Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Molding and Curing Procedures
2.4. Experimental Program
2.5. Unconfined Compressive Strength Test
2.6. Microstructural Analysis
3. Results and Discussion
3.1. Unconfined Compressive Strength
3.2. Microstructural Results
4. Conclusions
- (a)
- Si/Al ratio is pivotal for alkali-activated cement strength. Increasing the ratio from 2.5 to 3.5 enhances strength, but exceeding 4.5 impedes development. Optimal mechanical performance is observed at a Si/Al ratio of 3.5.
- (b)
- The Na/Si ratio introduces complexity, especially in the initial 7-day curing period. Shifts in Na/Si ratio influence alkali availability, impacting reactivity and strength. A decrease in Na/Si ratio during extended curing (28 and 60 days) correlates with higher strength for certain Si/Al ratios.
- (c)
- Prolonged curing periods (28 and 60 days) consistently yield increased strength. Extended duration benefits alkali-activated reactions, facilitating favorable cementitious matrix development. Statistical analysis confirms the significant influence of Si/Al and Na/Si ratios and curing periods on strength.
- (d)
- SEM images reveal variations in cementing agent distribution between the 7-day and 60-day curing periods. Seven-day specimens exhibit a less homogeneous distribution, weaker bonding, and decreased structural integrity. EDS analysis aids in identifying the mineral composition of iron ore mining tailings and cementitious gels.
- (e)
- This research underscores the intricate nature of alkali-activated cement hydration. The interdependence of Si/Al and Na/Si ratios and their varying effects over different curing periods are highlighted. Strengthening effects observed with prolonged curing emphasize the dynamic nature of alkali-activated cement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OPM | One-part method |
TPM | Two-part method |
GGBFS | Ground granulated blast-furnace slag |
IOT | Iron ore tailings |
MK | Metakaolin |
ASTM | American Society for Testing and Materials |
XRF | X-ray fluorescence spectrometry |
XRD | X-ray diffraction |
USCS | Unified Soil Classification System |
SM | Sandy silt |
ANOVA | Analysis of variance |
UCS | Unconfined compressive strength |
SEM | Scanning Electron Microscopy |
EDS | Energy dispersive X-ray spectroscopy |
N-A-S-H | Sodium aluminosilicate hydrate |
References
- Osei, V.; Bai, C.; Asante-darko, D.; Quayson, M. Evaluating the Barriers and Drivers of Adopting Circular Economy for Improving Sustainability in the Mining Industry. Resour. Policy 2023, 86, 104168. [Google Scholar] [CrossRef]
- Lima, A.T.; Bastos, F.A.; Teubner, F.J., Jr.; Neto, R.R.; Cooper, A.; Barroso, G.F. Strengths and Weaknesses of a Hybrid Post-Disaster Management Approach: The Doce River (Brazil) Mine-Tailing Dam Burst. Environ. Manag. 2020, 65, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.M.C.; Lameiras, F.S. Challenges for the Destiny of Iron Mining Tailings in the Iron Quadrangle of Minas Gerais, Brazil. Rev. Virtual Química 2022, 14, 552–559. [Google Scholar] [CrossRef]
- Mashifana, T.; Sithole, T. Evaluation of Chemically Treated and Lime Stabilized Gold Mine Tailings: Effect on Unconfined Compressive Strength. Key Eng. Mater. 2019, 803, 366–370. [Google Scholar] [CrossRef]
- Dayo-olupona, O.; Genc, B.; Celik, T.; Bada, S. Adoptable Approaches to Predictive Maintenance in Mining Industry: An Overview. Resour. Policy 2023, 86, 104291. [Google Scholar] [CrossRef]
- Hernández-Ramos, S.M.; Trejo-Arroyo, D.L.; Cholico-González, D.F.; Rodríguez-Torres, G.M.; Zárate-Medina, J.; Vega-Azamar, R.E.; León-Patiño, C.A.; Ortíz-Lara, N. Characterization and Effect of Mechanical and Thermal Activation in Mining Tailings for Use as Supplementary Cementitious Material. Case Stud. Constr. Mater. 2024, 20, e02770. [Google Scholar] [CrossRef]
