Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
Abstract
1. Introduction
2. Study Area Overview
3. Methodology
3.1. Available Dataset
3.2. Geochemical Data Processing: Au Distribution Pattern in Stream Sediments
3.3. Geophysical Data Processing
3.4. Review of Clustering Method
4. Discussion
4.1. Clustering Results
4.2. Factors Affecting Clustering Results
4.2.1. The Difference in the Number of Categories of Categorical Variables
4.2.2. The Impact of Algorithms
4.3. Geological Interpretation Based on the 3 × 4 and 4 × 4 Combination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Element | Content Arithmetic Mean | Content Standard Deviation | Variation Coefficient | Elemental Content | Distribution Characteristics | |||
---|---|---|---|---|---|---|---|---|
Minimum | Median | Maximum | Skewness | Kurtosis | ||||
Au | 7.54 | 20.10 | 2.66 | 0.82 | 2.57 | 226.24 | 7.76 | 70.89 |
Ag | 62.84 | 33.34 | 0.53 | 30.38 | 54.41 | 387.47 | 4.49 | 31.51 |
As | 6.21 | 2.08 | 0.33 | 2.10 | 5.76 | 24.46 | 3.41 | 21.79 |
Cu | 18.67 | 5.45 | 0.29 | 9.73 | 17.23 | 46.29 | 1.59 | 4.32 |
Bi | 0.18 | 0.07 | 0.37 | 0.09 | 0.17 | 0.64 | 2.84 | 13.45 |
Pb | 22.69 | 5.98 | 0.26 | 10.99 | 21.87 | 58.46 | 2.10 | 7.97 |
Zn | 55.35 | 13.45 | 0.24 | 29.63 | 54.02 | 149.84 | 1.75 | 7.54 |
Sb | 0.34 | 0.07 | 0.22 | 0.20 | 0.33 | 0.64 | 1.22 | 2.31 |
Mo | 0.80 | 0.26 | 0.32 | 0.40 | 0.73 | 2.11 | 2.04 | 5.33 |
W | 1.41 | 0.60 | 0.43 | 0.68 | 1.27 | 5.70 | 3.43 | 16.80 |
Ni | 26.54 | 6.57 | 0.25 | 13.39 | 25.41 | 47.29 | 0.59 | −0.16 |
Sn | 2.29 | 0.59 | 0.26 | 1.45 | 2.30 | 10.22 | 6.92 | 87.61 |
Hg | 16.86 | 3.22 | 0.19 | 10.33 | 15.98 | 32.45 | 1.32 | 2.20 |
Element | Arithmetic Mean | Standard Deviation | Variation Coefficient | Elemental | Normal Distribution | |||
---|---|---|---|---|---|---|---|---|
Minimum | Median | Maximum | Skewness | Kurtosis | ||||
Au | 0.54 | 0.43 | 0.79 | –0.08 | 0.41 | 2.35 | 1.32 | 2.07 |
Ag | 1.76 | 0.16 | 0.09 | 1.48 | 1.74 | 2.59 | 1.51 | 3.62 |
As | 0.77 | 0.12 | 0.16 | 0.32 | 0.76 | 1.39 | 0.66 | 3.70 |
Cu | 1.26 | 0.11 | 0.09 | 0.99 | 1.24 | 1.67 | 0.60 | 0.38 |
Bi | –0.77 | 0.13 | –0.17 | –1.06 | −0.78 | –0.20 | 0.87 | 1.99 |
Pb | 1.34 | 0.10 | 0.08 | 1.04 | 1.34 | 1.77 | 0.61 | 2.24 |
Zn | 1.73 | 0.10 | 0.06 | 1.47 | 1.73 | 2.18 | 0.46 | 1.14 |
Sb | –0.47 | 0.09 | –0.19 | –0.70 | –0.48 | –0.20 | 0.43 | 0.75 |
Mo | –0.12 | 0.12 | –1.02 | –0.39 | –0.14 | 0.32 | 1.03 | 1.26 |
W | 0.12 | 0.14 | 1.13 | –0.17 | 0.10 | 0.76 | 1.29 | 3.17 |
Ni | 1.41 | 0.11 | 0.08 | 1.13 | 1.41 | 1.67 | 0.07 | –0.56 |
Sn | 0.35 | 0.09 | 0.25 | 0.16 | 0.36 | 1.01 | 1.30 | 9.16 |
Hg | 1.22 | 0.08 | 0.06 | 1.01 | 1.20 | 1.51 | 0.74 | 0.63 |
References
- Song, M.C.; Yang, L.Q.; Fan, H.R. Current progress of metallogenic research and deep prospecting of gold deposits in the Jiaodong Peniusula during 10 years for Exploration Breakthrough Strategic Action. Geol. Bull. China 2022, 41, 903–935. [Google Scholar] [CrossRef]
- Ding, Z.J.; Sun, F.Y.; Liu, F.L.; Liu, J.P.; Peng, Q.M.; Ji, P.; Li, B.L.; Zhang, P.J. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula. Acta Petrol. Sin. 2015, 10, 3045–3080. [Google Scholar]
- Liu, Y.Q.; Shi, H.; Li, J.; Huang, T.L.; Jin, Y.M.; Wang, F. Geological, Geophysical and Geochemical Characteristics of Gold Deposits around Jiaolai basin, Shandong Province and Their Prospecting Significance. Acta Geosci. Sin. 2004, 6, 593–600. [Google Scholar]
