 1712–1720, (In Chinese with English abstract). [Google Scholar]
- Tan, Q.P.; Xia, Y.; Xie, Z.J.; Yan, J. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou, China. Ore Geol. Rev. 2015, 69, 140–156. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, B.M.; Yu, X.F.; Yang, D.P.; Xia, Y.; Tan, Q.P.; Liu, Y.W.; Zhang, S.K.; Tian, M.; Liu, H.L.; et al. Three dimension geochemical patterns of gold deposits: Implications for the discovery of deep-seated orebodies. Acta Geol. Sin. 2020, 41, 869–885, (In Chinese with English abstract). [Google Scholar]
- Chen, M.H.; Bagas, L.; Liao, X.; Zhang, Z.Q.; Li, Q.L. Hydrothermal apatite SIMS Th-Pb dating: Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao, SW China. Lithos 2019, 324, 418–428. [Google Scholar] [CrossRef]
- Wei, D.T.; Xia, Y.; Gregory, D.D.; Steadman, J.A.; Tan, Q.P.; Xie, Z.J.; Liu, X.J. Multistage pyrites in the Nibao disseminated gold deposit, southwestern Guizhou Province, China: Insights into the origin of Au from textures, in situ trace elements, and sulfur isotope analyses. Ore Geol. Rev. 2020, 122, 103446. [Google Scholar] [CrossRef]
- DZ/T 0145-1994; Specifications for Soil Geochemical Survey. Ministry of Geology and Mineral Resources of the People’s Republic of China: Beijing, China, 1995. (In Chinese)
- DZ/T 0011-1991; Specification for Geochemical Survey (1:50,000). Ministry of Geology and Mineral Resources of the People’s Republic of China: Beijing, China, 1991. (In Chinese)
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Zhao, Z.; Zhao, X.; Yin, Y.; Li, C.; Yang, Y.; Wang, Y. Identification of geochemical anomalies based on RPCA and multifractal theory: A case study of the Sidaowanzi Area, Chifeng, Inner Mongolia. ACS Omega 2024, 9, 24998–25013. [Google Scholar] [CrossRef] [PubMed]
Elem. | Min. | Max. | Avg. | SD | Skew. | Kurt. | CV | CV * | C.A. | CF |
---|---|---|---|---|---|---|---|---|---|---|
Au | 0.2 | 1050 | 3.41 | 17.97 | 32.54 | 1573.57 | 5.270 | 0.138 | 1.3 | 1.23 |
As | 0.6 | 23104 | 59.23 | 377.86 | 33.93 | 1754.12 | 6.38 | 0.038 | 2.5 | 5.2 |
Sb | 0.13 | 4839 | 5.53 | 61.88 | 61.61 | 4473.76 | 11.190 | 0.22 | 0.2 | 6.5 |
Hg | 0.01 | 67.12 | 0.3 | 1.3 | 24.73 | 969.48 | 4.333 | 2.781 | 0.01 | 11.4 |
Ag | 0.02 | 2.75 | 0.07 | 0.05 | 25.67 | 1140.32 | 0.714 | 2.619 | 0.056 | 1.13 |
Sn | 1 | 51.82 | 4.4 | 1.18 | 11.43 | 395.02 | 0.268 | 0.019 | 2 | 2.15 |
Co | 0.22 | 330.33 | 40 | 17.24 | 1.78 | 17.94 | 0.431 | 0.004 | 25 | 1.55 |
Cr | 11.65 | 501.2 | 185.13 | 58.51 | 0.46 | −0.26 | 0.316 | 0.001 | 100 | 1.77 |
Cu | 2.31 | 491.81 | 102.05 | 42.37 | 0.24 | 0.74 | 0.415 | 0.002 | 55 | 1.69 |
