Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence
Abstract
1. Introduction
2. Geologic Setting
3. Research Methods
4. Results
4.1. Occurrence of Minerals
4.1.1. Quartz
4.1.2. Other Minerals
4.2. Occurrence of OM
4.3. Occurrence of Fecal Pellet
5. Discussions
5.1. Origin of Minerals and OMs
5.2. Sedimentary Environment of Siliceous Shales Studied: Deep-Water Traction Current Sedimentation
5.3. Burial Diagenesis Process of Microbial Mat
6. Overview
7. Conclusions
- (1)
- The siliceous shales studied from the Longmaxi Formation in the Weiyuan area, Sichuan Basin, were proposed to be microbialites formed by deep-water traction current sedimentation. This understanding can systematically explain all the nano-resolution petrological phenomena observed.
- (2)
- The formation process of the microbial mat was divided into three formation stages, namely, the silt-grade bioclast carpet, the mud-grade siliceous microbial mat, and the carbohydrate-rich microbial mat.
- (3)
- The petrogenetic process of microbial mats was divided into four stages. Through the kerogen formation stage, the pre-oil bitumen formation stage, the solid bitumen and oil formation stage, and the pyrobitumen and hydrocarbon gas formation stage, SOM evolves into porous pyrobitumen and nonporous pyrobitumen.
- (4)
- Siliceous shales formed through deep-water traction current sedimentation are high-quality reservoirs because of their high content of quartz and porous OM. With shale oil and gas boom, an increasing number of deep-water traction current sediments will be identified by nano-resolution petrological characterization in the Sichuan Basin and worldwide.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Z.Z.; He, Y.B.; Luo, S.S. Deep-Water Tractive Current Deposits—The Study of Internal-Tide, Internal Wave and Contour Current Deposits; Science Press: Beijing, China, 1996; pp. 1–107. (In Chinese) [Google Scholar]
- Alonso, B.; Ercilla, G.; Casas, D.; Stow, D.A.V.; Rodríguez-Tovar, F.J.; Dorador, J.; Hernández-Molina, F.J. Contourite vs. gravity-flow deposits of the Pleistocene faro drift (Gulf of Cadiz): Sedimentological and mineralogical approaches. Mar. Geol. 2016, 377, 77–94. [Google Scholar] [CrossRef]
- Li, X.D. Current situation of combined-flow deposition for sedimentary characteristic series and its theory frame work. Adv. Earth Sci. 2021, 36, 375–389. [Google Scholar] [CrossRef]
- Li, H.; He, M.W.; Qiu, C.G.; Wang, Y.M.; He, Y.B.; Xu, Y.X.; He, R.W. Research processes on deep-water interaction between contour current and gravity flow deposits, 2000 to 2022. Acta Sedimentol. Sin. 2023, 41, 18–36. [Google Scholar] [CrossRef]
- Lafond, E.C. Internal waves. In The Encyclopedia of Oceangraphy; Fairbridge, R.W., Ed.; Reinhold: New York, NY, USA, 1966; pp. 402–408. [Google Scholar]
- Rattray, M. On the coastal generation of internal tides. Tellus 1960, 12, 54–62. [Google Scholar] [CrossRef]
- Mullins, H.T.; Keller, G.H.; Kofoed, J.W.; Lambert, D.N.; Stubblefield, W.L.; Warme, J.E. Geology of great Abaco submarine canyon (Blake Plateau): Observations from the research submersible “Alvin”. Mar. Geol. 1982, 48, 239–257. [Google Scholar] [CrossRef]
- Reeder, D.B.; Ma, B.B.; Yang, Y.J. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Mar. Geol. 2011, 279, 12–18. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Alves, T.M.; Rebesco, M.; Wu, S. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location. Mar. Geol. 2019, 413, 99–111. [Google Scholar] [CrossRef]
- Hancock, L.G.; Hardisty, D.S.; Beh, R.J.; Lyons, T.W. A multi-basin redox reconstruction for the Miocene Monterey Formation, California, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 520, 114–127. [Google Scholar] [CrossRef]