- Zúñiga-Barra, H.; Toledo-Alarcón, J.; Torres-Aravena, Á.; Jorquera, L.; Rivas, M.; Gutiérrez, L.; Jeison, D. Improving the Sustainable Management of Mining Tailings through Microbially Induced Calcite Precipitation: A Review. Miner. Eng. 2022, 189, 107855. [Google Scholar] [CrossRef]
- Lumbroso, D.; Mcelroy, C.; Goff, C.; Collell, M.R.; Petkovsek, G.; Wetton, M. The Potential to Reduce the Risks Posed by Tailings Dams Using Satellite-Based Information. Int. J. Disaster Risk Reduct. 2019, 38, 101209. [Google Scholar] [CrossRef]
- Gomes, L.E.d.O.; Correa, L.B.; Sá, F.; Neto, R.R.; Bernardino, A.F. The Impacts of the Samarco Mine Tailing Spill on the Rio Doce Estuary, Eastern Brazil. Mar. Pollut. Bull. 2017, 120, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.; Langrené, N.; Petter, R.; Chen, W.; Petter, C. Accounting for Tailings Dam Failures in the Valuation of Mining Projects. Resour. Policy 2019, 63, 101461. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; dos Santos, L.D.R.; Moretto, J.A.S.; Ramos, M.S.; Gallo, I.F.L.; Alves, G.d.A.D.; Paulelli, A.C.; Rocha, C.C.d.S.; Cesila, C.A.; Gallimberti, M.; et al. Occurrence and Abundance of Clinically Relevant Antimicrobial Resistance Genes in Environmental Samples after the Brumadinho Dam Disaster, Brazil. Sci. Total Environ. 2020, 726, 138100. [Google Scholar] [CrossRef] [PubMed]
- Carmignano, O.R.; Vieira, S.S.; Teixeira, A.P.C.; Lameiras, F.S.; Brandão, P.R.G.; Lago, R.M. Iron Ore Tailings: Characterization and Applications. J. Braz. Chem. Soc. 2021, 32, 1895–1911. [Google Scholar] [CrossRef]
- Servi, S.; Lotero, A.; Silva, J.P.S.; Bastos, C.; Consoli, N.C. Mechanical Response of Filtered and Compacted Iron Ore Tailings with Different Cementing Agents: Focus on Tailings-Binder Mixtures Disposal by Stacking. Constr. Build. Mater. 2022, 349, 128770. [Google Scholar] [CrossRef]
- Caetano, I.; Rios, S.; Milheiro-Oliveira, P. Response Surface Design Models to Predict the Strength of Iron Tailings Stabilized with an Alkali-Activated Cement. Appl. Sci. 2024, 14, 8116. [Google Scholar] [CrossRef]
- Marques, S.F.V.; Bruschi, G.J.; De Araújo, M.T.; Consoli, N.C. Establishing Hoek–Brown Strength Parameters for Artificially Cemented Soils: Practical Methodology. Int. J. Geomech. 2024, 24, 04023292. [Google Scholar] [CrossRef]
- Ferrazzo, S.T.; Tonini de Araújo, M.; Consoli, N.C. Which Solution Is More Sustainable: Waste Foundry Sand Stabilized with Alkali-Activated Binder or Portland Cement? J. Build. Eng. 2024, 84, 108448. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, H.; Ju, C.; Yang, Y. Novel Selection of Environment-Friendly Cementitious Materials for Winter Construction: Alkali-Activated Slag/Portland Cement. J. Clean. Prod. 2020, 258, 120592. [Google Scholar] [CrossRef]
- Levandoski, W.M.K.; Ferrazzo, S.T.; Piovesan, M.A.; Bruschi, G.J.; Consoli, N.C.; Korf, E.P. Long—Term Performance: Strength and Metal Encapsulation in Alkali—Activated Iron Ore Tailings. Environ. Sci. Pollut. Res. 2024, 31, 47071–47083. [Google Scholar] [CrossRef] [PubMed]
- Cristelo, N.; Rivera, J.; Miranda, T.; Fernández-Jiménez, A. Stabilisation of a Plastic Soil with Alkali Activated Cements: Developed from Industrial Wastes. Sustainability 2021, 13, 4501. [Google Scholar] [CrossRef]
- Xiaolong, Z.; Shiyu, Z.; Hui, L.; Yingliang, Z. Disposal of Mine Tailings via Geopolymerization. J. Clean. Prod. 2021, 284, 124756. [Google Scholar] [CrossRef]