Ni | 2.04 | 480.17 | 73.01 | 29.81 | 0.67 | 5.16 | 0.408 | 0.002 | 75 | 0.95 |
Pb | 4.64 | 160.87 | 26.56 | 10.26 | 1.9 | 9.18 | 0.386 | 0.006 | 12.5 | 2 |
V | 40.86 | 722.8 | 250.51 | 62.89 | 0.55 | 1.14 | 0.251 | <0.001 | 135 | 1.8 |
Zn | 5.93 | 588 | 118.25 | 38.27 | 1.31 | 12.45 | 0.324 | 0.001 | 72.4 | 1.62 |
Mo | 0.3 | 929.17 | 2.28 | 10.14 | 86.65 | 7900.28 | 4.447 | 0.145 | 1.5 | 1.13 |
W | 0.31 | 68.19 | 2.24 | 2.45 | 10.87 | 174.32 | 1.094 | 0.073 | 1.5 | 1.2 |
Elements | Au | As | Sb | Hg | Ag | Sn | Co | Cr | Cu | Ni | Pb | V | Zn | Mo | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Au | 1.00 | ||||||||||||||
As | 0.39 | 1.00 | |||||||||||||
Sb | 0.32 | 0.76 | 1.00 | ||||||||||||
Hg | 0.40 | 0.61 | 0.59 | 1.00 | |||||||||||
Ag | 0.12 | 0.07 | 0.19 | 0.20 | 1.00 | ||||||||||
Sn | 0.08 | 0.08 | 0.08 | 0.17 | 0.05 | 1.00 | |||||||||
Co | −0.25 | −0.54 | −0.41 | −0.35 | 0.03 | −0.10 | 1.00 | ||||||||
Cr | −0.09 | −0.51 | −0.32 | −0.11 | 0.01 | 0.04 | 0.47 | 1.00 | |||||||
Cu | 0.03 | −0.52 | −0.34 | −0.13 | 0.04 | 0.06 | 0.54 | 0.55 | 1.00 | ||||||
Ni | −0.24 | −0.56 | −0.42 | −0.34 | −0.03 | −0.04 | 0.83 | 0.63 | 0.54 | 1.00 | |||||
Pb | −0.04 | 0.32 | 0.25 | 0.16 | 0.05 | 0.24 | −0.09 | −0.14 | −0.46 | −0.03 | 1.00 | ||||
V | 0.17 | −0.23 | −0.07 | 0.10 | 0.11 | 0.13 | 0.20 | 0.50 | 0.67 | 0.18 | −0.43 | 1.00 | |||
Zn | −0.18 | −0.38 | −0.25 | −0.23 | 0.10 | −0.01 | 0.77 | 0.39 | 0.46 | 0.83 | 0.09 | 0.14 | 1.00 | ||
Mo | 0.24 | 0.61 | 0.53 | 0.51 | 0.10 | 0.22 | −0.41 | −0.27 | −0.21 | −0.48 | 0.25 | 0.16 | −0.29 | 1.00 | |
W | 0.46 | 0.67 | 0.62 | 0.54 | 0.10 | 0.14 | −0.50 | −0.32 | −0.36 | −0.47 | 0.21 | −0.08 | −0.37 | 0.45 | 1.00 |
Elements | Ag | As | Au | Co | Cr | Cu | Hg | Mo |
---|---|---|---|---|---|---|---|---|
Calculated value | 0.135 | 127 | 4.6 | 80 | 333 | 237 | 0.488 | 5.34 |
Used value | 0.135 | 120 | 4.2 | 80 | 340 | 230 | 0.5 | 5.2 |
Elements | Ni | Pb | Sb | Sn | V | W | Zn | |
Calculated value | 151 | 49 | 4.9 | 6.3 | 398 | 3.3 | 197 | |
Used value | 150 | 50 | 10 | 6 | 400 | 3.2 | 200 |
Elements | Au | W | Sb | As | Hg | Mo |
---|---|---|---|---|---|---|
Area (km2) | 12.82 | 9.32 | 3.47 | 10.36 | 10.57 | 3.38 |
Maximum | 680 | 43.16 | 49.46 | 4220 | 12.76 | 19.97 |
Average | 43.8 | 8.78 | 20.78 | 690 | 1.233 | 6.61 |
Contrast | 27.4 | 4.88 | 2.08 | 53 | 10.8 | 3.89 |
Scale (NAP) | 351.3 | 45.48 | 7.22 | 549 | 114.3 | 13.2 |
Abnormal points | 210 | 152 | 52 | 172 | 169 | 69 |
Residual element content | 42.2 | 6.98 | 10.78 | 677 | 1.119 | 4.91 |
Areal metal productivity | 541 | 65.05 | 37.41 | 7014 | 11.828 | 16.6 |
Zone | 3 | 3 | 2 | 3 | 3 | 1 |
Elements | Au | Sb | W | As | Hg | Mo | Ag | Zn |
