Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)
Abstract
1. Introduction
2. Regional Geological Background
3. Petrographic Characteristics
4. Sample Collection and Analytical Methods
5. Results
5.1. Geochemistry
5.2. Zircon U-Pb Geochronology
5.3. Whole Rock Nd Isotope
6. Discussion
6.1. Age of Plutons and Tin Mineralization Period
6.2. Petrogenesis of the Tin-Bearing Granite
6.3. Tin-Bearing Plutons Under Tectonic Transformation
6.4. Highly Differentiated Granite and Tin Mineralization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Han, C.; Liu, W.; Wan, B.; Zhang, J.E.; Ao, S.; Zhang, Z.; Song, D. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Sci. Rev. 2018, 186, 94–128. [Google Scholar] [CrossRef]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef]
- Xu, X.-W.; Jiang, N.; Li, X.-H.; Wu, C.; Qu, X.; Zhou, G.; Dong, L.-H. Spatial–temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U–Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar. J. Asian Earth Sci. 2015, 111, 470–491. [Google Scholar] [CrossRef]
- Windley, B.F.; Xiao, W. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Res. 2018, 61, 73–87. [Google Scholar] [CrossRef]
- Zheng, R.; Xiao, W.; Li, J.; Wu, T.; Zhang, W. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China. J. Asian Earth Sci. 2018, 153, 75–99. [Google Scholar] [CrossRef]
- Zhu, K.-Y.; Li, Z.-X.; Xu, X.-S.; Wilde, S.A.; Chen, H.-L. Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: Tracing the influence of flat-slab subduction at the western Pacific margin. Lithos 2016, 240–243, 371–381. [Google Scholar] [CrossRef]
- Su, Y.; Zeng, J.; Ping, X.; Liang, L.; Wang, J. Magmatism and Tectonic Evolution Since Late Paleozoic in the Junggar Area, Northern Xinjiang. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Han, B.; Ji, J.; Song, B.; Chen, L.; Zhang, L. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrol. Sin. 2006, 5, 1077–1086, (In Chinese with English Abstract). [Google Scholar]
- Wu, F.; Li, X.; Yang, J.; Zheng, Y. Discussions on the petrogenesis of granites. Acta Petrol. Sin. 2007, 6, 1217–1238, (In Chinese with English Abstract). [Google Scholar]
- Xiao, W.; Han, C.; Yuan, C.; Chen, H.; Sun, M.; Lin, S.; Li, Z.; Mao, Q.; Zhang, J.; Sun, S.; et al. Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleoasian Domain. Acta Petrol. Sin. 2006, 22, 1062–1076, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Hou, Z. Isotopic mapping and deep material probing (I): Revealing the compositional evolution of the lithosphere and crustal growth processes. Geosci. Front. 2018, 25, 1–19. [Google Scholar]
- Ohmoto, H. Metal deposits in relation to plate tectonics. Earth-Sci. Rev. 1990, 22, 258–259. [Google Scholar] [CrossRef]
- Mao, J.; Xie, G.; Guo, C.; Chen, Y. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrol. Sin. 2007, 10, 2329–2338, (In Chinese with English Abstract). [Google Scholar]
- Bi, C.; Shen, X.; Xu, Q. The Geological features and Origin of the Beilekuduk Tin Metallogenic Belt. Bull. Chin. Acad. Geol. Sci. 1994, 29, 56–71, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y. The Geological Features and Wall-Rock Alteration of the Tin Deposit Related to A-Type Granite from Kalamaili, North Xinjiang. Master’s Thesis, Granting China University of Geosciences (Beijing), Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Wang, L.; Wang, J.; Wang, Y.; Long, L.; Tang, P. Laoyaquan alkaline rock and related tin deposits in eastern Junggar, Xinjiang. Acta Mineral. Sin. 2011, 27, 1485–1492, (In Chinese with English Abstract). [Google Scholar]
