Post-Emplacement Zeolitization in Ignimbrites: Insights from Central Italy Volcanic Rocks
Abstract
1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. Optical Microscope (OM) and Environmental Scanning Electron Microscope (ESEM)
3.4. Electron Probe Microanalysis (EPMA)
3.5. X-Ray Powder Diffraction (XRPD)
3.6. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
4. Results
4.1. Field Description
4.2. Petrography and Geochemistry
4.3. Zeolitization and Zeolite Chemistry
5. Discussion
6. Conclusions
- In Central Italy’s volcanoes, where magma chemistry and eruptive mechanisms vary greatly, different types of zeolitization processes and authigenic mineral phases can be recognized.
- In the Cimina Ignimbrite, composition of the juvenile fraction is low-alkali trachytic–trachyandesitic, high silica (61%–62%), and K- and Ca-rich. Zeolitization affects only the inner glassy groundmass, forming clinoptilolite-Ca and cristobalite. These minerals are unusual for trachytic glass compositions but are likely linked to higher formation temperature (150–170 °C).
- In the Sorano Ignimbrite, the juvenile fraction is phonolitic/trachytic–trachydacitic, and has low silica (59%–61%) and high K content. Zeolitization affects the entire glassy fraction of pumice clasts, producing medium- to low-temperature zeolites such as phillipsite-K and chabazite-K, matching strongly the potassic nature of the juvenile fraction.
- In the Cimina Ignimbrite, zeolitization is confined to the innermost and deepest part of the deposit, spanning approximately 20–30 m in thickness. In contrast, the upper and lateral portions of the ignimbrite contain fresh glass with no signs of zeolitization. Conversely, in the Sorano Ignimbrite, authigenic zeolites form throughout the entire thickness of the deposit.
- In the ignimbrites from Central Italy, zeolitization probably occurs in a natural autoclave-like environment, which involves fluids heated by thermal energy and retained in the deposit for a long time. Cimina Ignimbrite experienced high temperatures (150–200 °C), favoring zeolitization of trachytic–trachyandesitic glass with hot circulating fluids, while Sorano Ignimbrite formed at lower temperatures (100–150 °C) due to different eruptive conditions and smaller magma volume, leading to zeolitization of more alkaline phonolitic glass.
- In addition to temperature, glass chemistry, and water content, volcanological factors like eruptive style and emplacement processes also influence zeolitization. Nearby high-enthalpy geothermal systems (Latera, Vico) could have supplied the necessary water, alkalis, and pH conditions during caldera-forming eruptions and collapse.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottardi, G.; Galli, E. Natural Zeolites; Springer: Berlin/Heidelberg, Germany, 1985; p. 409. [Google Scholar]
- Bish, D.L.; Ming, D.W. Natural Zeolites: Occurrence, Properties, Applications; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2001; Volume 45, 662p. [Google Scholar]
- Passaglia, E.; Sheppard, R.A. The crystal chemistry of zeolites. In Natural Zeolites: Occurrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America and Geochemical Society: Washington, DC, USA, 2001; Volume 45, pp. 69–116. [Google Scholar]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed.; Elsevier: London, UK, 2001; p. 398. [Google Scholar]
- Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; et al. Recommended nomenclature for zeolite minerals; report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 1571–1606. [Google Scholar]
- Armbruster, T.; Gunter, M.E. Crystal structures of natural zeolites. In Natural Zeolites: Occurrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America and Geochemical Society: Washington, DC, USA, 2001; Volume 45, pp. 1–68. [Google Scholar]
- Rhodes, C.J. Properties and applications of zeolites. Sci. Prog. 2010, 93, 223–284. [Google Scholar] [CrossRef]
- Möller, K.; Bein, B. Mesoporosity—A new dimension for zeolites. Chem. Soc. Rev. 2013, 42, 3689–3707. [Google Scholar] [CrossRef]
- Utada, M. Zeolites in burial diagenesis and low-grade metamorphic rocks. In Natural Zeolites: Occurrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America and Geochemical Society: Washington, DC, USA, 2001; Volume 45, pp. 277–304. [Google Scholar]
- Weisenberger, T.B.; Spürgin, S.; Lahaye, Y. Hydrothermal alteration of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany. Int. J. Earth Sci. 2014, 103, 2273–2300. [Google Scholar] [CrossRef]
- Langella, A.; Bish, D.L.; Cappelletti, P.; Cerri, G.; Colella, A.; de’Gennaro, R.; Graziano, S.F.; Perrotta, A.; Scarpati, C.; de’Gennaro, M. New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Appl. Clay Sci. 2013, 72, 55–73. [Google Scholar] [CrossRef]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003, 61, 25–42. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- de’Gennaro, B.; Aprea, P.; Colella, C.; Buondonno, A. Comparative ion-exchange characterization of zeolitic and clayey materials for pedotechnical applications-Part 2: Interaction with nutrient cations. J. Porous Mater. 2009, 16, 667–673. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Carbone, M.; Baris, Y.I.; Bertino, P.; Brass, B.; Comertpay, S.; Dogan, A.U.; Gaudino, G.; Jube, S.; Kanodia, S.; Partridge, C.R.; et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl. Acad. Sci. USA 2011, 108, 13618–13623. [Google Scholar] [CrossRef] [PubMed]
- Giordani, M.; Mattioli, M.; Dogan, M.; Dogan, A.U. Potential carcinogenic erionite from Lessini Mounts, NE Italy: Morphological, mineralogical and chemical characterization. J. Toxicol. Environ. Health A 2016, 79, 808–824. [Google Scholar] [CrossRef]
- Di Giuseppe, D. Characterization of Fibrous Mordenite: A First Step for the Evaluation of Its Potential Toxicity. Crystals 2020, 10, 769. [Google Scholar] [CrossRef]
- Giordani, M.; Ballirano, P.; Pacella, A.; Meli, M.A.; Roselli, C.; Di Lorenzo, F.; Fagiolini, I.; Mattioli, M. Fibrous mordenite from Northern Italy: Another potentially hazardous zeolite. Minerals 2022, 121, 627. [Google Scholar] [CrossRef]
- Cangiotti, M.; Salucci, S.; Battistelli, M.; Falcieri, E.; Mattioli, M.; Giordani, M.; Ottaviani, M.F. EPR, TEM and cell viability study of asbestiform zeolite fibers in cell media. Colloids Surf. B Biointerfaces 2018, 161, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F.; Gandolfi, N.B.; Passaglia, E.; Pollastri, S.; Mattioli, M.; Giordani, M.; Ottaviani, M.F.; Cangiotti, M.; Bloise, A.; Barca, D.; et al. Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. Am. Mineral. 2018, 103, 1044–1055. [Google Scholar] [CrossRef]
