Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
Abstract
1. Introduction
2. Geology
3. Materials and Methods
Sample Number | Location/Bauxite Mine | Mineralogical Composition | Bauxite Type |
---|---|---|---|
B1-1 | Çatmakaya | Bhm + Hem + Dsp + Ant | Massive |
B1-2 | Bhm + Hem + Dsp + Go | Massive | |
B2-1 | Değirmenlik | Bhm + Hem + Kln | Massive |
B2-2 | Bhm + Hem + Gbs + Kln | Massive | |
B3-1 | Doğankuzu | Bhm + Hem + Kln + Gbs + Ant + Py | Oolitic-pisolitic |
B3-2 | Dsp + Hem + Bhm + Kln + Ant | Massive | |
B3-3 | Dsp + Hem + Bhm + Kln + Ant | Massive-oolitic | |
B3-4 | Bhm + Hem + Dsp + Kln + Gbs + Ant + Py | Massive-oolitic | |
B3-5 | Bhm + Hem + Kln + Ant | Massive | |
B3-6 | Bhm + Hem + Kln + Ant + Kln | Massive | |
B3-7 | Bhm + Hem + Kln + Ant + Kln | Earthy | |
B4-1 | Kaklıktaştepe | Bhm + Cal + Hem + Go | Brecciated |
B4-2 | Bhm + Hem + Ant | Massive-oolitic | |
B4-3 | Bhm + Cal + Hem + Ant | Brecciated | |
B4-4 | Bhm + Hem + Ant + Kln | Massive-oolitic | |
B5-1 | Morçukur | Bhm + Hem + Kln + Gbs | Oolitic |
B5-2 | Bhm + Hem + Kln | Oolitic-pisolitic | |
B6-1 | Mortaş | Bhm + Hem + Kln + Go | Brecciated |
B6-2 | Bhm + Hem + Kln | Massive |
4. Results
4.1. Macroscopic Properties
4.2. Mineralogical Composition and Properties
4.3. Chemical Composition
4.4. Microprobe (EPMA and FESEM-EDS Analysis)
5. Discussion
6. Conclusions
- (1)
- The primary minerals identified in bauxites are boehmite, diaspore, hematite, and kaolinite. Minor phases include gibbsite, goethite, pyrite, anatase/rutile, illite, calcite, quartz, and feldspar minerals.
- (2)
- The REE content of the bauxite ores varies widely. The B3 ore from the Doğankuzu mine shows the highest REE concentration, ranging from 161 to 4072 ppm. Bauxites with high REE content (e.g., B3, B4) exhibit weak to moderately negative Ce anomalies, whereas those with lower REE contents display positive Ce anomalies. All samples exhibit positive Eu anomalies.
- (3)
- The absence of correlation between LREEs and major elements such as Al, Fe, and Si and the fact that these elements are spatially co-located EPMA and FESEM element maps suggests that REEs are neither adsorbed onto nor structurally incorporated into alumina phases (diaspore, boehmite), goethite, or clay minerals.
- (4)
- The co-localization of LREEs with Ca and F on the element maps, along with the low Ce content compared to La, suggests that the REE-bearing minerals include La-rich parisite and/or La-bastnäsite from the bastnäsite group.