- Wu, W.; Liao, Q.; Chen, S.; Hu, C.; Tian, J.; Wang, F.; Fan, G. Petrogenesis and geological significance of highly fractionated A-type granites in Kalasayi, East Junggar. Geol. Bull. China 2015, 34, 385–399, (In Chinese with English Abstract). [Google Scholar]
- Feng, H.; Zhang, B.; Gao, D.; Zhan, X.; Zheng, Y. Geochronology, Geochemical Characteristics and Tectonic Setting of the Kamusite A2-Type Granite in the Eastern Junggar. Bull. Mineral. Petrol. Geochem. 2019, 38, 1154–1169. (In Chinese) [Google Scholar]
- Tang, H.; Su, Y.; Qiu, H.; Han, Y. 40Ar-39Ar age of tin mineralization in Beilekuduke tin ore belt, East Junggar, Xinjiang. Acta Petrol. Sin. 2009, 25, 1303–1309, (In Chinese with English Abstract). [Google Scholar]
- Zhao, D.; Yang, J.; Hu, N.; Xu, A. Isotopic Geochronological Characteristics of the Laoyaquan Stanniferous Granite in Eastern Junggar Basin in Xinjiang. J. Earth Sci. Environ. 2000, 2, 15–17, (In Chinese with English Abstract). [Google Scholar]
- Han, Y.; Tang, H.; Gan, L. Zircon U-Pb Ages and Geochemical Characteristics of the Laoyaquan A-type Granites in East Junggar, North Xinjiang, China. Acta Mineral. Sin. 2012, 32, 193–199, (In Chinese with English Abstract). [Google Scholar]
- Hu, W. Geochemical Characteristics and Geological Significance of Late Carboniferous Granites from the Laoyaquan in Eastern Junggar, Xinjiang. Master’s Thesis, Granting Lanzhou University, Lanzhou, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Youlituzi, T. Petrogenesis of the Laoyaquan Pluton in East Junggar, Xinjiang and Their Geological Significance. Master’s Thesis, Granting Xinjiang University, Urumqi, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Chen, F.; Li, H.; Cai, H.; Liu, G.; Chang, H. Chronology and Origin of the Ganliangzi Tin Orefield, Xinjiang. Miner. Depos. 1999, 1, 94–100. [Google Scholar]
- Tang, H.; Qu, W.; Su, Y.; Hou, G.; Du, A.; Cong, S. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: Constraint from isotopic ages. Acta Petrol. Sin. 2007, 23, 989–997, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Yang, F.; Zhao, c.; Zhang, Y.; Yan, S. SHRIMP U-Pb zircon dating of the Beilekuduk pluton in Xinjiang and its geological implications. Acta Petrol. Sin. 2007, 23, 1–6, (In Chinese with English Abstract). [Google Scholar]
- Gaoxue, Y.; Yongjun, L.; GuoHui, S.; Hongen, W.; Zhao, J. LA-ICP-MS Zircon U-Pb Age, Geochemistry and Genesis of the Aluminous A-type Granite in Beilekuduke, Xinjiang. Acta Geol. Sin. 2010, 84, 11, (In Chinese with English Abstract). [Google Scholar]
- Tang, H.; Chen, Y.; Liu, Y.; Huang, B. Isotope Dating of the Be’erkuduke Tin Deposit in the Eastern Junggar Area. Mineral. Petrol. 2006, 2, 71–73. [Google Scholar]
- Liu, X.; Xiao, W.; Xiao, Y.; Liu, P.; Song, Y.; Huang, W.; Zhang, Z.; Liu, X. Major Characteristics of the Ridge Subduction in the Central Asian Orogenic Belt and Their Research Advances. Geochimica 2025, 54, 3–23. [Google Scholar]
- Li, J. Early Paleozoic Evolution of Lithosphere Plate, East Junggar, Xinjiang. Bull. Chin. Acad. Geol. Sci. 1991, 2, 1–12, (In Chinese with English Abstract). [Google Scholar]
- Xiao, W.; Han, C.; Yuan, C.; Sun, M.; Lin, S.; Chen, H.; Li, Z.; Li, J.; Sun, S. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- Wang, T.; Huang, H.; Song, P.; Wu, H.; Zhang, J. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Geoscience 2020, 45, 2326–2344. [Google Scholar]
