Adsorption of Antibiotics by Natural Clay Minerals
Abstract
1. Introduction
2. Natural Clay Minerals, Their Structure and Properties
3. General Patterns of Adsorption of Different Antibiotics by Clay Materials
4. Adsorption of Antibiotics by Various Natural Clay Minerals
4.1. Adsorption of Antibiotics by Minerals with a 1:1 Structure
4.2. Adsorption of Antibiotics by Minerals with a 2:1 Structure
4.3. The Adsorption of Antibiotics by Mixed-Layer Minerals
4.4. The Adsorption of Antibiotics by Ribbon Minerals
5. Factors Affecting the Adsorption of Antibiotics on Clay Minerals
5.1. Acidity of a Sorption Solution
5.2. Ionic Strength
5.3. Adsorbate Dosage
5.4. Adsorbent Dosage
5.5. Temperature
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Godoy, M.; Sánchez, J. Antibiotics as emerging pollutants in water and its treatment. In Antibiotic Materials in Healthcare; Kokkarachedu, V., Kanikireddy, V., Sakidu, R., Eds.; Academic Press: London, UK, 2020; pp. 221–230. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.M.; Sukiman, S.; Nasir, F.A.M.; Hanafi, Z.; Kamarudin, N.; Ismail, T.H.T.; Aris, A.Z. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Sci. Total Environ. 2018, 642, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, Q.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2020, 387, 121682. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Núñez-Delgado, A.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Fernández-Calviño, D.; Arias-Estévez, M. Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes 2020, 8, 1479. [Google Scholar] [CrossRef]
- Camacho-Arévalo, R.; García-Delgado, C.; Mayans, B.; Antón-Herrero, R.; Cuevas, J.; Segura, M.L.; Eymar, E. Sulfonamides in Tomato from Commercial Greenhouses Irrigated with Reclaimed Wastewater: Uptake, Translocation and Food Safety. Agronomy 2021, 11, 1016. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils–A review. J. Plant Nutr. Soil Sci. 2003, 166, 145–167. [Google Scholar] [CrossRef]
- Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Microbiol. Biotechnol. Res. 2016, 4, 90–101. [Google Scholar]
- López-Cabeza, R.; Cox, L.; Gámiz, B.; Galán-Pérez, J.A.; Celis, R. Adsorption of sulfamethoxazole and ethofumesate in biochar- and organoclay-amended soil: Changes with adsorbent aging in the laboratory and in the field. Sci. Total Environ. 2024, 939, 173501. [Google Scholar] [CrossRef]
- Somma, S.; Reverchon, E.; Baldino, L. Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. ChemEngineering 2021, 5, 47. [Google Scholar] [CrossRef]
- Kharkova, A.; Arlyapov, V.; Medvedeva, A.; Lepikash, R.; Melnikov, P.; Reshetilov, A. Mediator Microbial Biosensor Analyzers for Rapid Determination of Surface Water Toxicity. Sensors 2022, 22, 8522. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Khar’kova, A.S.; Abramova, T.N.; Kuznetsova, L.S.; Ilyukhina, A.S.; Zaitsev, M.G.; Machulin, A.V.; Reshetilov, A.N. A hybrid redox-active polymer based on bovine serum albumin, ferrocene, carboxylated carbon nanotubes, and glucose oxidase. J. Anal. Chem. 2020, 75, 1189–1200. [Google Scholar] [CrossRef]
- Perchikov, R.N.; Provotorova, D.V.; Kharkova, A.S.; Arlyapov, V.A.; Medvedeva, A.S.; Machulin, A.V.; Filonov, A.E.; Reshetilov, A.N. Bioanalytical System for Determining the Phenol Index Based on Pseudomonas putida BS394(pBS216) Bacteria Immobilized in a Redox-Active Biocompatible Composite Polymer “Bovine Serum Albumin–Ferrocene–Carbon Nanotubes”. Polymers 2022, 14, 5366. [Google Scholar] [CrossRef]