- (5)
- The Doğankuzu bauxite, from Seydişehir deposits, stands out as particularly rich in critical LREEs. These findings indicate that the deposit has strong potential for future exploitation to meet the growing demand particularly for LREEs in advanced technological applications.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, L.; Bras, B. Rare earth metal recycling. In Proceedings of the 2011 IEEE International Symposium on Sustainable Systems and Technology, Chicago, IL, USA, 16–18 May 2011; IEEE: New York, NY, USA, 2011; pp. 1–6. [Google Scholar]
- Gronek, S.; Łęczycki, K. Rare earth elements and their importance for economy and safety. Aviat. Adv. Maint. 2017, 40, 129–150. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Drobniak, A.; Mastalerz, M. Rare Earth Elements—A brief overview. Indiana J. Earth Sci. 2022, 4, 33628. [Google Scholar] [CrossRef]
- Lyew-Ayee, P.A. A case for the volcanic origin of Jamaican bauxites. Proceedings of the VI Bauxite Symposium. J. Geol. Soc. Jam. 1986, 1, 9–39. [Google Scholar]
- Bárdossy, G. Karst Bauxites. Bauxite Deposits on Carbonate Rocks; Developments in Economic Geology Series; Elsevier: Amsterdam, The Netherlands, 1982; Volume 14. [Google Scholar]
- Brimhall, G.H.; Lewis, C.J.; Ague, J.J.; Dietrich, W.E.; Hampel, J.; Rix, P. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 1988, 333, 819–824. [Google Scholar] [CrossRef]
- Pye, K. Bauxites gathering dust. Nature 1988, 333, 300–301. [Google Scholar] [CrossRef]
- Morelli, F.; Cullers, R.; Laviano, R.; Mongelli, G. Geochemistry and palaeoenvironmental significance of Upper Cretaceous clay-rich beds from the Peri adriatic Apulia Carbonate Platform, southern Italy. Period. Mineral. 2000, 69, 165–183. [Google Scholar]
- Wang, Q.; Deng, J.; Liu, X.; Zhao, R.; Cai, S. Provenance of Late Carboniferous bauxite deposits in the North China Craton: New constraints on marginal arc con struction and accretion processes. Gondwana Res. 2016, 38, 86–98. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, Q.F.; Feng, Y.W.; Li, Z.M.; Cai, S.H. Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geol. Rev. 2013, 55, 162–175. [Google Scholar] [CrossRef]
- Wang, Q.F.; Deng, J.; Liu, X.F.; Zhang, Q.; Sun, S.; Jiang, C.; Zhoul, F. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J. Asian Earth Sci. 2010, 39, 701–712. [Google Scholar] [CrossRef]
- Wang, X.; Jiao, Y.; Du, Y.; Ling, W.; Wu, L.; Cui, T.; Zhou, Q.; Jin, Z.; Lei, Z.; Weng, S. Rare earth element (REE) mobility and Ce anomaly in bauxite deposit of Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou, China. J. Geochem. Explor. 2013, 133, 103–117. [Google Scholar] [CrossRef]
- Calagari, A.A.; Abedini, A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. J. Geochem. Explor. 2007, 94, 1–18. [Google Scholar] [CrossRef]
- Laskou, M.; Economou-Eliopoulos, M. The role of microorganisms on the mineral ogical and geochemical characteristics of the Parnassos–Ghiona bauxite deposits, Greece. J. Geochem. Explor. 2007, 93, 67–77. [Google Scholar] [CrossRef]
- Bárdossy, G.; Aleva, G.J.J. Lateritic Bauxites; Developments Economic Geology Series; Elsevier: Amsterdam, The Netherlands, 1990; Volume 27, p. 624. [Google Scholar]
- Mameli, P.; Mongelli, G.; Oggiano, G.; Dinelli, E. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity. Int. J. Earth Sci. (Geol. Rundsch.) 2007, 96, 887–902. [Google Scholar] [CrossRef]
- Karadağ, M.M.; Küpeli, Ş.; Arık, F.; Ayhan, A.; Zedef, V.; Döyen, A. Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya—Southern Turkey). Chem. Erde Geochem. 2009, 69, 143–159. [Google Scholar] [CrossRef]