- Liu, X.; Xu, J.; Castillo, P.R.; Xiao, W.; Shi, Y.; Feng, Z.; Guo, L. The Dupal isotopic anomaly in the southern Paleo-Asian Ocean: Nd–Pb isotope evidence from ophiolites in Northwest China. Lithos 2014, 189, 185–200. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Xiao, W.; Castillo, P.R.; Shi, Y.; Wang, S.; Huo, Q.; Feng, Z. The boundary between the Central Asian Orogenic belt and Tethyan tectonic domain deduced from Pb isotopic data. J. Asian Earth Sci. 2015, 113, 7–15. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, Z.; Huang, S.; He, Z. Geochronology and geochemistry of Kalamaili granitic rocks and uranium ore-forming potential at the northeastern margin of Junggar Basin, China. J. Earth Sci. Environ. 2022, 44, 20–41, (In Chinese with English Abstract). [Google Scholar]
- Yang, G.; Li, Y.; Wu, H.; Zhong, X.; Yang, B.; Yan, C.; Yan, J.; Si, G. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. J. Asian Earth Sci. 2011, 40, 722–736. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, G.; Ren, Y.; Chen, X.; Sun, X.; Wang, C.; Li, Z. Age, Genesis and Tectonic Setting of the Sayashk Tin Deposit in the East Junggar Region: Constraints from Lu–Hf Isotopes, Zircon U–Pb and Molybdenite Re–Os Dating. Minerals 2022, 12, 1063. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, C.; Gong, X.; Yalikun, Y.; Kaheman, K. The Kamusite A2-type granites in the Karamaili tectonic belt, Xinjiang (NW China): Tracing staged postcollisional delamination in the eastern Junggar. Geol. Mag. 2020, 158, 723–748. [Google Scholar] [CrossRef]
- Liu, X.; Castillo, P.; Jifeng, X.; Hou, Q. Geochemistry and rock association in the Karamaili Paleo-Asian ophiolite in east Junggar, NW China suggest ridge-trench interaction. Geochim. Et Cosmochim. Acta 2009, 73, 73. [Google Scholar]
- Su, Y.; Tang, H.; Cong, F. Zircon U-Pb age and Petrogenesis of the Huangyangshan Alkaline granite Body in East Junggar, Xinjiang. Acta Mineral. Sin. 2008, 2, 117–126, (In Chinese with English Abstract). [Google Scholar]
- Yang, G.; Li, Y.; Si, G.; Wu, H.; Zhang, Y.; Jin, z. Petrological Characteristic of the Huangyangshan Intrusion in Kalamaili Area, East Junggar, Xinjiang. J. Earth Sci. Environ. 2009, 31, 34–41, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.; Bowen, Z.; Jiangang, D.; Xinzhong, Z.; Yaxiaer, Y.; Mayila, A.; Xiang, W.; Yacong, W.; Haowei, P.; Yafei, S.; et al. Origin of the late Carboniferous Karamaili Granite Belt in Eastern Junggar, Northwest China: Zircon U-Pb and trace element constraints. Int. Geol. Rev. 2025, 67, 166–183. [Google Scholar] [CrossRef]
- Yuping, S.; Hongfeng, T.; Congqiang, L.; Guangshun, H.; Lili, L. The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang. Acta Petrol. Et Mineral. 2006, 25, 175–184, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.; Zhao, K.-D.; Wang, B.-D.; Cheng, K.-D.; Luo, X.-L.; Zhang, W.; Li, Q.; Jiang, S.-Y. Cretaceous granitic magmatism and mineralization in the Shanhu W-Sn ore deposit in the Nanling Range in South China. Ore Geol. Rev. 2020, 126, 103758. [Google Scholar] [CrossRef]
- Sun, X. Magmatism, Mineralization and Ore-prospecting Direction of the Huangyangshan Super-Large Graphite Deposit in Qitai County, Xinjiang. Master’s Thesis, Granting Jilin University, Jilin, China, 2022. (In Chinese with English Abstract). [Google Scholar]