- Giordani, M.; Mattioli, M.; Cangiotti, M.; Fattori, A.; Ottaviani, M.F.; Betti, M.; Ballirano, P.; Pacella, A.; Di Giuseppe, D.; Scognamiglio, V.; et al. Characterisation of potentially toxic natural fibrous zeolites by means of electron paramagnetic resonance spectroscopy and morphological-mineralogical studies. Chemosphere 2022, 291, 133067. [Google Scholar] [CrossRef]
- Mattioli, M.; Giordani, M.; Arcangeli, P.; Valentini, L.; Boscardin, M.; Pacella, A.; Ballirano, P. Prismatic to asbestiform offretite from Northern Italy: Occurrence, morphology and crystal-chemistry of a new potentially hazardous zeolite. Minerals 2018, 8, 69. [Google Scholar] [CrossRef]
- Mattioli, M.; Ballirano, P.; Pacella, A.; Cangiotti, M.; Di Lorenzo, F.; Valentini, L.; Meli, M.A.; Roselli, C.; Fagiolino, I.; Giordani, M. Fibrous Ferrierite from Northern Italy: Mineralogical Characterization, Surface Properties, and Assessment of Potential Toxicity. Minerals 2022, 12, 626. [Google Scholar] [CrossRef]
- Marantos, I.; Markopoulos, T.; Christidis, G.E. Zeolitic alteration in the Tertiary Feres volcano-sedimentary basin, Thrace, NE Greece. Mineral. Mag. 2007, 71, 327–345. [Google Scholar] [CrossRef]
- Bear, A.N.; Cas, R.A.F.; Giordano, G. The implications of spatter, pumice and lithic clast rich proximal co-ignimbrite lag breccias on the dynamics of caldera forming eruptions: The 151 ka Sutri eruption, Vico Volcano, Central Italy. J. Volcanol. Geotherm. Res. 2009, 181, 1–24. [Google Scholar] [CrossRef]
- Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D’Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; Langella, A. The Neapolitan Yellow Tuff: An outstanding example of heterogeneity. Constr. Build. Mater. 2017, 136, 361–373. [Google Scholar] [CrossRef]
- Novembre, D.; Gimeno, D.; Cappelletti, P.; Graziano, S.F. A case study of zeolitization process Tufo Rosso a Scorie Nere (Vico volcano, Italy): Inferences for a general model. Eur. J. Mineral. 2021, 33, 315–328. [Google Scholar] [CrossRef]
- de’Gennaro, M.; Franco, E.; Rossi, M.; Langella, A.; Ronca, A. Epigenetic minerals in the volcaniclastic deposits from central southern Italy: A contribution to zeolite genesis. Rend. Lincei Sci. Fis. Nat. 1987, 107–131. [Google Scholar]
- de’Gennaro, M.; Colella, C. The critical role of temperature in the natural zeolitization of volcanic glass. Neues Jahrb. Für Mineral. Monatshefte 1991, 8, 355–362. [Google Scholar]
- de’Gennaro, M.; Cappelletti, P.; Langella, A.; Perrotta, A.; Scarpati, C. Genesis of zeolites in the Neapolitan Yellow Tuff: Geological, volcanological and mineralogical evidence. Contrib. Mineral. Petrol. 2000, 139, 17–35. [Google Scholar] [CrossRef]
- de’Gennaro, R.; Cappelletti, P.; Cerri, G.; De’ Gennaro, M.; Dondi, M.; Langella, A. Neapolitan Yellow Tuff as raw material for lightweight aggregates in lightweight structural concrete production. Appl. Clay Sci. 2005, 28, 309–319. [Google Scholar] [CrossRef]
- Peccerillo, A.; Conticelli, S.; Manetti, P. Petrological characteristics and the genesis of the recent magmatism of the Southern Tuscany and Northern Latium. Per. Mineral. 1987, 56, 157–172. [Google Scholar]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics; Springer: New York, NY, USA, 2005; 365p. [Google Scholar]
- Carminati, E.; Lustrino, M.; Doglioni, C. Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics 2012, 579, 173–192. [Google Scholar] [CrossRef]