- MacLean, W.H.; Bonavia, F.F.; Sanna, G. Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Miner. Depos. 1997, 32, 607–616. [Google Scholar] [CrossRef]
- Gu, X.Q.; Yang, J.; Huang, M. Laboratory measurements of small strain properties of dry sands by bender element. Soils Found. 2013, 53, 735–745. [Google Scholar] [CrossRef]
- Birinci, M.; Gök, R. Characterization and flotation of low-grade boehmitic bauxite ore from Seydişehir (Konya, Turkey). Miner. Eng. 2021, 161, 106714. [Google Scholar] [CrossRef]
- Karadağ, M.M.; Arık, F.; Öztürk, A. Çatmakaya (Seydişehir-Turkiye) boksit yatağının kökenine jeoistatistiksel ve jeokimyasal bir yaklaşım. Yerbilimleri 2006, 27, 63–85. (In Turkish) [Google Scholar]
- Horkel, A. Notes on the geology and minerals resource potential of selected Turkish bauxite deposits. Jahrb. Geol. Bundesanst. 2010, 150, 343–350. [Google Scholar]
- Mordberg, L.E. Patterns of distribution and behaviour of trace elements in bauxites. Chem. Geol. 1993, 107, 241–244. [Google Scholar] [CrossRef]
- Maksimovic, Z.; Pantó, G. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 1991, 51, 93–109. [Google Scholar] [CrossRef]
- Maksimovic, Z.; Skarpelis, N.; Pantó, G. Mineralogy and geochemical of the rare earth elements in the karstic nickel deposits of Lokris area, Greece. Acta Geol. Hung. 1993, 36, 331–342. [Google Scholar]
- Tomašić, N.; Čobić, A.; Bedeković, M.; Miko, S.; Ilijanić, N.; Gizdavec, N.; Matošević, M. Rare earth elements enrichment in the upper Eocene tošići-dujići bauxite deposit, Croatia, and relation to REE mineralogy, parent material and weathering pattern. Minerals 2021, 11, 1260. [Google Scholar] [CrossRef]
- Li, Z.; Din, J.; Xu, J.; Liao, C.; Yin, F.; Lu, T.; Cheng, L.; Li, J. Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqiong, China: Insights on conditions of formation and processes. J. Geochem. Explor. 2013, 133, 88–102. [Google Scholar] [CrossRef]
- Deady, E.A.; Mouchos, E.; Goodenough, K.; Williamson, B.J.; Wall, F. A review of the potential for rare-earth element resources from European red muds: Examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral. Mag. 2016, 80, 43–61. [Google Scholar] [CrossRef]
- Dean, W.T.; Monod, O. The Lower Palaeozoic stratigraphy and faunas of the Taurus Mountains near Beyşehir, Turkey. Bull. Br. Mus. (Nat. Hist.) Geol. 1970, 19, 411–426. [Google Scholar]
- Zhang, Q.; Sun, Y.; Han, Y.; Li, Y.; Gao, P. Effect of thermal oxidation pretreatment on the magnetization roasting and separation of refractory iron ore. Miner. Process. Extr. Metall. Rev. 2022, 43, 182–187. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; 312p. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rockforming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R. Comparison of the partitioning behaviours of the yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta 1996, 60, 1709–1725. [Google Scholar] [CrossRef]
- Uyanık, C.; Koçak, K.; Döyen, A. The Bauxite deposits of Seydişehir region (Mortaş and Doğankuzu deposits); Their geological, mineralogical and geochemical characteristics. Acta Geobalc. 2016, 2, 21–26. [Google Scholar] [CrossRef]
- Çelik, Ö.F.; Delaloye, M. Characteristics of ophiolite-related metamorphic rocks in the Beysehir ophiolitic mélange (Central Taurides, Turkey), deduced from whole rock and mineral chemistry. J. Asian Earth Sci. 2006, 26, 461–476. [Google Scholar] [CrossRef]
- Zamanian, H.; Radmard, K. Geochemistry of rare earth elements in the baba Ali magnetite skarn deposit, western Iran-a key to determine conditions of mineralisation. Geologos 2016, 22, 33–47. [Google Scholar] [CrossRef]