- Guégan, R.; De Oliveira, T.; Le Gleuher, J.; Sugahara, Y. Tuning down the environmental interests of organoclays for emerging pollutants: Pharmaceuticals in presence of electrolytes. Chemosphere 2020, 239, 124730. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Ye, J.; Yang, Q.; Hu, Y.; Zhang, T.; Jiang, L.; Munezero, S.; Lin, K.; Cui, C. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environ. Sci. Pollut. Res. 2021, 28, 57321–57333. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Chen, W.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Wen, D.; Feng, C. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull. 2020, 151, 110810. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Adassoriya, N.; Sarkar, B.; Sirimuthu, N.M.S.; Cooray, A.; Ok, Y.S.; Vithanage, M. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. J. Environ. Manag. 2019, 238, 315–322. [Google Scholar] [CrossRef]
- de Sousa, D.N.R.; Insa, S.; Mozeto, A.A.; Petrovic, M.; Chaves, T.F.; Fadini, P.S. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 2018, 205, 137–146. [Google Scholar] [CrossRef]
- Imanipoor, J.; Mohammadi, D.; Dinari, M.; Ehsani, M.R. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53 (Al) metal–organic framework adsorbent. J. Chem. Eng. Data 2020, 66, 389–403. [Google Scholar] [CrossRef]
- Chauhan, V.; Pandey, A.; Bali, P.; Sharma, H.; Kanwar, S.S. Antibiotics contamination in the environment and its remediation. In Development in Wastewater Treatment Research and Processes; Shah, M.P., Shah, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 157–170. [Google Scholar] [CrossRef]
- Hacıosmanoğlu, G.G.; Mejias, C.; Martin, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. J. Environ. Manag. 2022, 317, 115397. [Google Scholar] [CrossRef]
- Chang, P.H.; Li, Z.; Jiang, W.-T.; Sarkar, B. Clay minerals for pharmaceutical wastewater treatment. In Modified Clay and Zeolite Nanocomposite Materials; Mercurio, M., Sarkar, B., Langella, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 167–196. [Google Scholar] [CrossRef]
- Abd-ElFattah, H.; Kamel, R.; Maged, A.; Kharbish, S. Harnessing clays and clay composites for efficient removal of pharmaceutical contaminants from water: A review. Front. Sci. Res. Technol. 2025, 10, 85–100. [Google Scholar] [CrossRef]
- Yaulilahua-Huacho, R.; Sumarriva-Bustinza, L.A.; Huere-Peña, J.L.; Dueñas-Jurado, C.; Ccente-Chancha, E.J.; Ayuque-Rojas, J.C.; Castañeda-Campos, C.; Palacios-Mucha, M.L.; Garcia-Ticllacuri, R.; Rodas-Ccopa, H.; et al. Surface engineering of chak’o nano-clay with iron oxide and APTES for enhanced heavy metal adsorption in water treatment. F1000Research 2025, 14, 334. [Google Scholar] [CrossRef]
- Niramo, W.; Goodman, B.A. Clay mineral products for improving environmental quality. Appl. Clay Sci. 2023, 242, 106980. [Google Scholar] [CrossRef]
- Perelomov, L.; Mandzhieva, S.; Minkina, T.; Atroshchenko, Y.; Perelomova, I.; Bauer, T.; Pinsky, D.; Barakhov, A. The Synthesis of Organoclays Based on Clay Minerals with Different Structural Expansion Capacities. Minerals 2021, 11, 707. [Google Scholar] [CrossRef]
- Wang, A.; Wang, W. Introduction. In Nanomaterials from Clay Minerals A new Approach to Green Functional Materials, 1st ed.; Wang, A., Wang, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. [Google Scholar]