- Fu, W.; Hu, W.; Cai, Q.; Wei, S.; She, J.; Wang, X.; Liu, X. Sedimentary environment and organic accumulation of the Ordovician–Silurian Black Shale in Weiyuan, Sichuan Basin, China. Minerals 2023, 13, 1161. [Google Scholar] [CrossRef]
- Xu, L.; Huang, S.; Sun, M.; Wen, Y.; Chen, W.; Zhang, Y.; Luo, F.; Zhang, H. Palaeoenvironmental evolution based on elemental geochemistry of the Wufeng-Longmaxi shales in Western Hubei, Middle Yangtze, China. Minerals 2023, 13, 502. [Google Scholar] [CrossRef]
- Arfaoui, I.; Hamdi, O.; Boulvain, F. Geochemical and mineralogical characterizations of Silurian ‘Hot’ shales: Implications for shale gas/oil reservoir potential in Jeffara basin-southeastern Tunisia, North Africa. J. Afr. Earth Sci. 2024, 212, 105213. [Google Scholar] [CrossRef]
- Fu, C.; Feng, Z.; Xu, C.; Zhao, X.; Du, Y. Geochemical characteristics of organic-enriched shales in the Upper Ordovician–Lower Silurian in Southeast Chongqing. Minerals 2025, 15, 447. [Google Scholar] [CrossRef]
- Knapp, L.J.; McMillan, J.M.; Harris, N.B. A depositional model for organic-rich Duvernay Formation mudstones. Sediment. Geol. 2017, 347, 160–182. [Google Scholar] [CrossRef]
- Leonowicz, P.; Bienkowska-Wasiluk, M.; Ochmanski, T. Benthic microbial mats from deep-marine flysch deposits (Oligocene Menilite Formation from S Poland): Palaeoenvironmental controls on the MISS types. Sediment. Geol. 2021, 417, 105881. [Google Scholar] [CrossRef]
- Shi, Z.S.; Zhao, S.X.; Zhou, T.Q.; Sun, S.S.; Yu, Y.; Zhang, C.L.; Li, B.; Qi, L. Types and genesis of horizontal bedding of marine gas-bearing shale and its significance for shale gas: A case study of the Wufeng–Longmaxi shale in southern Sichuan Basin, China. Oil Gas Geol. 2023, 44, 1499–1514. [Google Scholar] [CrossRef]
- Zhou, X.F.; Guo, W.; Li, X.Z.; Liang, P.P.; Yu, J.M.; Zhang, C.L. Deciphering nano-resolution petrological characteristics of the siliceous shale at the bottom of the Longmaxi Formation in the Zigong area, Sichuan basin, China: Deep-water microbialites. Minerals 2024, 14, 1020. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Zhong, Y.; Ran, B.; Yong, Z.Q.; Sun, W.; Yang, D.; Jiang, L.; Ye, Y.H. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Sci. Front. 2016, 23, 11–28. [Google Scholar] [CrossRef]
- Luo, Z.L.; Han, J.H.; Luo, C.; Luo, Q.H.; Han, K.Y. The discovery, characteristics and prospects of commercial oil and gas layers/reservoirs in Sichuan Basin. Xinjiang Pet. Geol. 2013, 34, 504–514. [Google Scholar]
- Chen, X.; Chen, Q.; Zhen, Y.Y.; Wang, H.Y.; Zhang, L.N.; Zhang, J.P.; Wang, W.H.; Xiao, Z.H. Circumjacent distribution pattern of the Lungmachian graptolitic black shale (early Silurian) on the Yichang Uplift and its peripheral region. Sci. China Earth Sci. 2018, 48, 1198–1206. [Google Scholar] [CrossRef]
- Ma, X.H.; Xie, J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China. Pet. Explor. Dev. 2018, 45, 161–169. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, X.J.; Dong, D.Z.; Zhang, C.C.; Wang, S.F. Main factors controlling the sedimentation of high-quality shale in Wufeng–Longmaxi Fm, Upper Yangtze Region. Nat. Gas Ind. 2017, 37, 9–20. [Google Scholar] [CrossRef]
- Guo, W.; Li, X.Z.; Zhang, X.W.; Lan, C.L.; Liang, P.P.; Shen, W.J.; Zheng, M.J. Sedimentary microfacies and microrelief of organic-rich shale in deep-water shelf and their control on reservoirs: A case study of shale from Wufeng–Longmaxi formations in southern Sichuan Basin. Acta Pet. Sin. 2022, 43, 1089–1106. [Google Scholar]