- Perini, G.; Francalanci, L.; Davidson, J.P.; Conticelli, S. Evolution and genesis of magmas from Vico volcano, Central Italy: Multiple differentiation pathways and variable parental magmas. J. Petrol. 2004, 45, 139–182. [Google Scholar] [CrossRef]
- Conticelli, S.; Melluso, L.; Perini, G.; Avanzinelli, R.; Boari, E. Petrologic, geochemical and isotopic characteristics of potassic and ultrapotassic magmatism in Central-Southern Italy: Inferences on its genesis and on the nature of mantle sources. Per. Mineral. 2004, 73, 135–164. [Google Scholar]
- Conticelli, S.; Avanzinelli, R.; Poli, G.; Braschi, E.; Giordano, G. Shift from lamproite-like to leucititic rocks: Sr-Nd-Pb isotope data from the Monte Cimino volcanic complex vs. the Vico stratovolcano, Central Italy. Chem. Geol. 2013, 353, 246–266. [Google Scholar] [CrossRef]
- Nappi, G.; Renzulli, A.; Santi, P.; Gillot, P.Y. Geological evolution and geochronology of the Vulsinian Volcanic District (Central Italy). Boll. Soc. Geol. Ital. 1995, 114, 599–613. [Google Scholar]
- Palladino, D.M.; Simei, S.; Sottili, G.; Trigila, R. Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: An application to the Vulsini Volcanoes (central Italy). In Stratigraphy and Geology in Volcanic Areas; Groppelli, G., Viereck-Goette, L., Eds.; The Geological Society of America: Boulder, CO, USA, 2010; Volume 464, pp. 66–84. [Google Scholar]
- Sparks, R.S.J. Stratigraphy and geology of the ignimbrites of the Vulsini Volcano, Central Italy. Geol. Rundsch. 1975, 64, 497–523. [Google Scholar] [CrossRef]
- Palladino, D.M.; Agosta, E. Pumice fall deposits of the Western Vulsini Volcanoes (Central Italy). J. Volcanol. Geotherm. Res. 1997, 78, 77–102. [Google Scholar] [CrossRef]
- Nappi, G.; Mattioli, M.; Valentini, L.; Chiocchini, U.; Madonna, S. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50.000. F. 355 Ronciglione; ISPRA: Rome, Italy, 2016. [Google Scholar]
- Lardini, D.; Nappi, G. I cicli del Complesso Vulcanico Cimino. Rend. Soc. Ital. Mineral. Petrol. 1987, 42, 141–153. [Google Scholar]
- Micheluccini, M.; Puxeddu, M.; Toro, B. Rilevamento e studio geo-vulcanologico della regione del Monte Cimino (Viterbo, Italia). Atti Soc. Tosc. Sc. Nat. Mem. Ser. A 1971, 78, 301–327. [Google Scholar]
- Nappi, G. Evoluzione del Complesso Vulcanico Cimino. Boll. GNV 1985, 128–139. [Google Scholar]
- Sabatini, V. I Vulcani dell’Italia Centrale e i Loro Prodotti: Parte II. Vulcani Cimini; Memorie Descrittive della Carta geologica d’Italia; 1912; Volume 15, pp. 1–636.
- Nappi, G. Stratigrafia e petrografia dei Vulsini sud-occidentali (caldera di Latera). Boll. Soc. Geol. Ital. 1969, 88, 171–181. [Google Scholar]
- Vezzoli, L.; Conticelli, S.; Innocenti, F.; Landi, P.; Manetti, P.; Trigila, R. Stratigraphy of the Latera Volcanic Complex: Proposals for a new nomenclature. Per. Mineral. 1987, 56, 89–110. [Google Scholar]
- Valentine, G.A.; Palladino, D.M.; DiemKaye, K.; Fletcher, C. Lithic-rich and lithic-poor ignimbrites and their basal deposits: Sovana and Sorano formations (Latera caldera, Italy). Bull. Volcanol. 2019, 81, 29. [Google Scholar] [CrossRef]