- Feng, H. A Study on the Vertical Growth Mechanism of Late Palaeozoic Continental Crust in the Eastern Precambrian Margin: A Case Study of the Kalamaili Granite Belt. Master’s Thesis, Granting Xinjiang University, Urumqi, China, 2021. (In Chinese with English Abstract). [Google Scholar]
- Zhang, W.; Hu, Z.; Liu, Y. Iso-Compass: New freeware software for isotopic data reduction of LA-MC-ICP-MS. J. Anal. At. Spectrom. 2020, 35, 1087–1096. [Google Scholar] [CrossRef]
- Li, J.; Tang, S.; Zhu, X.; Pan, C. Production and Certification of the Reference MaterialGSB 04-3258-2015 as a 143Nd/144Nd Isotope Ratio Reference. Geostand. Geoanalytical Res. 2017, 41, 255–266. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- MANIAR, P.D.; PICCOLI, P.M. Tectonic discrimination of granitoids. GSA Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Sun, S.; McDonough, W.F.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- DePaolo, D.J. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 1981, 291, 193–196. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 1980, 50, 139–155. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, K. A Discussion on the Genesis and Tectonic Setting of Alkali Granites in the Ulungur Alkali-Rich Granite Belt, Xinjiang. Geol. J. China Univ. 1996, 2, 257–272, (In Chinese with English Abstract). [Google Scholar]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.; Currie, K.; Chappell, B. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Emmermann, R.; Trumbull, R.B.; BÜHn, B.; Henjes-Kunst, F. Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites. J. Petrol. 2000, 41, 1207–1239. [Google Scholar] [CrossRef]
- Jackson, N.J.; Walsh, J.N.; Pegram, E. Geology, geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz Region of the Arabian Shield. Contrib. Mineral. Petrol. 1984, 87, 205–219. [Google Scholar] [CrossRef]
- Zhang, Q. Geodynamic implications of continental granites. Acta Petrol. Et Mineral. 2014, 33, 785–798, (In Chinese with English Abstract). [Google Scholar]
- Jiang, S.; Zhao, K.; Jiang, H.; Su, H.; Xiong, S. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview. Chin. Sci. Bull. 2020, 65, 3730–3745, (In Chinese with English Abstract). [Google Scholar]
- Zhou, Z.; Mao, J. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range. Earth Sci. Front. 2022, 29, 176–199. [Google Scholar]
- White, A.J.R.; Clemens, J.D.; Holloway, J.R.; Silver, L.T.; Chappell, B.W.; Wall, V.J. S-type granites and their probable absence in southwestern North America. Geology 1986, 14, 115–118. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- King, P.L.; White, A.J.R.; Chappell, B.W.; Allen, C.M. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. J. Petrol. 1997, 38, 371–391. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Paterson, B.A.; Kinny, P.D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 2006, 439, 580–583. [Google Scholar] [CrossRef]
- Kirkland, C.; Whitehouse, M.; Slagstad, T. Fluid-assisted zircon and monazite growth within a shear zone: A case study from Finnmark, Arctic Norway. Contrib. Mineral. Petrol. 2009, 158, 637–657. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- McKay, M.P.; Jackson, W.T.; Hessler, A.M. Tectonic stress regime recorded by zircon Th/U. Gondwana Res. 2018, 57, 1–9. [Google Scholar] [CrossRef]