- Shi, Z.S.; Yuan, Y.; Zhao, Q.; Sun, S.S.; Zhou, T.Q.; Cheng, F. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng–Longmaxi shale in southern Sichuan Basin, China. Nat. Gas Geosci. 2022, 33, 1969–1985. [Google Scholar] [CrossRef]
- Liang, F.; Wang, H.Y.; Bai, W.H.; Guo, W.; Zhao, Q.; Sun, S.S.; Zhang, Q.; Wu, J.; Ma, C.; Lei, Z.A. Graptolite correlation and sedimentary characteristics of Wufeng–Longmaxi shale in southern Sichuan Basin. Nat. Gas Ind. 2017, 37, 20–26. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, Q.; Lu, B.; Jiang, W.; Xiong, X.L.; Chen, P.; Jiang, R.; Liang, P.P.; Ma, C. Lithofacies and distribution of Wufeng Formation–Longmaxi Formation organic-rich shale and its impact on shale gas production in Weiyuan Shale Gas Play, Southern Sichuan Basin, China. Acta Sedimentol. Sin. 2022, 40, 1019–1029. [Google Scholar] [CrossRef]
- Zhou, X.F.; Guo, W.; Li, X.Z.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng–Longmaxi Formation, Sichuan Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2022, 46, 12–22. [Google Scholar] [CrossRef]
- Wu, J.F.; Zhang, C.L.; Zhao, S.X.; Zhang, J.; Feng, J.R.; Xia, Z.Q.; Fang, Y.; Li, B.; Yin, M.X.; Zhang, D.K. Typical types of shale gas reservoirs in southern Sichuan Basin and enlightenment of exploration and development. Nat. Gas Geosci. 2023, 34, 1385–1400. [Google Scholar] [CrossRef]
- Bai, W.H.; Xv, S.H.; Liu, Z.Q.; Mei, L.F.; Cheng, F. Classification of shale gas enrichment patterns based on structural styles: A case study of the Wufeng Formation and Longmaxi Formation in Sichuan Basin, China. N. China Geol. 2024, 47, 52–65. [Google Scholar] [CrossRef]
- Zhang, M.L.; Li, G.Q.; Kou, Y.L.; Li, K.; Chen, J.; Xu, J.L.; He, J.; Liang, X.; Fan, Q.H. Differential enrichment of shale gas in anticline and syncline tectonic units in fold deformation area. Geol. Rev. 2024, 70 (Suppl. S1), 272–274. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Cong, L.Z.; Wang, H.Y.; Shi, Z.S.; Wu, J.; Pan, S.Q. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Xiong, W.; Fu, G.Y.; Zhao, Q.; Liu, W.; Kong, W.L.; Zhang, Q.; Cai, G.Y.; Wang, Y.M.; et al. Advances, challenges, and countermeasures in shale gas exploration of underexplored plays, sequences and new types in China. Oil Gas Geol. 2024, 45, 309–326. [Google Scholar] [CrossRef]
- Qin, J.Z.; Li, Z.M.; Liu, B.Q.; Zhang, Q. The potential of generating heavy oil and solid bitumen of excellent marine source rocks. Pet. Geol. Exp. 2007, 29, 280–285, 291. [Google Scholar] [CrossRef]
- Liu, S.Y.; Gao, P.; Xiao, X.M.; Liu, R.B.; Qin, J.; Yuan, T.; Wang, X. Study on organic petrology characteristics of the Wufeng-Longmaxi Formation black shale, Sichuan Basin. Geoscience 2022, 36, 1281–1291. [Google Scholar] [CrossRef]
- Liu, B. Organic matter in shales: Types, thermal evolution, and organic pores. Earth Sci. 2023, 48, 4641–4657. [Google Scholar] [CrossRef]
- Zhou, X.F.; Guo, W.; Li, X.Z.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Occurrence characteristics, genesis and petroleum geological significance of micro-nano silica-organic matter aggregate in radiolarian siliceous shell cavity: A case study of Wufeng–Longmaxi Formation in Sichuan Basin, SW China. J. Northeast Pet. Univ. 2021, 45, 68–79. [Google Scholar] [CrossRef]
- Zhou, X.F.; Liang, P.P.; Li, X.Z.; Guo, W.; Zhang, X.W.; Yu, J.M. Filling characteristics of radiolarian siliceous shell cavities at Wufeng–Longmaxi Shale in Sichuan basin, Southwest China. Minerals 2022, 12, 1545. [Google Scholar] [CrossRef]
- Jones, B.; Renaut, R.W. Microstructural changes accompanying the opal-A to opal-CT transition: New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland. Sedimentology 2007, 54, 921–948. [Google Scholar] [CrossRef]