- Palladino, D.M.; Taddeucci, J. The basal ash deposit of the Sovana eruption (Vulsini volcanoes, central Italy): The product of a dilute pyroclastic density current. J. Volcanol. Geoth. Res. 1998, 87, 233–254. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.D.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A guide to chemical classification of common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Passaglia, E.; Vezzalini, G. Crystal chemistry of diagenetic zeolites in volcaniclastic deposits of Italy. Contrib. Mineral. Petrol. 1985, 90, 190–198. [Google Scholar] [CrossRef]
- Gottardi, G. The genesis of zeolites. Eur. J. Mineral. 1989, 1, 479–487. [Google Scholar] [CrossRef]
- Passaglia, E.; Vezzalini, G.; Carnevali, R. Diagenetic chabazites and phillipsites in Italy: Crystal chemistry and genesis. Eur. J. Mineral. 1990, 2, 827–839. [Google Scholar] [CrossRef]
- Scherillo, A.; Scherillo, M. Campi Flegri e la stratigrafia Napoletana. Quad. Accad. Pont. 1990, 11, 138. [Google Scholar]
- de’Gennaro, M.; Langella, A.; Cappelletti, P.; Colella, C. Hydrothermal conversion of trachytic glass to zeolite. 3. Monocationic model glasses. Clays Clay Miner. 1999, 47, 348–357. [Google Scholar] [CrossRef]
- Cappelletti, P.; Cerri, G.; Colella, A.; de’Gennaro, M.; Langella, A.; Perrotta, A.; Scarpati, C. Post-eruptive processes in the Campanian ignimbrite. Mineral. Petrol. 2003, 79, 79–97. [Google Scholar] [CrossRef]
- Iijima, A.; Utada, M. Present-day zeolite diagenesis of the Neogene géosynclinal deposits of the Niigata Oil Field, Japan. In Advances in Chemistry; Gould, R.F., Ed.; American Chemical Society: Washington, DC, USA, 1971; pp. 342–349. [Google Scholar]
- Moiola, R.J. Authigenic zeolite and K-feldspar in the Esmeralda Formation, Nevada. Am. Mineral. 1970, 55, 1681–1691. [Google Scholar]
- Walton, A.W. Zeolite diagenesis in Oligocene volcanic sediments, Trans-Pecos Texas. Geol. Soc. Am. Bull. 1975, 86, 615–624. [Google Scholar] [CrossRef]
- Sameshima, T. Zeolites in tuff beds of the Miocene Waitemata Group, Auckland Volcanic Province, New Zealand. In Natural Zeolites: Occurrences, Properties, Use; Sand, L.B., Mumpton, F.A., Eds.; Pergamon Press: New York, NY, USA, 1978; pp. 309–317. [Google Scholar]
- Pe-Piper, G.; Tsolis-Katagas, P. K-rich mordenite from late-Miocene rhyolitic tuffs, Island of Samos, Greece. Clays Clay Miner. 1991, 39, 239–247. [Google Scholar] [CrossRef]
- Tsolis-Katagas, P.; Katagas, C. Zeolites in pre-caldera pyroclastic rocks of the Santorini volcano, Aegean Sea, Greece. Clays Clay Miner. 1989, 37, 497–510. [Google Scholar] [CrossRef]
- Giampaolo, C.; Lo Mastro, S.; De Rita, D.; Giordano, G. Lateral and vertical zeolite grade variations in the Tufo Lionato ignimbrite unit (Colli Albani, Roma, central Italy). In Proceedings of the Zeolite ‘06’-7th International Conference on the Occurrence, Properties and Utilisation of Natural Zeolites, Socorro, NM, USA, 16–21 July 2006. [Google Scholar]
- de’Gennaro, M.; Franco, E.; Langella, A.; Mirra, P.; Morra, V. Le phillipsiti dei Tufi Gialli del Napoletano. Per. Mineral. 1982, 51, 287–310. [Google Scholar]
- de’Gennaro, M.; Langella, A. Italian zeolitized rocks of technological interest. Mineral. Depos. 1996, 31, 452–472. [Google Scholar] [CrossRef]
- Cerri, G.; Cappelletti, P.; Langella, A.; de’Gennaro, M. Zeolitization of Ologo-Miocene volcaniclastic rocks from Logudoro (northern Sardinia, Italy). Contrib. Mineral. Petrol. 2001, 140, 404–421. [Google Scholar] [CrossRef]