- Berner, R.A. Sulphate reduction, organic matter decomposition and pyrite formation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 25–38. [Google Scholar]
- Schoonen, M.A.A. Mechanisms of sedimentary pyrite formation. In Sulfur Biogeochemistry—Past and Present; Special Paper; The Geological Society of America: Boulder, CO, USA, 2004; p. 379. [Google Scholar]
- Meshram, R.R.; Randive, K.R. Geochemical study of laterites of the Jamnagar district, Gujarat, India: Implications on parent rock, mineralogy and tectonics. J. Asian Earth. Sci. 2011, 42, 1271–1287. [Google Scholar] [CrossRef]
- Gu, J.; Huang, Z.L.; Fan, H.P.; Ye, L.; Jin, Z. Mineralogy, Geochemistry, and Genesis of Lateritic Bauxite Deposits in the Wuchuan-Zheng’an Daozhen Area, Northern Guizhou Province, China. J. Geochem. Explor. 2013, 130, 44–59. [Google Scholar] [CrossRef]
- Li, B.; Kong, Q.; Wang, G.; Liu, F.; Guo, L.; Liu, C.; Liao, F.; Shi, Z. Controls on the behaviors of rare earth elements in acidic and alkaline thermal springs. Appl. Geochem. 2022, 143, 105379. [Google Scholar] [CrossRef]
- Laskou, M.; Economou-Eliopoulos, M. Bio mineralization and potential biogeochemical processes in bauxite deposits: Genetic and ore quality significance. Mineral. Petrol 2013, 107, 471–486. [Google Scholar] [CrossRef]
- Braun, J.J.; Pagel, M.; Herbillon, A.; Rosin, C. Mobilization and redistribution of REE’s and thorium in a synthetic lateritic profiles. A mass balance study. Geochim. Cosmochim. Acta 1993, 57, 419–4434. [Google Scholar] [CrossRef]
- Condie, K.C. Another look at rare earth elements in shales. Geochim. Cosmochim. Acta 1991, 55, 2527–2531. [Google Scholar] [CrossRef]
- Koppi, A.J.; Edis, R.; Field, D.J.; Geering, H.R.; Klessa, D.A.; Cockayne, D.J.H. Rare earth element trends and cerium–uranium–manganese associations in weathered rock from koongarra, Northern Territory, Australia. Geochim. Cosmochim. Acta 1996, 60, 1695–1707. [Google Scholar] [CrossRef]
- Aubert, D.; Stille, P.; Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta 2001, 65, 387–406. [Google Scholar] [CrossRef]
- Yusoff, Z.M.; Ngwenya, B.T.; Parsons, I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chem. Geol. 2013, 349, 71–86. [Google Scholar] [CrossRef]
- Bellefroid, E.J.; Hood, A.V.S.; Hoffman, P.F.; Thomas, M.D.; Reinhard, C.T.; Planavsky, N.J. Constraints on paleoproterozoic atmospheric oxygen levels. Proc. Natl. Acad. Sci. USA 2018, 115, 8104–8109. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, G.; Buccione, R.; Gueguen, R.; Langone, A.; Sinisi, R. Geochemistry of the Apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geol. Rev. 2016, 77, 246–259. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Crit. Rev. Environ. Sci. Technol. 2015, 455, 429–471. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F. Speciation of the rare earth element neodymium in groundwaters of the Nevada Test site and Yucca Mountain and implications for actinide solubility. Appl. Geochem. 1995, 10, 565–572. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F.; Lyons, W.B. Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth. Planet. Sci. Lett. 1996, 139, 305–319. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Hawkins, D.L., Jr.; Cortés, A. Do Archean chemical sediments record ancient seawater rare earth element patterns. Geochim. Cosmochim. Acta 2006, 70, 871–890. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhang, Q.; Feng, Y.; Cai, S. Mineralogical characteristics of the superlarge Quaternary bauxite deposits in Jingxi and Debao counties, western Guangxi, China. J. Asian Earth Sci. 2012, 52, 53–62. [Google Scholar] [CrossRef]