- Qin, Y.C. Research progress in early diagenesis of biogenic silica. Geol. Rev. 2010, 56, 89–98. [Google Scholar] [CrossRef]
- Zhou, X.F.; Li, X.Z.; Guo, W.; Zhang, X.W.; Liang, P.P.; Yu, J.M. Characteristics, formation mechanism and influence on physical properties of carbonate minerals in shale reservoir of Wufeng–Longmaxi formations, Sichuan Basin. Nat. Gas Geosci. 2022, 33, 775–788. [Google Scholar] [CrossRef]
- Han, S.B.; Li, W. Study on the genesis of pyrite in the Longmaxi Formation shale in the Upper Yangtz earea. Nat. Gas Geosci. 2019, 30, 1608–1618. [Google Scholar]
- Duan, X.G.; Xian, Y.K.; Yuan, B.G.; Dai, X.; Cao, J.J.; Liu, Z.Y.; Liu, X. Formation mechanism and formation environment of framboidal pyrite in Wufeng Formation–Longmaxi Formation shale and its influence on shale reservoir in the southeastern Chongqing, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2020, 47, 513–521. [Google Scholar] [CrossRef]
- Wang, H.Y.; Guo, W.; Liang, F.; Zhao, Q. Biostratigraphy characteristics and scientific meaning of the Wufeng and Longmaxi Formation black shales at Well Wei 202 of the Weiyuan shale gas field, Sichuan basin. J. Stratigr. 2015, 39, 289–293. [Google Scholar] [CrossRef]
- Thistle, D.; Yingst, J.Y.; Fauchald, K. A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (western Atlantic). Mar. Geol. 1985, 66, 91–112. [Google Scholar] [CrossRef]
- Zhang, L.C.; Li, B.; Jiang, S.; Xiao, D.S.; Lu, S.F.; Zhang, Y.Y.; Gong, C.; Chen, L. Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China. Int. J. Coal Geol. 2018, 195, 250–266. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M. Scanning-electron-microscope petrographic evidence for distinguishing organic- matter pores associated with depositional organic matter versus migrated organic matter in mudrocks. Gulf Coast Assoc. Geol. Soc. J. 2014, 3, 51–60. [Google Scholar]
- Luan, G.Q.; Dong, C.M.; Ma, C.F.; Lin, C.Y.; Zhang, J.Y.; Lv, X.F.; Muhammad, A.Z. Pyrolysis simulation experiment study on diagenesis and evolution of organic-rich shale. Acta Sedimentol. Sin. 2016, 34, 1208–1216. [Google Scholar] [CrossRef]
- Kong, L.M.; Wan, M.X.; Yan, Y.X.; Zou, C.Y.; Liu, W.P.; Tian, C.; Yi, L.; Zhang, J. Reservoir diagenesis research of Silurian Longmaxi Formation in Sichuan Basin. Nat. Gas Geosci. 2015, 26, 1547–1555. [Google Scholar] [CrossRef]
- Zhao, D.F.; Guo, Y.H.; Yang, Y.J.; Wang, S.Y.; Mao, X.X.; Li, M. Shale reservoir diagenesis and its impacts on pores of the Lower Silurian Longmaxi Formation in southeastern Chongqing. J. Palaeogeogr. 2016, 18, 843–856. [Google Scholar] [CrossRef]
- Zhao, D.F.; Jiao, W.W.; Wei, Y.; Zhang, H.J.; Li, L.G.; Guo, Y.H.; Wang, G. Diagenesis of a shale reservoir and its influence on reservoir brittleness: Taking the deep shale of the Wufeng-Longmaxi Formation in western Chongqing as an example. Acta Sedimentol. Sin. 2021, 39, 811–825. [Google Scholar] [CrossRef]
- Cai, J. Study of shale reservoir diagenesis of the Wufeng—Longmaxi Formations in the Jiaoshiba area, Sichuan Basin. J. Mineral Petrol 2017, 37, 103–109. [Google Scholar] [CrossRef]
- Yi, T.; Zhou, W.; Yang, F.; Chen, W.L.; Zhang, H.T.; Xu, H.; Liu, R.Y.; Zhao, X.; Jiang, K. Types and characteristics of quartz in shale gas reservoirs of the Longmaxi Formation, Sichuan Basin, China. Acta Mineral. Sin. 2020, 40, 127–136. [Google Scholar] [CrossRef]
- Zhao, J.H.; Jin, Z.J. Mudstone diagenesis: Research advances and prospects. Acta Sedimentol. Sin. 2021, 39, 58–72. [Google Scholar] [CrossRef]