---|---|---|---|---|---|---|---|---|
Area (km2) | 6.86 | 12.77 | 10.09 | 11.6 | 9.54 | 2.66 | 2.28 | 0.52 |
Maximum | 299.1 | 4796 | 72.9 | 12,736 | 12.2 | 6.64 | 0.217 | 313 |
Average | 20.8 | 87.3 | 7.35 | 372 | 1.48 | 18.17 | 0.132 | 231 |
Contrast | 13 | 8.7 | 4.1 | 29 | 13 | 10.69 | 2.1 | 2 |
Scale (NAP) | 89.2 | 111.1 | 41.37 | 336.4 | 124 | 28.44 | 4.8 | 1 |
Abnormal points | 97 | 186 | 151 | 164 | 134 | 46 | 32 | 8 |
Residual element content | 19.2 | 77.3 | 5.55 | 359 | 1.366 | 19.87 | 0.069 | 114 |
Areal metal productivity | 131.71 | 987.1 | 56 | 4164.4 | 13.03 | 52.85 | 0.16 | 59 |
Zone | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 |
Elements | Au | Sb | W | As | Hg | Mo | Ag | Sn |
---|---|---|---|---|---|---|---|---|
Area (km2) | 12.49 | 6.56 | 8.61 | 12.48 | 11.51 | 6.23 | 3.63 | 2.32 |
Maximum | 1200 | 2576 | 53.44 | 23,490 | 67.12 | 1002 | 2.457 | 16.2 |
Average | 25.3 | 44.9 | 8.046 | 515 | 3.263 | 18.176 | 0.254 | 6.5 |
Contrast | 15.8 | 4.5 | 4.47 | 40 | 28.6 | 10.7 | 4.03 | 1.51 |
Scale (NAP) | 197.3 | 29.5 | 38.5 | 499.2 | 329.2 | 66.7 | 14.6 | 3.5 |
Abnormal points | 211 | 109 | 150 | 210 | 195 | 102 | 67 | 36 |
Residual element content | 23.7 | 34.9 | 6.246 | 502 | 3.149 | 16.476 | 0.191 | 2.2 |
Areal metal productivity | 296 | 229 | 53.8 | 6265 | 36.2 | 102.6 | 0.7 | 5.1 |
Zone | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tan, L.; Wang, Z.; Nie, R.; Meng, M.; Han, W.; Yang, C.; Li, J.; Zhang, B.; Liu, J. Soil Geochemical Characteristics and Prospecting Potential in the Nibao Carlin-Type Gold Deposit and Peripheral Areas, Southwestern Guizhou, China. Minerals 2025, 15, 922. https://doi.org/10.3390/min15090922
Li S, Tan L, Wang Z, Nie R, Meng M, Han W, Yang C, Li J, Zhang B, Liu J. Soil Geochemical Characteristics and Prospecting Potential in the Nibao Carlin-Type Gold Deposit and Peripheral Areas, Southwestern Guizhou, China. Minerals. 2025; 15(9):922. https://doi.org/10.3390/min15090922
Chicago/Turabian StyleLi, Songtao, Lijin Tan, Zepeng Wang, Rong Nie, Minghua Meng, Wenxin Han, Chengfu Yang, Junhai Li, Bingqiang Zhang, and Jianzhong Liu. 2025. "Soil Geochemical Characteristics and Prospecting Potential in the Nibao Carlin-Type Gold Deposit and Peripheral Areas, Southwestern Guizhou, China" Minerals 15, no. 9: 922. https://doi.org/10.3390/min15090922
APA StyleLi, S., Tan, L., Wang, Z., Nie, R., Meng, M., Han, W., Yang, C., Li, J., Zhang, B., & Liu, J. (2025). Soil Geochemical Characteristics and Prospecting Potential in the Nibao Carlin-Type Gold Deposit and Peripheral Areas, Southwestern Guizhou, China. Minerals, 15(9), 922. https://doi.org/10.3390/min15090922