- Xu, S.; Ding, W.; Chen, X.; Li, Y.; Han, L.; Liu, Y.; Ma, F.; Wang, Y. Late Paleozoic crustal composition and growth in West Junggar: Evidence from Sr-Nd-Pb isotopic mapping. Earth Sci. Front. 2022, 29, 261–280. [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Shu, L.; Wang, Y. Late Devonian-Early Carboniferous Radiolarian Fossils from Siliceous Rocks of the Kelameili Ophiolite, Xinjiang. Geol. Rev. 2003, 49, 408–412. [Google Scholar]
- Jian, P.; Liu, D.; Zhang, Q.; Zhang, F.; Shi, Y.; Shi, G.; Zhang, L.; Tao, H. SHRIMP Dating of Ophiolite and Leucocratic Rocks within Ophiolite. Earth Sci. Front. 2003, 4, 439–456. [Google Scholar]
- Wang, B. Study of Karamaili Ophiolite Complex and Jiangbasitao Formation Volcanic Rocks in East Junggar of Xinjiang. Master’s Thesis, Granting Chang’an University, Xi’an, China, 2009. (In Chinese with English Abstract). [Google Scholar]
- Yang, K.; Bian, W.; Wang, Q.; Wang, P.; Lang, J. Zircon U-Pb age and its geological significance of the igneous rocks from Batamayineishan Formation in East Junggar. Acta Petrol. Sin. 2018, 34, 3341–3358, (In Chinese with English Abstract). [Google Scholar]
- Xie, W.; Lu, Y.; Chen, L.-M.; Song, X.-Y.; Deng, Y.-F.; Zhao, Y. Zircon Th/U ratios suggest a post-collision extensional setting for the Permian Ni-Cu sulfide deposits in the Eastern Tianshan, NW China. Ore Geol. Rev. 2022, 144, 104837. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; de Oliveira, D.C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- BLEVIN, P.L. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-rich Ore Systems. Resour. Geol. 2004, 54, 241–252. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Jour Pet. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Guo, C.; Zeng, L.; Gao, L.; Su, H.; Ma, X. Highly Fractionated Granitic Minerals and Whole-rock Geochemistry Prospecting Markers in Hetian, Fujian Province. Acta Geol. Sin. 2017, 8, 1796–1817, (In Chinese with English Abstract). [Google Scholar]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 2014, 192–195, 208–225. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–61. [Google Scholar] [CrossRef]
- Zhao, Z.; Bao, Z.; Zhang, B.; Xiong, X. Crust-mantle interaction and its contribution to the Shizhuyuan superlarge tungsten polymetallic mineralization. Sci. China Ser. D Earth Sci. 2001, 44, 266–276. [Google Scholar] [CrossRef]
- Zhang, Q.; Ran, H.; Li, C. A-type granite: What is the essence? Acta Petrol. Et Mineral. 2012, 31, 621–626, (In Chinese with English Abstract). [Google Scholar]
- Zheng, W.; Mao, J.-W.; Zhao, H.-J.; Ouyang, H.-G.; Zhao, C.-S.; Yu, X.-F. Geochemistry, Sr–Nd–Pb–Hf isotopes systematics and geochronological constrains on petrogenesis of the Xishan A-type granite and associated W–Sn mineralization in Guangdong Province, South China. Ore Geol. Rev. 2017, 88, 739–752. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, S.; Yang, J.; He, X.; Zhang, S.; Liu, Z.; Wang, Y. What controls Sn-W mineralization in granite batholith: A case study from the world-class Dulong Sn-Zn polymetallic ore deposit of SW China. Ore Geol. Rev. 2024, 166, 105968. [Google Scholar] [CrossRef]
- Blevin, P.L.; Chappell, B.W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 305–316. [Google Scholar]
- Yin, J.; Xiao, W.; Wang, T.; Fowler, M.; Kerr, A.C.; Sun, M.; Strachan, R.; Huang, H.; Zhang, J.e.; Chen, W.; et al. Maturation from oceanic arcs to continental crust: Insights from Paleozoic magmatism in West Junggar, NW China. Earth-Sci. Rev. 2024, 253, 104795. [Google Scholar] [CrossRef]