- Wang, R.Y.; Hu, Z.Q.; Bao, H.Y.; Wu, J.; Du, W.; Wang, P.W.; Peng, Z.Y.; Lu, T. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin. Pet. Geol. Exp. 2021, 43, 996–1005. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.W.; Luo, C.; Wu, W.; Yang, X.; Zhu, Y.Q.; Tian, C.; Zhong, K.S.; Li, Y.Y.; Xv, H.; et al. Impact of different diagenetic minerals on shale reservoirs in Wufeng-Longmaxi Formation in southern Sichuan Basin. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2024, 51, 745–757+771. [Google Scholar] [CrossRef]
- Wang, B.X.; Zhang, P.H.; Liang, J.; Chen, J.W.; Meng, X.H.; Fu, Y.L.; Bao, Y.J. Biogenic microcrystalline quartz and its influence on pore development in marine shale reservoirs. Acta Sedimentol. Sin. 2024, 42, 1738–1752. [Google Scholar] [CrossRef]
- Mei, J.F.; Liang, C.; Cao, Y.C.; Han, Y. Types, genesis and significance of quartz in shales. J. Palaeogeogr. (Chin. Ed.) 2024, 26, 487–501. [Google Scholar] [CrossRef]
- Ramseyer, K.; Amthor, J.E.; Matter, A.; Pettke, T.; Wille, M.; Fallick, A.E. Primary silica precipitate at the Precambrian/Cambrian boundary in the South Oman Salt Basin, sultanate of Oman. Mar. Pet. Geol. 2013, 39, 187–197. [Google Scholar] [CrossRef]
- Rajaibi, I.M.A.; Hollis, C.; Macquaker, J.H. Origin and variability of a terminal Proterozoic primary silica precipitate, Athel Silicilyte, South Oman Salt Basin, sultanate of Oman. Sedimentology 2015, 62, 793–825. [Google Scholar] [CrossRef]
- Longman, M.; Drake, W.R.; Milliken, K.L.; Olson, T. A comparison of silica diagenesis in the Devonian Woodford shale (Central Basin Platform, West Texas) and Cretaceous Mowry shale (Powder River Basin, Wyoming). In Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks; Camp, W.K., Milliken, K.L., Taylor, K., Eds.; AAPG: Tulsa, OK, USA; SEPM: Broken Arrow, OK, USA, 2019; pp. 49–67. [Google Scholar]
- Zhao, J.H.; Jin, Z.J.; Jin, Z.K.; Wen, X.; Geng, Y.K.; Yan, C.N. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin. Nat. Gas Geosci. 2016, 27, 377–386. [Google Scholar]
- Chen, H.Y.; Lu, L.F.; Liu, W.X.; Shen, B.J.; Yu, L.J.; Yang, Y.F. Pore network changes in opaline siliceous shale during diagenesis. Pet. Geol. Exp. 2017, 39, 341–347. [Google Scholar] [CrossRef]
- Guo, W.; Dong, D.Z.; Li, M.; Sun, S.S.; Guan, Q.Z.; Zhang, S.R. Quartz genesis in organic-rich shale and its indicative significance to reservoir quality: A case study on the first submember of the first Member of Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin and its periphery. Nat. Gas Ind. 2021, 41, 65–74. [Google Scholar] [CrossRef]
- Lu, L.F.; Liu, W.X.; Wei, Z.H.; Pan, A.Y.; Zhang, Q.Z.; Teng, G. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation. Acta Sedimentol. Sin. 2022, 40, 73–87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhao, J.; Yan, B.; Zhu, Z.; Yang, N.; Liang, P.; Guo, W. Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence. Minerals 2025, 15, 723. https://doi.org/10.3390/min15070723
Zhou X, Zhao J, Yan B, Zhu Z, Yang N, Liang P, Guo W. Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence. Minerals. 2025; 15(7):723. https://doi.org/10.3390/min15070723
Chicago/Turabian StyleZhou, Xiaofeng, Jun Zhao, Baonian Yan, Zeyu Zhu, Nan Yang, Pingping Liang, and Wei Guo. 2025. "Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence" Minerals 15, no. 7: 723. https://doi.org/10.3390/min15070723
APA StyleZhou, X., Zhao, J., Yan, B., Zhu, Z., Yang, N., Liang, P., & Guo, W. (2025). Deep-Water Traction Current Sedimentation in the Lower Silurian Longmaxi Formation Siliceous Shales, Weiyuan Area, Sichuan Basin, China, Using Nano-Resolution Petrological Evidence. Minerals, 15(7), 723. https://doi.org/10.3390/min15070723