- Farenzena, H.P.; Bruschi, G.J.; Medina, G.S.; Silva, J.P.d.S.; Lotero, A.; Consoli, N.C. Iron Ore Tailings Stabilization with Alternative Alkali-Activated Cement for Dry Stacking: Mechanical and Microstructural Insights. Can. Geotech. J. 2024, 61, 649–667. [Google Scholar] [CrossRef]
- Saldanha, R.B.; Caicedo, A.M.L.; De Araújo, M.T.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Silvia, J.P.S.; Consoli, C. Potential Use of Iron Ore Tailings for Binder Production: A Life Cycle Assessment. Constr. Build. Mater. 2023, 365, 130008. [Google Scholar] [CrossRef]
- Cunha, J.T.d.; Ferreira, I.C.; Campos, L.J.F.; Galery, R.; Mazzinghy, D.B. Geopolymer as an Alternative Stabilizer of Waste and Tailings from Iron Mining. Tecnol. Metal. Mater. Mineração 2025, 22, e3201. [Google Scholar] [CrossRef]
- Ibrahim, J.E.F.M.; Tihtih, M.; Kurovics, E.; Gömze, L.A.; Kocserha, I. Innovative Glass-Ceramic Foams Prepared by Alkali Activation and Reactive Sintering of Clay Containing Zeolite (Zeolite-Poor Rock) and Sawdust for Thermal Insulation. J. Build. Eng. 2022, 59, 105160. [Google Scholar] [CrossRef]
- Batuecas, E.; Ramón-Álvarez, I.; Sánchez-Delgado, S.; Torres-Carrasco, M. Carbon Footprint and Water Use of Alkali-Activated and Hybrid Cement Mortars. J. Clean. Prod. 2021, 319, 128653. [Google Scholar] [CrossRef]
- Al-noaimat, Y.A.; Chougan, M.; Albar, A.; Skibicki, S.; Federowicz, K.; Hoffman, M.; Sibera, D.; Cendrowski, K.; Techman, M.; Pacheco, J.N.; et al. Recycled Brick Aggregates in One-Part Alkali-Activated Materials: Impact on 3D Printing Performance and Material Properties. Dev. Built Environ. 2023, 16, 100248. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, C.; Huang, B.; Lu, X. Development of Alkali Activated Cementitious Material from Sewage Sludge Ash: Two-Part and One-Part Geopolymer. J. Clean. Prod. 2023, 384, 135547. [Google Scholar] [CrossRef]
- Ren, J.; Sun, H.; Li, Q.; Li, Z.; Ling, L.; Zhang, X.; Wang, Y.; Xing, F. Experimental Comparisons between One-Part and Normal (Two-Part) Alkali-Activated Slag Binders. Constr. Build. Mater. 2021, 309, 125177. [Google Scholar] [CrossRef]
- Metekong, J.V.S.; Kaze, C.R.; Adesina, A.; Nemaleu, J.G.D.; Djobo, J.N.Y.; Lemougna, P.N.; Alomayri, T.; Kamseu, E.; Melo, U.C.; Tatietse, T.T. Influence of Thermal Activation and Silica Modulus on the Properties of Clayey-Lateritic Based Geopolymer Binders Cured at Room Temperature. Silicon 2022, 14, 7399–7416. [Google Scholar] [CrossRef]
- Tonini de Araújo, M.; Ferrazzo, S.T.; Chaves, H.M.; Da Rocha, C.G.; Consoli, N.C. Mechanical Behavior, Mineralogy and Microstructure of Alkali-Activated Wastes-Based Binder for a Clayey Soil Stabilization. Constr. Build. Mater. 2023, 362, 129757. [Google Scholar] [CrossRef]
- Bazarbekova, A.; Naik, S.R.; Kim, Y.; Little, D.; Jung, J.S.; Park, Y.-B. One-Part Alkali-Activated Soil Stabilization with Sodium Metasilicate: Mechanical-Geochemical-Mineralogical Characterization. Transp. Geotech. 2024, 44, 101163. [Google Scholar] [CrossRef]
- Tigue, A.A.S.; Malenab, R.A.J.; Dungca, J.R.; Yu, D.E.C.; Promentilla, M.A.B. Chemical Stability and Leaching Behavior of One-Part Geopolymer from Soil and Coal Fly Ash Mixtures. Minerals 2018, 8, 411. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, J. Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Front. Mater. 2021, 8, 616430. [Google Scholar] [CrossRef]
- Consoli, N.C.; Pedroso de Oliveira, J.; Lotero, A.; Scheuermann Filho, H.C.; Nuñéz, V. One-Part Alkali-Activated GGBFS as a Cement for Enhancing Compacted Filtered Iron Ore Tailings Disposal by Stacking. Transp. Geotech. 2024, 48, 101306. [Google Scholar] [CrossRef]
- ASTM D854; Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. ASTM International: West Conshohocken, PA, USA, 2023; pp. 1–9.