- Abedini, A.; Khosravi, M. REE Geochemical Characteristics of the Huri Karst-Type Bauxite Deposit, Irano–Himalayan Belt, Northwestern Irano–Himalayan Belt, Northwestern Iran. Minerals 2023, 13, 926. [Google Scholar] [CrossRef]
- Maksimović, Z.J.; Pantó, G. Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits rare earth minerals. In Rare Earth Minerals, Chemistry, Origin and Ore Deposits; Jones, A.P., Wall, F., Williams, C.T., Eds.; Rare Earth Minerals Chemistry, Origin and Ore Deposits, Mineralogical Society Series; Chapman & Hall: London, UK, 1996; Chapter 10; pp. 199–220. [Google Scholar]
- Cao, C.; Liu, X.-M.; Chen, J. Cerium anomaly as a tracer for paleo oceanic redox conditions: A thermodynamics-based Ce oxidation modeling approach. Front. Earth Sci. 2022, 10, 927826. [Google Scholar] [CrossRef]
- Mongelli, G. Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian Carbonate Platform (southern Italy). Chem. Geol. 1997, 140, 69–79. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhang, Q.; Zhang, Y.; Li, Y. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geol. Rev. 2016, 75, 100–115. [Google Scholar] [CrossRef]
- Liu, H.Y.; Guo, H.M.; Xing, L.N.; Zhan, Y.H.; Li, F.L.; Shao, J.L.N.; Liang, X.; Li, C.Q. Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. J. Asian Earth Sci. 2016, 117, 33–51. [Google Scholar] [CrossRef]
- Menezes Filho, L.A.; Chaves, M.L.; Chukanov, N.V.; Atencio, D.; Scholz, R.; Pekov, I.; Belakovskiy, D.I. Parisite-(La), ideally CaLa2 (CO3)3F2, a new mineral from Novo Horizonte, Bahia, Brazil. Mineral. Mag. 2018, 82, 133–144. [Google Scholar] [CrossRef]
- Putzolu, F.; Piccolo Papa, A.; Mondillo, N.; Boni, M.; Balassone, G.; Mormone, A. Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 2018, 8, 298. [Google Scholar] [CrossRef]
- Ni, Y.; Post, J.E.; Hughes, J.M. The crystal structure of parisite-(Ce), Ce2CaF2(CO3)3. Am. Mineral. 2000, 85, 251–258. [Google Scholar] [CrossRef]
- Ji, H.; Wang, S.; Ouyang, Z.; Zhang, S.; Sun, C.; Liu, X.; Zhou, D. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. I. The formation of the Pingba profile. Chem. Geol. 2004, 203, 1–27. [Google Scholar] [CrossRef]
- Leleyter, L.; Probsta, J.-L.; Depetris, P.; Haida, S.; Mortatti, J.; Rouault, R.; Samuel, J. REE distribution pattern in river sediments: Partitioning into residual and labile fractions. Comptes Rendus l’Académie Sci.-Ser. IIA-Earth Planet. Sci. 1999, 329, 45–52. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Mongelli, G.; Mameli, P.; Sinisi, R.; Buccione, R.; Oggiano, G. Rees and other critical raw materials in Cretaceous Mediterranean-type bauxite: The case of the Sardinian ore (Italy). Ore Geol. Rev. 2021, 139, 104559. [Google Scholar] [CrossRef]
- Gysi, A.P.; Williams-Jones, A.E. The thermodynamic properties of bastnäsite-(Ce) and parisite-(Ce). Chem. Geol. 2015, 392, 87–101. [Google Scholar] [CrossRef]
- Srinivasan, S.G.; Shivaramaiah, R.; Kent, P.R.; Stack, A.G.; Navrotsky, A.; Riman, R.; Anderko, A.; Bryantsev, V.S. Crystal structures, surface stability, and water adsorption energies of La-bastnäsite via density functional theory and experimental studies. J. Phys. Chem. 2016, C 120, 16767–16781. [Google Scholar] [CrossRef]
- Cao, X.D.; Chen, Y.; Wang, X.R.; Deng, X.H. Effects of redox potential and pH value on there lease of rare earth elements from soil. Chemosphere 2001, 44, 655–661. [Google Scholar] [CrossRef]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef]
- USGS. Mineral Commodity Summaries Bauxite; USGS: Reston, VA, USA, 2020.