- Mormone, A.; Piochi, M. Mineralogy, Geochemistry and Genesis of Zeolites in Cenozoic Pyroclastic Flows from the Asuni Area (Central Sardinia, Italy). Minerals 2020, 10, 268. [Google Scholar] [CrossRef]
- Chipera, S.J.; Apps, J.A. Geochemical stability of natural zeolites. In Natural Zeolites: Occurrence, Properties, Applications; Bish, D.L., Ming, D.W., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of America and Geochemical Society: Washington, DC, USA, 2001; Volume 45, pp. 117–161. [Google Scholar]
- Langella, A.; De Simone, P.; Calcaterra, P.; de’Gennaro, M. Evidence of the relationship occurring between zeolitisation and lithification in the yellow facies of the Campanian ignimbrite (southern Italy). In Studies in Surface Science and Catalysts; Aiello, R., Giordano, G., Testa, F., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 1775–1782. [Google Scholar]
- de’Gennaro, M.; Colella, A.; Franco, E.; Stanzione, D. Hydrothermal conversion of trachytic glass into zeolite I: Reactions with deionised water. Neues Jahrb. Mineral. 1988, 4, 149–158. [Google Scholar]
- Hall, A. Zeolitisation of volcaniclastic sediments: The role of temperature and pH. J. Sediment. Res. 1998, 68, 739–745. [Google Scholar] [CrossRef]
- Ozpinar, Y.; Semiz, B.; Schroeder, P.A. Zeolites in mafic pyroclastic rocks from the Sandikli-Afyonkarahisar region, Turkey. Clays Clay Miner. 2013, 3, 177–192. [Google Scholar] [CrossRef]
- Gentili, S.; Comodi, P.; Nazzareni, S.; Zucchin, A. The Orvieto-Bagnoregio Ignimbrite: Pyroxene crystal-chemistry and bulk phase composition of pyroclastic deposits, a tool to identify syn- and post-depositional processes. Eur. J. Mineral. 2014, 26, 743–756. [Google Scholar] [CrossRef]
- Bernhard, F.; Barth-Wirsching, U. Zeolitization of a Phonolitic Ash Flow by Groundwater in the Laach Volcanic Area, Eifel. Clays Clay Miner. 2002, 50, 710–725. [Google Scholar] [CrossRef]
- Sersale, R. Occurrences and uses of zeolites in Italy. In Natural Zeolites: Occurrences, Properties, Use; Sand, L.B., Mumpton, F.A., Eds.; Pergamon Press: New York, NY, USA, 1978; pp. 285–302. [Google Scholar]
- Sollevanti, F. Geologic, volcanologic and tectonic setting of the Vico-Cimini area, Italy. J. Volcanol. Geotherm. Res. 1983, 17, 203–217. [Google Scholar] [CrossRef]
- Barberi, F.; Buonasorte, G.; Cioni, R.; Fiordelisi, A.; Foresi, L.; Iaccarino, S.; Laurenzi, M.A.; Sbrana, A.; Vernia, L.; Villa, I.M. Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem. Descr. Carta Geol. d’It. 1994, 49, 77–134. [Google Scholar]
- Buonasorte, G.; Carmelli, C.M.; Ceron, A.; Cioni, R.; Pensieri, R.; Sbrana, A. Results of geothermal exploration in central Italy (Latium–Campania). Proc. World Geoth. Congr. 1995, 2, 1293–1298. [Google Scholar]
- Baldi, P.; Ferrara, G.C.; Masselli, L.; Pieretti, G. Hydrogeochemistry of the region between Monte Amiata and Rome. Geothermics 1973, 2, 124–128. [Google Scholar] [CrossRef]
- Lenzi, G.; Passaglia, E. Fenomeni di zeolitizzazione nelle formazioni vulcaniche della regione sabatina. Boll. Soc. Geol. Ital. 1974, 93, 623–645. [Google Scholar]
- Mattioli, M.; Giordani, M.; Ballirano, P.; Salvioli-Mariani, E.; Bernardini, S.; Della Ventura, G. First occurrence, crystal-chemistry and structure of erionite, a carcinogenic fibrous zeolite, from the volcanic rocks of Latium (Italy). Per. Mineral. 2023, 92, 159–178. [Google Scholar]