- Yu, C.; Qian, A.; Lu, Y.; Liao, W.; Zhang, P.; Tong, M.; Dong, H.; Zeng, Q.; Yuan, S. Electron transfer processes associated with structural Fe in clay minerals. Crit. Rev. Environ. Sci. Technol. 2024, 54, 13–38. [Google Scholar] [CrossRef]
- Ngouana Wakou, B.F.; Kalinichev, A.G. Structural arrangements of isomorphic substitutions in Smectites: Mo-lecular simulation of the swelling properties, interlayer structure, and dynamics of hydrated Cs-Montmorillonite re-visited with new clay models. J. Phys. Chem. C 2014, 118, 12758–12773. [Google Scholar] [CrossRef]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Gupta, V.; Miller, J.D. Surface force measurements at the basal planes of ordered kaolinite particles. J. Coll. Interface Sci. 2010, 344, 362–371. [Google Scholar] [CrossRef]
- Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl. Clay Sci. 2006, 34, 105–124. [Google Scholar] [CrossRef]
- Yang, C.; Gao, R.; Yang, H. Application of layered nanoclay in electrochemical energy: Current status and future. EnergyChem 2021, 3, 100062. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General introduction: Clays, clay minerals, and clay science. In Handbook of Clay Science. Part A. Fundamentals, Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–19. [Google Scholar] [CrossRef]
- Fauchille, A.L.; Hedan, S.; Valle, V.; Prêt, D.; Cabrera, J.; Cosenza, P. Effect of microstructure on hydric strain in clay rock: A quantitative comparison. Appl. Clay Sci. 2019, 182, 105244. [Google Scholar] [CrossRef]
- Pokidko, B.V.; Bukanova, E.F.; Tutorsky, I.A.; Il‘ina, M.B. Influence of Ca2+ on the adsorption of different surfactants in the bentonite-water interface. Fine Chem. Technol. 2009, 4, 77–83. (In Russian) [Google Scholar]
- Ra, H.; Kim, S.; Kim, T.; Bae, J.; Shim, W. Phyllosilicate Clay Minerals: Principles and Applications. Mater. Matters 2022, 17. Available online: https://www.sigmaaldrich.com/NL/en/technical-documents/technical-article/materials-science-and-engineering/nanoparticle-and-microparticle-synthesis/phyllosilicate-clay-minerals-principles-applications (accessed on 9 July 2025).
- López-Rodríguez, D.; Micó-Vicent, B.; Jordán-Núñez, J.; Bonet-Aracil, M.; Bou-Belda, E. Uses of Nanoclays and Adsorbents for Dye Recovery: A Textile Industry Review. Appl. Sci. 2021, 11, 11422. [Google Scholar] [CrossRef]
- Kosmulski, M. Isoelectric points and points of zero charge of metal (hydr) oxides: 50 years after Parks’ review. Adv. Coll. Interface Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.; Boda, D. Insights from theory and simulation on the electrical double layer. Phys. Chem. Chem. Phys. 2009, 11, 3822–3830. [Google Scholar] [CrossRef]
- Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, L.; Li, R.; Zhang, Z.; Wang, Q.; Yang, J.; Guo, C.F.; Pan, T. First decade of interfacial iontronic sensing: From droplet sensors to artificial skins. Adv. Mat. 2021, 33, 2003464. [Google Scholar] [CrossRef]
- White, G.N.; Zelazny, L.W. Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays Clay Miner. 1988, 36, 141–146. [Google Scholar] [CrossRef]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Goldberg, S., Jr.; Criscenti, L.J. Modeling adsorption of metals and metalloids by soil components. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 215–264. [Google Scholar] [CrossRef]