- MTA. Dünyada ve Türkiye’de Alüminyum; MTA: Ankara, Türkiye, 2018. [Google Scholar]
- Garside, M. Rare Earth Oxide Prices Worldwide in 2020 with Forecasts from 2021 to 2030; Statista. Available online: https://www.statista.com/statistics/1265350/global-rare-earth-oxide-price-forecast/ (accessed on 12 October 2023).
Component | Initial Eigen Values | Extraction Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 12,588 | 40,605 | 40,605 | 12,588 | 40,605 | 40,605 |
2 | 8291 | 26,744 | 67,349 | 8291 | 26,744 | 67,349 |
3 | 2634 | 8496 | 75,846 | 2634 | 8496 | 75,846 |
4 | 1806 | 5827 | 81,672 | 1806 | 5827 | 81,672 |
5 | 1411 | 4550 | 86,222 | 1411 | 4550 | 86,222 |
6 | 1098 | 3541 | 89,763 | 1098 | 3541 | 89,763 |
No | La2O3 | Ce2O3 | Pr2O3 | Sm2O3 | Eu2O3 | Gd2O3 | Ho2O3 | Er2O3 | Nd2O3 | Total |
---|---|---|---|---|---|---|---|---|---|---|
A-1 | 21.87 | 0.94 | 7.67 | 0.59 | 0.43 | 0.81 | 0.36 | 0.00 | 3.01 | 35.72 |
A-2 | 21.86 | 1.17 | 7.80 | 0.61 | 0.49 | 1.30 | 0.47 | 0.02 | 3.20 | 36.93 |
A-3 | 0.06 | 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | 0.02 | 0.00 | 0.04 | 0.23 |
B-1 | 24.92 | 0.97 | 7.73 | 0.66 | 0.46 | 0.93 | 0.39 | 0.00 | 3.39 | 39.53 |
B-2 | 22.79 | 1.10 | 6.73 | 0.65 | 0.47 | 0.99 | 0.35 | 0.06 | 3.39 | 36.53 |
B-3 | 28.38 | 0.75 | 8.91 | 0.75 | 0.62 | 0.65 | 0.31 | 0.03 | 4.00 | 44.40 |
B-4 | 0.01 | 0.00 | 0.01 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.02 | 0.08 |
B-5 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.09 |
B-6 | 0.03 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 | 0.00 | 0.04 | 0.02 | 0.20 |
B-7 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.00 | 0.10 |
C-1 | 26.79 | 1.38 | 8.90 | 0.79 | 0.62 | 1.45 | 0.53 | 0.04 | 4.10 | 44.68 |
C-2 | 25.66 | 1.15 | 8.28 | 0.75 | 0.53 | 1.36 | 0.51 | 0.06 | 3.94 | 42.25 |
C-3 | 0.14 | 0.03 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.03 | 0.31 |
D-1 | 26.41 | 1.36 | 8.13 | 0.80 | 0.59 | 1.48 | 0.54 | 0.03 | 4.04 | 43.39 |
D-2 | 23.02 | 1.43 | 7.11 | 0.83 | 0.49 | 1.49 | 0.54 | 0.04 | 3.95 | 38.92 |
D-3 | 21.57 | 1.06 | 6.64 | 0.60 | 0.45 | 1.21 | 0.41 | 0.04 | 3.39 | 35.37 |
D-4 | 27.06 | 1.19 | 8.42 | 0.71 | 0.53 | 0.99 | 0.39 | 0.06 | 3.81 | 43.26 |
D-5 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.02 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakaya, M.Ç.; Karakaya, N. Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region. Minerals 2025, 15, 798. https://doi.org/10.3390/min15080798
Karakaya MÇ, Karakaya N. Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region. Minerals. 2025; 15(8):798. https://doi.org/10.3390/min15080798
Chicago/Turabian StyleKarakaya, Muazzez Çelik, and Necati Karakaya. 2025. "Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region" Minerals 15, no. 8: 798. https://doi.org/10.3390/min15080798
APA StyleKarakaya, M. Ç., & Karakaya, N. (2025). Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region. Minerals, 15(8), 798. https://doi.org/10.3390/min15080798