Cimino Ignimbrite | Sorano Ignimbrite | |||
---|---|---|---|---|
Average (5) | σ | Average (5) | σ | |
SiO2 | 61.64 | 0.61 | 59.60 | 0.87 |
TiO2 | 0.84 | 0.03 | 0.52 | 0.11 |
Al2O3 | 16.51 | 0.47 | 18.60 | 0.22 |
Fe2O3 | 3.00 | 1.07 | 1.51 | 0.15 |
FeO | 2.10 | 0.79 | 1.39 | 0.38 |
MnO | 0.11 | 0.01 | 0.13 | 0.02 |
MgO | 2.42 | 0.19 | 0.52 | 0.13 |
CaO | 4.30 | 0.36 | 2.59 | 0.40 |
Na2O | 2.39 | 0.08 | 3.65 | 0.47 |
K2O | 5.32 | 0.22 | 8.73 | 0.95 |
P2O5 | 0.28 | 0.03 | 0.09 | 0.07 |
LOI | 1.10 | 0.31 | 2.62 | 1.10 |
Cimina Ignimbrite | Sorano Ignimbrite | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh Groundmass | Zeolitized Groundmass | |||||||||||||||||
IC1a | IC1b | IC1c | IC1d | IC1e | Av. | IC4a | IC4b | IC4c | IC4d | IC4e | Av. | IS1a | IS1b | IS1c | IS1d | IS1e | Av. | |
Clinoptilolite | - | - | - | - | - | 44 | 48 | 47 | 47 | 42 | 46 | - | - | - | - | - | ||
Cristobalite | - | - | - | - | - | 35 | 33 | 35 | 31 | 37 | 34 | - | - | - | - | - | ||
Chabazite | - | - | - | - | - | - | - | - | - | - | 78 | 74 | 78 | 76 | 78 | 77 | ||
Phillipsite | - | - | - | - | - | - | - | - | - | - | 19 | 22 | 17 | 20 | 20 | 20 | ||
Feldspar | 49 | 51 | 52 | 56 | 54 | 52 | 9 | 8 | 8 | 12 | 10 | 9 | - | - | - | - | - | |
K-feldspar | - | - | - | - | - | - | - | - | - | - | 3 | 2 | 5 | - | - | 3 | ||
Clinopyroxene | 18 | 15 | 11 | 13 | 13 | 14 | 4 | 2 | - | 3 | 2 | 3 | - | - | - | - | - | |
Mica | 33 | 34 | 37 | 31 | 33 | 34 | 8 | 9 | 10 | 7 | 9 | 9 | - | 2 | - | 4 | 2 | 3 |
Clinoptilolite | Chabazite | Phillipsite | ||||
---|---|---|---|---|---|---|
Average (7) | σ | Average (7) | σ | Average (5) | σ | |
SiO2 | 64.65 | 0.11 | 51.42 | 0.75 | 51.49 | 0.21 |
Al2O3 | 13.23 | 0.25 | 17.79 | 0.33 | 17.32 | 0.15 |
FeO | 0.04 | 0.02 | 0.02 | 0.02 | 0.24 | 0.04 |
MgO | 0.05 | 0.01 | 0.31 | 0.15 | 0.12 | 0.22 |
CaO | 3.59 | 0.04 | 3.68 | 0.46 | 1.51 | 0.15 |
Na2O | 1.94 | 0.07 | 1.11 | 0.32 | 1.22 | 0.04 |
K2O | 1.66 | 0.04 | 7.45 | 1.38 | 11.58 | 0.12 |
Total | 85.17 | 0.15 | 81.78 | 1.72 | 83.49 | 0.27 |
Si | 14.58 | 0.03 | 8.54 | 0.04 | 11.53 | 0.03 |
Al | 3.41 | 0.06 | 3.49 | 0.07 | 4.47 | 0.01 |
ΣT | 18.00 | 0.01 | 11.99 | 0.03 | 15.99 | 0.04 |
Ca | 0.84 | 0.02 | 0.62 | 0.11 | 0.38 | 0.10 |
Na | 0.69 | 0.03 | 0.24 | 0.06 | 0.54 | 0.05 |
K | 0.47 | 0.02 | 1.55 | 0.32 | 3.32 | 0.91 |
ΣET | 2.01 | 0.02 | 2.50 | 0.30 | 4.24 | 0.02 |
R | 0.81 | 0.71 | 0.72 | |||
Si/Al | 4.27 | 2.45 | 2.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattioli, M.; Giordani, M. Post-Emplacement Zeolitization in Ignimbrites: Insights from Central Italy Volcanic Rocks. Minerals 2025, 15, 924. https://doi.org/10.3390/min15090924
Mattioli M, Giordani M. Post-Emplacement Zeolitization in Ignimbrites: Insights from Central Italy Volcanic Rocks. Minerals. 2025; 15(9):924. https://doi.org/10.3390/min15090924
Chicago/Turabian StyleMattioli, Michele, and Matteo Giordani. 2025. "Post-Emplacement Zeolitization in Ignimbrites: Insights from Central Italy Volcanic Rocks" Minerals 15, no. 9: 924. https://doi.org/10.3390/min15090924
APA StyleMattioli, M., & Giordani, M. (2025). Post-Emplacement Zeolitization in Ignimbrites: Insights from Central Italy Volcanic Rocks. Minerals, 15(9), 924. https://doi.org/10.3390/min15090924