- Zeng, L.; Sarmadivaleh, M.; Saeedi, A.; Chen, Y.; Zhong, Z.; Xie, Q. Storage integrity during underground hydrogen storage in depleted gas reservoirs. Earth-Sci. Rev. 2023, 247, 104625. [Google Scholar] [CrossRef]
- Liu, X.; Tournassat, C.; Grangeon, S.; Kalinichev, A.G.; Takahashi, Y.; Fernandes, M.M. Molecular-level understanding of metal ion retention in clay-rich materials. Nat. Rev. Earth Environ. 2022, 3, 461–476. [Google Scholar] [CrossRef]
- Borchardt, G. Smectites. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 675–727. [Google Scholar] [CrossRef]
- Dixon, J.B. Kaolin and Serpentine Group Minerals. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 467–525. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Yuan, X.; Chen, Y.; Yang, H.; Fei, X. Distribution Characteristics and Ecological Risk Assessment of Tetracyclines Pollution in the Weihe River, China. Int. J. Environ. Res. Public Health 2018, 15, 1803. [Google Scholar] [CrossRef]
- Tolls, J. Sorption of veterinary pharmaceuticals in soils: A review. Environ. Sci. Technol. 2001, 35, 3397–3406. [Google Scholar] [CrossRef]
- Figueroa, R.A.; Leonard, A.; MacKay, A.A. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 2004, 38, 476–483. [Google Scholar] [CrossRef]
- Kulshrestha, P.; Giese, R.F., Jr.; Aga, D.S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environ. Sci. Technol. 2004, 38, 4097–4105. [Google Scholar] [CrossRef]
- Parolo, M.E.; Savini, M.C.; Vallés, J.M.; Baschini, M.T.; Avena, M.J. Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl. Clay Sci. 2008, 40, 179–186. [Google Scholar] [CrossRef]
- Dogan, M.; Dogan, A.U.; Yesilyurt, F.I.; Alaygut, D.; Buckner, I.; Wurster, D.E. Baseline studies of The Clay Minerals Society special clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clays Clay Miner. 2006, 54, 534–541. [Google Scholar] [CrossRef]
- Macht, F.; Eusterhues, K.; Pronk, G.J.; Totsche, K.U. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Appl. Clay Sci. 2011, 53, 20–26. [Google Scholar] [CrossRef]
- Eslinger, E.; Pevear, D. Clay Minerals for Peteroleum Geologists and Engineers; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1985. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, S.; Jing, R.; Shao, Y.; Liu, X.; Lv, F.; Hu, X.; Zhang, Q.; Meng, Z.; Liu, A. Competitive adsorption of antibiotic tetracycline and ciprofloxacin on montmorillonite. Appl. Clay Sci. 2019, 180, 105175. [Google Scholar] [CrossRef]
- Jorge, N.L.; Garrafa, M.V.; Romero, J.M.; Jorge, M.J.; Jorge, L.C.; Delfino, M.R.; Meruvia-Rojas, Y.V.; Hernández-Laguna, A.; Sainz-Díaz, C.I. Adsorption of Ciprofloxacin on Clay Minerals in Argentinian Santa Rosa-Corrientes Soils. Molecules 2024, 29, 1760. [Google Scholar] [CrossRef]
- Antonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A. Fixed-bed adsorption of ciprofloxacin onto bentonite clay: Characterization, mathematical modeling, and DFT-based calculations. Ind. Eng. Chem. Res. 2021, 60, 4030–4040. [Google Scholar] [CrossRef]
- Jara-Cobos, L.; Peñafiel, M.E.; Montero, C.; Menendez, M.; Pinos-Vélez, V. Ciprofloxacin Removal Using Pillared Clays. Water 2023, 15, 2056. [Google Scholar] [CrossRef]