- ASTM D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–20. [CrossRef]
- ASTM D7928; Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–25. [CrossRef]
- ASTM D2487-17; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–10. [CrossRef]
- Lima, B.M.; Bruschi, G.J.; Festugato, L.; Consoli, N.C. Mechanical Behavior of a Granular Soil Stabilized with Alkali-Activated Waste. J. Mater. Civ. Eng. 2024, 36, 04023485. [Google Scholar] [CrossRef]
- Festugato, L.; da Silva, A.P.; Diambra, A.; Consoli, N.C.; Ibraim, E. Modelling Tensile/Compressive Strength Ratio of Fibre Reinforced Cemented Soils. Geotext. Geomembr. 2018, 46, 155–165. [Google Scholar] [CrossRef]
- Ladd, R. Preparing Test Specimens Using under Compaction. Geotech. Test. J. 1978, 1, 16–23. [Google Scholar] [CrossRef]
- Consoli, N.C.; Foppa, D.; Festugato, L.; Heineck, K.S. Key Parameters for Strength Control of Artificially Cemented Soils. J. Geotech. Geoenviron. Eng. 2007, 133, 197–205. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Montgomery, D.C., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119113478. [Google Scholar]
- Zhang, Y.; Zhang, S.; Liu, C.; Çopuroglu, O. Characterizing Two Types of Zonation within Slag Rims of Aged Alkali-Activated Slag Pastes through SEM and TEM. Cem. Concr. Res. 2024, 176, 107409. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Rahul, A.V.; Tao, Y.; Van Bockstaele, F.; Dewettinck, K.; Ye, G.; Schutter, G. De Rheology of Alkali-Activated Slag Pastes: New Insight from Microstructural Investigations by Cryo-SEM. Cem. Concr. Res. 2022, 157, 106806. [Google Scholar] [CrossRef]
- Dembovska, L.; Bajare, D.; Ducman, V.; Korat, L.; Bumanis, G. The Use of Different By-Products in the Production of Lightweight Alkali Activated Building Materials. Constr. Build. Mater. 2017, 135, 315–322. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effect of Calcium Content on Soil Stabilisation with Alkaline Activation. Constr. Build. Mater. 2012, 29, 167–174. [Google Scholar] [CrossRef]
- ASTM D2166/D2166M; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, USA, 2024; pp. 1–8.
- Komnitsas, K.; Vathi, D.; Steiakakis, E.; Bartzas, G.; Perdikatsis, V. Insights on Stabilization of Marly Soils through Alkali Activation with the Use of Slag and Metakaolin as Additives. Case Stud. Chem. Environ. Eng. 2023, 8, 100400. [Google Scholar] [CrossRef]
- Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; van Deventer, J.S.J. The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-Based Geopolymers. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- Kong, L.; Fan, Z.; Ma, W.; Lu, J.; Liu, Y. Effect of Curing Conditions on the Strength Development of Alkali-Activated Mortar. Crystals 2021, 11, 1455. [Google Scholar] [CrossRef]
- Kiventerä, J.; Lancellotti, I.; Catauro, M.; Dal Poggetto, F.; Leonelli, C.; Illikainen, M. Alkali Activation as New Option for Gold Mine Tailings Inertization. J. Clean. Prod. 2018, 187, 76–84. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmari, S.; Zhang, J. Synthesis and Characterization of Fly Ash Modified Mine Tailings-Based Geopolymers. Constr. Build. Mater. 2011, 25, 3773–3781. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Comparison of Metakaolin-Based Geopolymer Cements from Commercial Sodium Waterglass and Sodium Waterglass from Rice Husk Ash. J. Sol-Gel Sci. Technol. 2016, 78, 492–506. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator. Cem. Concr. Res. 2005, 35, 1984–1992. [Google Scholar] [CrossRef]
- Hong, F.; Yu, S.; Hou, D.; Li, Z.; Sun, H.; Wang, P.; Wang, M. Study on the Mechanical Properties, Gelling Products and Alkalization Process of Alkali—Activated Metakaolin: From Experiment to Molecular Dynamics Simulation. J. Build. Eng. 2023, 79, 107705. [Google Scholar] [CrossRef]
- U.S. Department of Defense. UFC 3-250-11: Soil Stabilization and Modification for Pavements. Available online: https://www.wbdg.org/FFC/DOD/UFC/ufc_3_250_11_2020.pdf (accessed on 2 May 2025).
