Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Nibao gold deposit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8949 KiB  
Article
Tennantite–Tetrahedrite-Series Minerals and Related Pyrite in the Nibao Carlin-Type Gold Deposit, Guizhou, SW China
by Dongtian Wei, Yong Xia, Jeffrey A. Steadman, Zhuojun Xie, Xijun Liu, Qinping Tan and Ling’an Bai
Minerals 2021, 11(1), 2; https://doi.org/10.3390/min11010002 - 22 Dec 2020
Cited by 7 | Viewed by 4107
Abstract
A number of sediment-hosted, Carlin-type/-like gold deposits are distributed in the Youjiang basin of SW China. The gold ores are characterized by high As, Hg, and Sb contents but with low base metal contents (Cu+Pb+Zn < 500–1000 ppm). The Nibao deposit is unique [...] Read more.
A number of sediment-hosted, Carlin-type/-like gold deposits are distributed in the Youjiang basin of SW China. The gold ores are characterized by high As, Hg, and Sb contents but with low base metal contents (Cu+Pb+Zn < 500–1000 ppm). The Nibao deposit is unique among these gold deposits by having tennantite–tetrahedrite-series minerals in its ores. The deposit is also unique in being primarily hosted in the relatively unreactive siliceous pyroclastic rocks, unlike classic Carlin-type gold deposits that are hosted in carbonates or calcareous clastic rocks. In this study, we have identified tennantite-(Zn), tennantite-(Hg), and tetrahedrite-(Zn) from the tennantite–tetrahedrite-series mineral assemblage. The tennantite-(Zn) can be further divided into two sub-types of Tn-(Zn)-I; and Tn-(Zn)-II;. Tn-(Zn)-I; usually occurs in the core of a Tennantite–tetrahedrite composite and appears the darkest under the SEM image, whereas Tn-(Zn)-II overgrows on Tn-(Zn)-I and is overgrown by tetrahedrite-(Zn). Tennantite-(Hg) occasionally occurs as inclusions near the uneven boundary between Tn-(Zn)-I and Tn-(Zn)-II. An appreciable amount of Au (up to 3540 ppm) resides in the tennantite–tetrahedrite-series minerals, indicating that the latter is a major Au host at Nibao. The coexistence of tennantite–tetrahedrite-series minerals and Au-bearing pyrite indicates the Nibao ore fluids were more oxidized than the Carlin-type ore fluids. The tennantite–tetrahedrite series at Nibao evolved from Tn-(Zn)-I through Tn-(Zn)-II to tetrahedrite-(Zn), which is likely caused by Sb accumulation in the ore fluids. This indicates that the Nibao ore fluids may have become more reduced and less acidic during Au precipitation. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

15 pages, 5515 KiB  
Article
Quartz Rb-Sr Isochron Ages of Two Type Orebodies from the Nibao Carlin-Type Gold Deposit, Guizhou, China
by Lulin Zheng, Ruidong Yang, Junbo Gao, Jun Chen, Jianzhong Liu and Depeng Li
Minerals 2019, 9(7), 399; https://doi.org/10.3390/min9070399 - 28 Jun 2019
Cited by 23 | Viewed by 4485
Abstract
The Nibao gold deposit, which includes both fault-controlled and strata-bound gold orebodies, constitutes an important part of the Yunnan–Guizhou–Guangxi “Golden Triangle” region. Defining the mineralization age of these gold orebodies may provide additional evidence for constraining the formation ages of low-temperature orebodies and [...] Read more.
The Nibao gold deposit, which includes both fault-controlled and strata-bound gold orebodies, constitutes an important part of the Yunnan–Guizhou–Guangxi “Golden Triangle” region. Defining the mineralization age of these gold orebodies may provide additional evidence for constraining the formation ages of low-temperature orebodies and their metallogenic distribution in South China. Petrographic studies of gold-bearing pyrites and ore-related quartz veins indicate that these pyrites coexist with quartz or filled in vein-like quartz, which suggests a possible genetic relationship between the two from Nibao gold deposit. Minerals chemistry shows that Rb and Sr are usually hosted in fluid inclusions in quartz ranging from 0.0786 to 2.0760 ppm and 0.1703 to 2.1820 ppm, respectively. The Rb–Sr isotopic composition of gold-bearing quartz-hosted fluid inclusions from the Nibao gold deposit were found to have Rb–Sr isochron ages of 142 ± 3 and 141 ± 2 Ma for both fault-controlled and strata-bound orebodies, respectively, adding more evidence to previous studies and thus revealing a regional gold mineralization age of 148–134 Ma. These results also confirm the Middle-Late Yanshanian mineralizing events of Carlin-type gold deposits in Yunnan, Guizhou, and Guangxi Provinces of Southwest China. In addition, previous studies indicated that antimony deposits in the region which were formed at ca. 148–126 Ma have a close affinity with gold deposits. This illustrates that the regional low-temperature hydrothermal gold mineralization is related in space and time to the Yanshanian (ca. 146–115 Ma) magmatic activity. Specifically, the large-scale gold and antimony mineralization are considered to be inherently related to mantle-derived mafic and ultramafic magmatic rocks associated with an extensional tectonic environment. Based on the initial 87Sr/86Sr ratios of 0.70844 ± 0.00022 (2σ) and 0.70862 ± 0.00020 (2σ) for gold-bearing quartz veins from fault-controlled and strata-bound gold orebodies, respectively, at the Nibao gold deposit, as well as the C, H, O, and S isotopic characteristics of gold deposits located in the Golden Triangle region, we suggest that the mantle-derived material can be involved in the formation of the Nibao gold deposit and that the ore-forming fluid can be derived from a mixed crust–mantle source. Full article
Show Figures

Figure 1

Back to TopTop