- Gutiérrez-Sánchez, P.; Hrichi, A.; Garrido-Zoido, J.M.; Álvarez-Torrellas, S.; Larriba, M.; Gil, M.V.; Amor, H.B.; García, H. Natural clays as adsorbents for the efficient removal of antibiotic ciprofloxacin from wastewaters: Experimental and theoretical studies using DFT method. J. Ind. Eng. Chem. 2024, 134, 137–151. [Google Scholar] [CrossRef]
- Jin, X.; Zha, S.; Li, S.; Chen, Z. Simultaneous removal of mixed contaminants by organoclays—Amoxicillin and Cu(II) from aqueous solution. Appl. Clay Sci. 2014, 102, 196–201. [Google Scholar] [CrossRef]
- De Oliveira, T.; Fernandez, E.; Fougère, L.; Destandau, E.; Boussafir, M.; Sohmiya, M.; Sugahara, Y.; Guégan, R. Competitive association of antibiotics with a clay mineral and organoclay derivatives as a control of their lifetimes in the environment. ACS Omega 2018, 3, 15332–15342. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, R.; Martins, F.R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A. Ofloxacin Adsorption by Calcined Verde-Lodo Bentonite Clay: Batch and Fixed Bed System Evaluation. J. Mol. Liq. 2020, 315, 113718. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, Y.; Boyd, S.A.; Teppen, B.J.; Li, H. Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere 2010, 81, 954–960. [Google Scholar] [CrossRef]
- Li, Z.; Chang, P.-H.; Jean, J.-S.; Jiang, W.-T.; Wang, C.-J. Interaction between tetracycline and smectite in aqueous solution. J. Colloid Interf. Sci. 2010, 341, 311–319. [Google Scholar] [CrossRef]
- Zhao, Y.; Geng, J.; Wang, X.; Gu, X.; Gao, S. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects. Ecotoxicology 2011, 20, 1141–1147. [Google Scholar] [CrossRef]
- Nawaz, S.; Ahmad, M.; Asif, S.; Klemeš, J.J.; Mubashir, M.; Munir, M.; Zafar, M.; Bokhari, A.; Mukhtar, A.; Saqib, S.; et al. Phyllosilicate derived catalysts for efficient conversion of lignocellulosic derived biomass to biodiesel: A review. Bioresour. Technol. 2022, 343, 126068. [Google Scholar] [CrossRef]
- Li, Z.; Hong, H.; Liao, L.; Ackley, C.J.; Schulz, L.A.; MacDonald, R.A.; Mihelich, A.L.; Emard, S.M. A mechanistic study of ciprofloxacin removal by kaolinite. Colloids Surf. B Biointerfaces 2011, 88, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Tan, D.; Annabi-Bergaya, F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015, 112–113, 75–93. [Google Scholar] [CrossRef]
- Ramadass, K.; Singh, G.; Lakhi, K.S.; Benzigar, M.R.; Yang, J.-H.; Kim, S.; Almajid, A.M.; Belperio, T.; Vinu, A. Halloysite nanotubes: Novel and eco-friendly adsorbents for high-pressure CO2 capture. Microporous Mesoporous Mater. 2019, 277, 229–236. [Google Scholar] [CrossRef]
- Duan, W.; Wang, N.; Xiao, W.; Zhao, Y.; Zheng, Y. Ciprofloxacin adsorption onto different micro-structured tourmaline, halloysite and biotite. J. Mol. Liq. 2018, 269, 874–881. [Google Scholar] [CrossRef]
- Cheng, R.; Li, H.; Liu, Z.; Du, C. Halloysite Nanotubes as an Effective and Recyclable Adsorbent for Removal of Low-Concentration Antibiotics Ciprofloxacin. Minerals 2018, 8, 387. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Sarkar, B.; Cooray, A.T.; Ok, Y.S.; Vithanage, M. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. J. Hazard. Mater. 2020, 384, 121301. [Google Scholar] [CrossRef]
- Giannoulia, S.; Triantaphyllidou, I.-E.; Tekerlekopoulou, A.G.; Aggelopoulos, C.A. Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling. Nanomaterials 2023, 13, 341. [Google Scholar] [CrossRef]