- Liu, J.Y.; Duan, L.A. The North Edge of Jiao-Lai basin Gold Deposit Features and Analysis on mine-prospecting Prospect. Gold Sci. Technol. 2006, 14, 30–35. [Google Scholar]
- Liu, Y.Q. Further discussion of the direction in gold prospecting in the Jiao-Lai basin. Geol. China 2001, 11, 13–19. [Google Scholar]
- Zhao, B.J.; Gao, M.B.; Li, Y.D.; Fu, H.Q.; Li, D.D.; Feng, Q.W.; Zhang, D.; Zheng, D.C.; Ma, M.; Wang, L.G. Study on metallogenic regularity of gold deposits in Longkou-Tudui mining area on the northeastern margin of Jiaolai basin. Acta Geol. Sin. 2019, 93 (Suppl. 1), 1–11. [Google Scholar]
- Li, G.H.; Ding, Z.J.; Ji, P.; Li, Y.; Tang, J.Z.; Liu, S.S. Features and Prospecting Direction of the Gold Deposits in the Northeastern Margin of the Jiaolai basin. Geol. Explor. 2016, 6, 1029–1036. [Google Scholar] [CrossRef]
- Wang, R.Z.; Wu, C.X. Characteristics of deep mineralization of Guocheng gold deposit in the northeast margin of Jiaolai basin and its geological prospecting potentials. China Met. Bull. 2022, 15, 40–42. [Google Scholar]
- Li, D.D. Study on Genesis and Metallogenic Model of Longkou-Tudui Gold Deposit in Northeastern Margin of Jiaolai basin. Mod. Min. 2020, 9, 6–11. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.J.; Bo, J.W.; Song, M.C.; Wu, F.P.; Li, G.H.; Li, T.T. Geochemical characteristics of mine-forming elements and metallogenic potentiality in the gold mineralization area of northeast margin of Jiaolai basin. Gold 2018, 8, 15–21. [Google Scholar] [CrossRef]
- Botbol, J.M.; Sinding-Larsen, R.; McCammon, R.B.; Gott, C.B. A regionalised multivariate approach to target selection in geochemical exploration. Econ. Geol. 1978, 73, 534–546. [Google Scholar] [CrossRef]
- Howarth, R.J.; Sinding-Larsen, R. Multivariate Analysis General Information. In Handbook of Exploration Geochemistry Statistics and Data Analysis in Geochemical Prospecting; Elsevier: Amsterdam, The Netherlands, 1983; pp. 207–289. [Google Scholar] [CrossRef]
- McCammon, R.B.; Botbol, J.M.; Sinding-Larsen, R.; Bowen, R.W. Characteristic analysis—1981: Final program and a possible discovery. Math. Geol. 1983, 15, 59–83. [Google Scholar] [CrossRef]
- Sinding-Larsen, R.; Botbol, J.M.; McCammon, R.B. Use of weighted characteristic analysis as a tool in resource assessment. In Proceedings of the Evaluation of Uranium Research Proceedings of the Advisory Group Meeting, Rome, Italy, 29 November–3 December 1976; International Atomic Energy Agency: Vienna, Austria, 1979; pp. 275–285. [Google Scholar]
- Plant, J.; Hale, M. Drainage Geochemistry. Handbook of Exploration Geochemistry; Elsevier: Amsterdam, The Netherlands, 1994; p. 8. [Google Scholar]
- Beus, A.A.; Grigorian, S.V. Geochemical Exploration Methods for Mineral Deposits; Applied Publishing Ltd.: Wilmette, IL, USA, 1977; 288p. [Google Scholar]
- Levinson, A.A. Introduction of Exploration Geichemistry; Applied Publishing Ltd.: Wilmette, IL, USA, 1974; 612p. [Google Scholar]
- Robert, F.; Brommecker, R.; Bourne, B.T.; Dobak, P.J.; McEwan, C.J.; Rowe, R.R.; Zhou, X. Models and exploration methods for major gold deposit types. In Proceedings of the Exploration 07: Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 691–711. [Google Scholar]