- Consoli, N.C.; Collatto, D.; Carvalho, J.V.d.A.; Wagner, A.C.; Silva, J.P.d.S.; Sousa, G.M.d.; Scheuermann Filho, H.C. Resilience of Compacted Iron Ore Tailings—Binder Blends for Dry Stacking. Geotech. Geol. Eng. 2025, 43, 164. [Google Scholar] [CrossRef]
- García-lodeiro, I.; Maltseva, O.; Palomo, Á.; Fernández-Jiménez, A. Hybrid Alkaline Cements: Part I. Fundamentals. Rom. J. Mater. 2012, 42, 330–335. [Google Scholar]
Property | IOT | MK |
---|---|---|
Specific gravity (g.cm−3) | 2.92 | 2.64 |
Plasticity index (%) | Non-plastic | Non-plastic |
Sand (%) | 53.0 | 0 |
Silt (%) | 42.0 | 86 |
Clay (%) | 5.0 | 14 |
USCS classification | SM | SM |
Oxides (%) | SiO2 | Fe2O3 | Al2O3 | MnO | MgO | P2O5 | K2O | BaO | SO3 | Other |
---|---|---|---|---|---|---|---|---|---|---|
IOT | 69.74 | 24.04 | 4.77 | 0.40 | 0.30 | 0.25 | 0.15 | - | 0.08 | 0.27 |
MK | 52.59 | 0.52 | 43.97 | 0.02 | 0.80 | 0.07 | 1.26 | 0.38 | 0.17 | 0.22 |
Factor | Unit | Symbol | Levels | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Si/Al | - | A | 2.5 | 3.5 | 4.5 |
Na/Si | - | B | 0.4 | 0.5 | 0.6 |
Curing period | Days | C | 7 | 28 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Consoli, N.C.; Jaskulski, F.M.; Pedrotti Fracaro, T.; Bruschi, G.J.; Ferrazzo, S.T.; Tonini de Araújo, M.; Lotero Caicedo, A.M.; de Sousa Silva, J.P. Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization. Minerals 2025, 15, 745. https://doi.org/10.3390/min15070745
Consoli NC, Jaskulski FM, Pedrotti Fracaro T, Bruschi GJ, Ferrazzo ST, Tonini de Araújo M, Lotero Caicedo AM, de Sousa Silva JP. Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization. Minerals. 2025; 15(7):745. https://doi.org/10.3390/min15070745
Chicago/Turabian StyleConsoli, Nilo Cesar, Fernanda Maria Jaskulski, Taciane Pedrotti Fracaro, Giovani Jordi Bruschi, Suéllen Tonatto Ferrazzo, Mariana Tonini de Araújo, Andres Mauricio Lotero Caicedo, and João Paulo de Sousa Silva. 2025. "Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization" Minerals 15, no. 7: 745. https://doi.org/10.3390/min15070745
APA StyleConsoli, N. C., Jaskulski, F. M., Pedrotti Fracaro, T., Bruschi, G. J., Ferrazzo, S. T., Tonini de Araújo, M., Lotero Caicedo, A. M., & de Sousa Silva, J. P. (2025). Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization. Minerals, 15(7), 745. https://doi.org/10.3390/min15070745