- Barbosa, S.E.; Castillo, L.A. Morphological and Physicochemical Properties of Macrocrystalline Talc from Argentine. Minerals 2023, 13, 683. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-amornsri, T.; Pereira, M.F.R.; Serp, P.; Figueiredo, J.L. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, 186, 29–34. [Google Scholar] [CrossRef]
- Dube, C.; Tandlich, R.; Wilhelmi, B. Adsorptive removal of ciprofloxacin and isoniazid from aqueous solution. Nova Biotechnol. Chim. 2018, 17, 16–28. [Google Scholar] [CrossRef]
- Raudkivi, A.J. Loose Boundary Hydraulics, 1st ed.; CRC Press: London, UK, 1998; 507p. [Google Scholar] [CrossRef]
- Genç, N.; Dogan, E.C.; Yurtsever, M. Bentonite for ciprofloxacin removal from aqueous solution. Water Sci. Technol. 2013, 68, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Genç, N.; Dogan, E.C. Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 2015, 53, 785–793. [Google Scholar] [CrossRef]
- Gulen, B.; Demircivi, P. Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2:1 dioctahedral clay structure: Box-Behnken experimental design. J. Mol. Struct. 2020, 1206, 127659. [Google Scholar] [CrossRef]
- Putra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 2009, 43, 2419–2430. [Google Scholar] [CrossRef]
- Bekci, Z.; Seki, Y.; Yurdakoc, M. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J. Hazard. Mater. 2006, 133, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Schulze, D.G. Mineral components of the soil clay fraction. In Encyclopedia of Soils in the Environment, 2nd ed.; Goss, M.J., Oliver, M., Eds.; Academic Press: London, UK, 2023; pp. 109–120. [Google Scholar] [CrossRef]
- Cooper, V.R. Van der Waals density functional: An appropriate exchange functional. Phys. Rev. B 2010, 81, 161104. [Google Scholar] [CrossRef]
- Tri, N.N.; Nguyen, M.T.; Trung, N.T. A molecular level insight into adsorption of β-lactam antibiotics on vermiculite surface. Surf. Sci. 2020, 695, 121588. [Google Scholar] [CrossRef]
- Tri, N.N.; Trung, N.T. Theoretical study on the adsorption of benzylpenicillin molecule onto vermiculite surface. Vietnam. J. Chem. 2019, 57, 514–519. [Google Scholar] [CrossRef]
- Call, J.J.; Rakshit, S.; Essington, M.E. The Adsorption of Tylosin by Montmorillonite and Vermiculite: Exchange Selectivity and Intercalation. Soil Sci. Soc. Am. J. 2019, 83, 584–596. [Google Scholar] [CrossRef]
- Hamza, A.; Hussein, I.A.; Mahmoud, M. Chapter 1—Introduction to reservoir fluids and rock properties. In Developments in Petroleum Science; Hussein, I.A., Mahmoud, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 78, pp. 1–19. [Google Scholar] [CrossRef]
- Chang, P.-H.; Li, Z.; Jean, J.-S.; Jiang, W.-T.; Wang, C.-J.; Lin, K.-H. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl. Clay Sci. 2012, 67–68, 158–163. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S.; Shahzad, K. A review on removal of pharmaceuticals from water by adsorption. Desalination Water Treat. 2016, 57, 12842–12860. [Google Scholar] [CrossRef]
- Alekseeva, T.V.; Alekseev, A.O. Rectorite as a Syngenetic Component of a Soddy-Podzolic Soil. Eurasian Soil Sci. 2020, 53, 1502–1508. [Google Scholar] [CrossRef]
- Chang, P.-H.; Li, Z.; Jiang, W.-T.; Jean, J.-S. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl. Clay Sci. 2009, 46, 27–36. [Google Scholar] [CrossRef]
- Giannoulia, S.; Tekerlekopoulou, A.G.; Aggelopoulos, C.A. Exploration of cephalexin adsorption mechanisms onto bauxite and palygorskite and regeneration of spent adsorbents with cold plasma bubbling. Appl. Water. Sci. 2024, 14, 51. [Google Scholar] [CrossRef]