- Wang, S.H.; Wang, J.K.; Zhang, X.F. Geochemical characteristics and gold metallogenic potential for stream sediment in Muping-Wendeng area, Jiaodong Peninsula. Geol. Rev. 2020, 66, 510–519. [Google Scholar] [CrossRef]
- Li, R.H.; Wang, X.Q.; Chi, Q.H.; Zhang, B.M.; Liu, Q.Q.; Liu, H.L. Distribution of geochemical anomaly of gold in drainage sediment in the Jiaodong Peninsula, China and its significance. Earth Sci. Front. 2019, 4, 221–230. [Google Scholar] [CrossRef]
- Wei, Y.T. Geochemical Characteristics of Stream Sediments and mine-prospecting Direction in Haiyang Area in Jiaodong Peninsula. Shandong Land Resour. 2017, 33, 30–36. [Google Scholar]
- Song, M.C.; Wang, H.J.; Liu, H.B.; He, C.Y.; Wei, Y.T.; Li, B. Deep characteristics of ore−controlling faults in Jiaoxibei gold deposits and its implications for prospecting:Evidence from geophysical surveys. Geol. China 2024, 51, 1–16. [Google Scholar] [CrossRef]
- He, C.Y.; Yao, Z.; Guo, G.Q.; Liu, H.B.; Song, M.C.; Li, S.Y. Deep structural features of the Jiaobei terrane of Jiaodong and the North Sulu orogenic belt:the inspiration from deep exploration of the geophysics. Prog. Geophys. 2022, 37, 1392–1404. [Google Scholar] [CrossRef]
- Dentith, M.; Frankcombe, K.; Trench, A. Geophysical signatures of Western Australian mineral deposits: An overview. Explor. Geophys. 1994, 25, 103–160. [Google Scholar] [CrossRef]
- Song, M.C.; Xue, G.Q.; Liu, H.B.; Li, Y.X.; He, C.Y.; Wang, H.J.; Wang, B.; Song, Y.X.; Li, S.Y. A geological-geophysical prospecting model for deep-seated gold deposits in the jiaodong peninsula, China. Minerals 2021, 11, 1393. [Google Scholar] [CrossRef]
- Oldenburg, D.W.; Li, Y.; Ellis, R.G. Inversion of geophysical data over a copper gold porphyry deposit: A case history for Mt. Milligan. Geophysics 1998, 62, 1419–1431. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Nie, N.H. Spss Statistical Package for the Social Sciences, Second Edition. New York: McGraw-Hill Book Co., 1975. J. Advert. 1976, 5, 41–42. [Google Scholar] [CrossRef]
- Zhu, Y.C. Twostep Cluster Model and Its Application. Mark. Res. 2005, 1, 40–42. [Google Scholar] [CrossRef]
- Song, M.C.; Lin, S.Y.; Yang, L.Q.; Song, Y.X.; Ding, Z.J.; Li, J.; Li, S.Y.; Zhou, M.L. Metallogenic model of Jiaodong Peninsula gold deposits. Miner. Depos. 2020, 39, 215–236. [Google Scholar] [CrossRef]
- Song, M.C.; Song, Y.X.; Li, J. Thermal doming-extension metallogenic system of Jiaodong type gold deposits. Acta Petrol. Sin. 2023, 5, 1241–1260. [Google Scholar] [CrossRef]
- Song, M.C.; Li, S.Z.; Santosh, M.; Zhao, S.J.; Yu, S.; Yi, P.H.; Cui, S.X.; Lv, G.X.; Xu, J.X.; Song, Y.X.; et al. Types, characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Mine Geol. Rev. 2015, 65, 612–625. [Google Scholar] [CrossRef]
- Cheng, S.B.; Liu, Z.J.; Wang, Q.F. Shrimp zircon U-Pb dating and HFisotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China:implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 2017, 301, 36–48. [Google Scholar] [CrossRef]
- Wang, L.G.; Zhi, Y.B.; Wang, Y.P.; Dong, J.; Wang, Q.Y. Ore-controlling Characteristics and Metallogenic Prospect Analysis of Detachment Structure in Guocheng-Yazi Gold Ore Concentration Area, Northeastern Margin of Jiaolai Basin. Sci. Technol. Eng. 2025, 25, 1359–1369. [Google Scholar] [CrossRef]
- Xie, X.J.; Mu, X.Z.; Ren, T.X. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar] [CrossRef]