- Bilgin, N.; Bulut, E.; Sabah, E. Mechanistic insight into amoxicillin removal by natural sepiolite. Int. J. Environ. Sci. Technol. 2023, 20, 8897–8912. [Google Scholar] [CrossRef]
- Qiang, Z.; Adams, C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef] [PubMed]
- Othersen, O.G.; Beierlein, F.; Lanig, H.; Clark, T. Conformations and tautomers of tetracycline. J. Phys. Chem. B 2003, 107, 13743–13749. [Google Scholar] [CrossRef]
- Bansal, O.P. Sorption of Tetracycline, Oxytetracycline, and Chlortetracycline in Illite and Kaolinite Suspensions. ISRN Environ. Chem. 2013, 694681. [Google Scholar] [CrossRef]
- Rozalen, M.; Brady, P.V.; Huertas, F.J. Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics. J. Coll. Interface Sci. 2009, 333, 474–484. [Google Scholar] [CrossRef]
- Tombacz, E.; Szekeres, M. Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 2004, 27, 75–94. [Google Scholar] [CrossRef]
- Thomas, F.; Michot, L.J.; Vantelon, D.; Montarges, E.; Prelot, B.; Cruchaudet, M.; Delon, J.F. Layer charge and electrophoretic mobility of smectites. Coll. Surf. A Physicochem. Eng. Asp. 1999, 159, 351–358. [Google Scholar] [CrossRef]
- Lagaly, G.; Dékány, I. Colloid clay science. In Handbook of Clay Science. Part A. Fundamentals, Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 243–345. [Google Scholar] [CrossRef]
- Ma, C.; Eggleton, R.A. Cation exchange capacity of kaolinite. Clay Clay Miner. 1999, 47, 174–180. [Google Scholar] [CrossRef]
- Song, Y.; Sackey, E.A.; Wang, H.; Wang, H. Adsorption of oxytetracycline on kaolinite. PLoS ONE 2019, 14, e0225335. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, S.M.; Al-Mahmoud, S.M. Adsorption of tetracycline antibiotic from aqueous solutions using natural Iraqi bentonite. Egypt. J. Chem. 2021, 64, 5511–5519. [Google Scholar] [CrossRef]
- Bui, T.X.; Choi, H. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazard. Mater. 2009, 168, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.L.; Ribeiro, I.C. Modelling the adsorption kinetics of erythromycin onto neutral and anionic resins. Bioprocess Biosyst. Eng. 2003, 26, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Shon, H.K.; Ngo, H.H. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. J. Ind. Eng. Chem. 2010, 16, 344–349. [Google Scholar] [CrossRef]
- Deng, H.; Song, Y.; Li, W.; Fatima, M.N.; Bibi, H.; Ye, S. Performance and economy of antibiotic adsorption by the composite of plant decomposed liquid, chemical modifier, and clay. Process Saf. Environ. Prot. 2024, 192, 1408–1419. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhou, Q.X.; Li, W. Adsorption of enrofloxacin from aqueous solution by bentonite. Clay Miner. 2013, 48, 627–637. [Google Scholar] [CrossRef]
Mineral Structure | Layer Charge | Group | Subgroup | Examples of Minerals |
---|---|---|---|---|
1:1 | 0 | Kaolinite–Serpentine | Kaolinite | kaolinite, dickite, nacrite, halloysite |
Serpentine | chrysotile, lizardite, amesite, antigorite, cronstedite, greenalite | |||
2:1 | 0 | Talc–Pyrophyllite | Talc | talc |
Pyrophyllite | pyrophyllite | |||
0.2–0.6 | Smectite | Montmorillonite | montmorillonite, nontronite, volchonskoite, beidellite | |
Saponite | saponite, laponite, hectorite, sauconite, stevensite, medmontite | |||
0.6–0.9 | Vermiculite | Dioctahedral | dioctahedral vermiculite | |
Trioctahedral | trioctahedral vermiculite | |||
1 | Mica | Dioctahedral | muscovite, illite, glauconite, paragonite | |
Trioctahedral | phlogopite, biotite, lepidolite | |||
2 | Brittle mica | Dioctahedral | margarita | |
Trioctahedral | clintonite, anandite | |||
2:1:1 | Variable | Chlorite | Dioctahedral | donbassite |
Trioctahedral | clinochlore, chamosite, nimit | |||
Di, Trioctahedral | kukeit, syudoit | |||
Ribbon silicates | 0.1 | Palygorskite–Sepiolite | Dioctahedral | nepuite |
Palygorskite | palygorskite | |||
Sepiolite | sepiolite |
Mineral | Locality | SSA, m2 g−1 |
---|---|---|
Montmorillonite | USA, California | 43.2 |
Montmorillonite | USA, California | 65.3 |
Ca montmorillonie | USA, Arizona | 41.0 |
Beidellite | USA, Idaho | 12.7 |
Nontronite | Australia | 52.8 |
Nontronite | Australia | 10.6 |
Nontronite | Germany | 13.9 |
Illite | USA, Montana | 20.5 |
Illite | USA, Montana | 17.5 |
Cookeite | USA, Arkansas | 0.9 |
Ripidolite (Fe chlorite) | USA, California | 1.3 |
Rectorite (regular mixed-layered) | USA, Arkansas | 7.6 |
Antibiotic | log Kow | Mineral Adsorbent | Sorption Model | Qmax, mg·g−1 | Reference |
---|---|---|---|---|---|
Tetracycline | −1.37 | Montmorillonite | Langmuir | 0.0005 | [58] |
Ciprofloxacin | 0.28 | Langmuir | 1.941 | [59] | |
Temkin | 0.416 | ||||
Dubinin–Radushkevich | 0.920 | ||||
Langmuir | 0.0003 | [58] | |||
Calcined Verde-lodo clay | Thomas | 0.00003 | [60] | ||
Pillared sodium bentonite | Langmuir | 196.1 | [61] | ||
BET | 78.2 | ||||
Pillared calcium bentonite | Langmuir | 106.4 | |||
BET | 50.1 | ||||
Natural clay 1 from the Gabes region | Guggenheim–Anderson–de Boer | 80.11 | [62] | ||
Dual-site Langmuir | 300.00 | ||||
Sips | 0.0022 | ||||
Natural clay 2 from the Gabes region | Dual-site Langmuir | 57.72 | |||
Sips | 125.21 | ||||
Natural clay 3 from the Gabes region | Guggenheim–Anderson–de Boer | 154.07 | |||
Dual-site Langmuir | 266.12 | ||||
Sips | 450.55 | ||||
Amoxicillin | 0.87 | Organobentonite | Langmuir | 6.826 | [63] |
BDTA-Mt | 0.002 | [64] | |||
BDTA0.4-Mt | 0.0008 | ||||
Na-Mt | 0.003 | ||||
Sulfamethoxazole | 0.89 | BDTA-Mt | 0.0002 | ||
BDTA0.4-Mt | 0.0002 | ||||
Na-Mt | 0.00006 | ||||
Ofloxacin | −0.39 | Verde-lodo clay | Thomas | 0.00003 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perelomov, L.; Gertsen, M.; Mandzhieva, S.; Sychev, V.; Dudnikova, T.; Khaidanov, I.; Perelomova, I.; Minkina, T.; Atroshchenko, Y. Adsorption of Antibiotics by Natural Clay Minerals. Minerals 2025, 15, 733. https://doi.org/10.3390/min15070733
Perelomov L, Gertsen M, Mandzhieva S, Sychev V, Dudnikova T, Khaidanov I, Perelomova I, Minkina T, Atroshchenko Y. Adsorption of Antibiotics by Natural Clay Minerals. Minerals. 2025; 15(7):733. https://doi.org/10.3390/min15070733
Chicago/Turabian StylePerelomov, Leonid, Maria Gertsen, Saglara Mandzhieva, Vadim Sychev, Tamara Dudnikova, Ilya Khaidanov, Irina Perelomova, Tatiana Minkina, and Yurii Atroshchenko. 2025. "Adsorption of Antibiotics by Natural Clay Minerals" Minerals 15, no. 7: 733. https://doi.org/10.3390/min15070733
APA StylePerelomov, L., Gertsen, M., Mandzhieva, S., Sychev, V., Dudnikova, T., Khaidanov, I., Perelomova, I., Minkina, T., & Atroshchenko, Y. (2025). Adsorption of Antibiotics by Natural Clay Minerals. Minerals, 15(7), 733. https://doi.org/10.3390/min15070733