- Chi, Q.H.; Yan, M.C. Handbook of Applied Geochemical Elemental Abundance Data; Geological Publishing House: Beijing, China, 2007; pp. 1–148. [Google Scholar]
- Tan, Q.P.; Xia, Y.; Wang, X.Q. Reflections on some issues of log-ratio conversion of geochemical composition data. In Proceedings of the 8th National Symposium on Metallogenic Theory and Prospecting Methods, Nanchang, China, 8–11 December 2017; pp. 737–738. [Google Scholar]
- Yin, Z.G.; Jiang, R.; Cheng, J.D.; Li, M.M.; Zhou, X.G.; Zhang, K.Q.; Jiang, Q.; Guo, H. Characteristics of soil geochemical anomalies and metallogenic prediction in Liukuaidi South of Mulan County, Heilongjiang Province. Geol. Bull. China 2023, 42, 2015–2027. [Google Scholar] [CrossRef]
- Aliyari, F.; Yousefi, T.; Abedini, A.; Calagari, A.A. Primary geochemical haloes and alteration zoning applied to gold exploration in the Zarshuran Carlin-type deposit, northwestern Iran. J. Geochem. Exp. 2021, 231, 106864. [Google Scholar] [CrossRef]
- Zuo, R.G.; Xia, Q.L.; Wang, H.C. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Appl. Geochem. 2013, 28, 202–211. [Google Scholar] [CrossRef]
- Zuo, R.G. Data science-based theory and method of quantitative prediction of mineral resources. Earth Sci. Front. 2021, 28, 49–55. [Google Scholar] [CrossRef]
- Wang, C.B.; Ma, X.G.; Chen, J.G. The application of data pre-processing technology in the geoscience big data. Acta Petrol. Sin. 2018, 34, 303–313. [Google Scholar]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.H.J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Li, Y.W.; Song, S. Comprehensive analysis of the techniques and tactics in 2018 FIFA World Cup using principal component analysis and Q type cluster analysis. Comput. Era 2020, 1, 57–61. [Google Scholar] [CrossRef]
- Wang, F.F.; Wu, Y.F.; Kong, M. Region segmentation of gravity anomaly based on agglomerative clustering algorithm. Hydrogr. Surv. Chart. 2021, 41, 18–22. [Google Scholar] [CrossRef]
- Liu, X.; Xia, X.Y.; Liu, D.G.; Hu, J.H.; Huang, R.; Li, Z.W.; Shi, Z.Y. Line loss anomaly identification of low-voltage-station based on Two-Step clustering and robust random cut Forest algorithm. Mod. Electr. Power 2024, 41, 441–447. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, G. Simulation of an Adaptive Model Based on AIC and BIC ARIMA Predictions. J. Phys. Conf. Ser. 2023, 2449, 012027. [Google Scholar] [CrossRef]
- Qin, L.; Michael, A.C.; Shane, A.R.; Barbara, R.H. Performance of AIC and BIC in Selecting Partition Models and Mixture Models. Syst. Biol. 2022, 72, 92–105. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, L.F. Application of BIC Criteria in Data Fusion. J. Jiangxi Univ. Sci. Technol. 2007, 28, 35–38. [Google Scholar] [CrossRef]
- Chang, X.P.; Zhang, M.H.; Zhang, X.; Zhang, S. Two-Step Clustering for Mineral Prospectivity Mapping: A Case Study from the Northeastern Edge of the Jiaolai Basin, China. Minerals 2024, 14, 1089. [Google Scholar] [CrossRef]
Number | Deposit | Controlling Structure | Orebody Features | Ore Type | Deposit Scale | Type of Deposits |
---|---|---|---|---|---|---|
1 | Pengjiakuang | Interlayer detachment zone | Layer, Lenticular | Au, Ag, S | Large-scale | Pengjiakuang-type |
2 | Songjiagou | Structural fracture zone | Layer, vein | Au, Ag, S | Large-scale | Tudui-type |
3 | Tudui-Shawang | Structural fracture zone | Layer | Au, Ag | Large-scale | Liaoshang-type |
4 | Liaoshang | Exomorphic zone | Vein | Au, Ag, S | Extra-large scale | Songjiagou-type |
5 | Xilaokou | Interlayer detachment zone, Exomorphic zone | LenticularTabular | Au, S | Large-scale | Liaoshang-type Pengjiakuang type |
6 | Xijingkou | Interlayer detachment zone | Layer | Au, Pb, Zn, S | Medium-scale | Pengjiakuang-type |
7 | Longkou | Interlayer fracture Zone | Layer, Vein | Au, Ag | Large-scale | Tudui-type |
8 | Daligou | Structural fracture zone | Vein | Au, Ag, S | Ore spot | Songjiagou-type |
9 | Nanguozi | Interlayer fracture Zone | Vein | Au, Ag | Ore spot | Tudui-type |
Component | Initial Eigenvalue | Extracted Load Square Sum | Moment of Inertia Square Sum | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Variance % | Cumulative % | Total | Variance % | Cumulative % | Total | Variance % | Cumulative % | |
1 | 4.22 | 32.50 | 32.50 | 4.22 | 32.50 | 32.50 | 3.10 | 23.81 | 23.81 |
2 | 2.31 | 17.80 | 50.30 | 2.31 | 17.80 | 50.30 | 2.50 | 19.27 | 43.07 |
3 | 1.45 | 11.15 | 61.45 | 1.45 | 11.15 | 61.45 | 2.14 | 16.44 | 59.52 |
4 | 1.27 | 9.79 | 71.23 | 1.27 | 9.79 | 71.23 | 1.52 | 11.72 | 71.23 |
5 | 0.85 | 6.51 | 77.74 |
Component | ||||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Ni | 0.89 | |||
Cu | 0.84 | |||
Zn | 0.79 | |||
Pb | 0.67 | |||
Hg | 0.60 | |||
W | 0.83 | |||
Bi | 0.79 | |||
Mo | 0.78 | |||
As | 0.85 | |||
Sb | 0.78 | |||
Sn | 0.59 | |||
Ag | 0.84 | |||
Au | 0.64 |
K | Residual Gravity Anomalies | Residual Magnetic Anomalies |
---|---|---|
3 | 0.522 | 0.477 |
4 | 0.521 | 0.517 |
5 | 0.493 | 0.491 |
No. | Combination of Categorical Variables | Number of Continuous Variables | Number of Clusters | Importance of Continuous Variables | Clustering Quality | |
---|---|---|---|---|---|---|
Residual Gravity Anomalies | Residual Magnetic Anomalies | |||||
a1 | 5 | 5 | 4 | 3 | F1 > F3 > F4 > F2 | 7 |
a2 | 5 | 4 | 4 | 4 | F3 > F1 > F2 > F4 | 4 |
a3 | 5 | 3 | 4 | 2 | F1 > F3 > F4 > F2 | 9 |
b1 | 4 | 5 | 4 | 2 | F1 > F3 > F2 > F4 | 6 |
b2 | 4 | 4 | 4 | 4 | F1 > F2 > F3 > F4 | 2 |
b3 | 4 | 3 | 4 | 5 | F1 > F2 > F4 > F3 | 8 |
c1 | 3 | 5 | 4 | 5 | F3 > F1 > F2 > F4 | 3 |
c2 | 3 | 4 | 4 | 5 | F2 > F1 > F4 > F3 | 1 |
c3 | 3 | 3 | 4 | 2 | F1 > F3 > F4 > F2 | 5 |
Cluster | 3 × 4 Combination | 4 × 4 Combination | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gravity | Magnetic | F1 | F2 | F3 | F4 | Gravity | Magnetic | F1 | F2 | F3 | F4 | |
1 | 1 | 3 | + | + | 1 | 3 | + | + | ||||
2 | 2 | 3 | + | 2 | 3 | + | + | + | ||||
3 | 2 | 2 | + | + | + | 2 | 2 | + | + | + | ||
4 | 3 | 3 | + | 3 | 3 | + | + | |||||
5 | 2 | 4 | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Zhang, M.; Chen, L.; Zhang, S.; Ren, W.; Zhang, X. Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction. Minerals 2025, 15, 760. https://doi.org/10.3390/min15070760
Chang X, Zhang M, Chen L, Zhang S, Ren W, Zhang X. Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction. Minerals. 2025; 15(7):760. https://doi.org/10.3390/min15070760
Chicago/Turabian StyleChang, Xiaopeng, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren, and Xiang Zhang. 2025. "Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction" Minerals 15, no. 7: 760. https://doi.org/10.3390/min15070760
APA StyleChang, X., Zhang, M., Chen, L., Zhang, S., Ren, W., & Zhang, X. (2025). Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction. Minerals, 15(7), 760. https://doi.org/10.3390/min15070760