- Li, Z.; Nie, F.; Tian, X.; Shi, Y.; Niu, H. Redefinition of Formation Age of Late Paleozoic Strata in the Eastern Junggar Tectonic Zone and its Implications for Evolution of Regional Geological Structure. Acta Geol. Sin. 2016, 90, 569–588, (In Chinese with English Abstract). [Google Scholar]
- Juniper, D.N.; Kleeman, J.D. Geochemical characterization of some tin-mineralizing granites of New South Wales. J. Geochem. Explor. 1979, 11, 321–333. [Google Scholar] [CrossRef]
- Lehmann, B.; Harmanto. Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Econ. Geol. 1990, 85, 99–111. [Google Scholar] [CrossRef]
Pluton | Kamusite | Laoyaquan | Beilekuduke | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | KM-1 | KM-2 | KM-3 | KM-4 | KM-5 | KM-6 | LY-1 | LY-2 | LY-3 | LY-4 | BL-1 | BL-2 | BL-3 | BL-4 |
Lithological | K-Feldspar Granite | Biotite K-Feldspar Granite | Biotite Granite | |||||||||||
SiO2 | 76.64 | 77.14 | 76.93 | 76.25 | 76.48 | 77.85 | 76.76 | 75.99 | 75.63 | 76.22 | 76.83 | 75.86 | 76.57 | 75.53 |
TiO2 | 0.07 | 0.04 | 0.04 | 0.12 | 0.02 | 0.06 | 0.03 | 0.07 | 0.08 | 0.06 | 0.01 | 0.04 | 0.11 | 0.03 |
Al2O3 | 12.32 | 12.18 | 12.24 | 12.58 | 12.54 | 11.78 | 12.35 | 12.19 | 12.63 | 12.42 | 12.66 | 12.59 | 11.94 | 12.72 |
Fe2O3T | 1.20 | 1.11 | 1.17 | 1.48 | 0.96 | 1.14 | 0.90 | 1.17 | 1.42 | 1.15 | 0.92 | 1.36 | 1.27 | 1.34 |
Fe2O3 | 0.26 | 0.45 | 0.44 | 0.36 | 0.08 | 0.10 | 0.49 | 0.49 | 1.39 | 0.78 | 0.31 | 0.83 | 0.61 | 0.48 |
FeO | 0.84 | 0.59 | 0.66 | 1.01 | 0.79 | 0.94 | 0.36 | 0.61 | 0.03 | 0.34 | 0.56 | 0.48 | 0.59 | 0.77 |
MnO | 0.04 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.02 | 0.03 |
MgO | 0.13 | 0.05 | 0.03 | 0.14 | 0.01 | 0.06 | 0.08 | 0.14 | 0.19 | 0.13 | 0.08 | 0.08 | 0.11 | 0.07 |
CaO | 0.25 | 0.11 | 0.10 | 0.08 | 0.09 | 0.10 | 0.56 | 0.62 | 0.32 | 0.50 | 0.49 | 0.47 | 0.52 | 0.39 |
Na2O | 3.66 | 3.64 | 3.67 | 3.72 | 4.22 | 3.46 | 3.69 | 3.39 | 3.31 | 3.45 | 4.00 | 3.92 | 3.85 | 4.07 |
K2O | 4.63 | 4.71 | 5.04 | 5.14 | 4.47 | 4.71 | 4.81 | 5.08 | 5.42 | 5.10 | 4.45 | 4.43 | 5.03 | 4.83 |
P2O5 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
LOI | 0.37 | 0.39 | 0.22 | 0.28 | 0.28 | 0.47 | 0.60 | 0.61 | 0.48 | 0.55 | 0.50 | 0.73 | 0.54 | 0.46 |
Total | 99.33 | 99.39 | 99.47 | 99.83 | 99.10 | 99.66 | 99.82 | 99.32 | 99.53 | 99.64 | 99.99 | 99.54 | 99.97 | 99.48 |
T-zircon (°C) | 836 | 834 | 834 | 818 | 832 | 796 | 776 | 843 | 768 | 802 | 792 | 799 | 822 | 833 |
A/CNK | 1.07 | 1.08 | 1.05 | 1.06 | 1.05 | 1.07 | 1.00 | 1.00 | 1.06 | 1.03 | 1.03 | 1.04 | 0.94 | 1.01 |
A/NK | 1.12 | 1.10 | 1.06 | 1.08 | 1.06 | 1.09 | 1.10 | 1.10 | 1.12 | 1.11 | 1.11 | 1.12 | 1.01 | 1.07 |
Na2O + K2O | 8.30 | 8.35 | 8.71 | 8.86 | 8.69 | 8.17 | 8.50 | 8.47 | 8.73 | 8.55 | 8.45 | 8.35 | 8.88 | 8.90 |
K2O/Na2O | 1.27 | 1.29 | 1.37 | 1.38 | 1.06 | 1.36 | 1.30 | 1.50 | 1.63 | 1.48 | 1.11 | 1.13 | 1.31 | 1.19 |
Sc | 1.04 | 3.20 | 3.70 | 3.30 | 4.40 | 2.70 | 0.83 | 2.10 | 1.61 | 1.50 | 0.85 | 1.50 | 2.73 | 2.40 |
V | 4.46 | 12.00 | 9.00 | 12.00 | 25.00 | 5.00 | 4.07 | 5.95 | 3.85 | 4.63 | 4.59 | 5.23 | 3.92 | 4.89 |
Cr | 0.83 | 11.00 | 20.00 | 20.00 | 23.00 | 17.00 | 2.81 | 10.26 | 2.49 | 5.19 | 1.40 | 3.18 | 3.27 | 3.09 |
Co | 2.09 | 0.10 | 0.20 | 0.70 | 0.10 | 0.40 | 1.84 | 2.83 | 2.29 | 2.32 | 1.93 | 2.31 | 1.47 | 2.01 |
Ni | 0.83 | 0.70 | 1.00 | 1.30 | 0.50 | 0.90 | 1.30 | 7.69 | 1.34 | 3.47 | 0.70 | 2.07 | 1.30 | 0.90 |
Cu | 2.64 | 127.00 | 156.50 | 3.70 | 5.00 | 32.30 | 6.22 | 3.14 | 12.34 | 7.23 | 2.46 | 11.15 | 4.53 | 7.28 |
Zn | 45.41 | 43.00 | 47.00 | 34.00 | 25.00 | 71.00 | 20.11 | 41.41 | 53.78 | 38.54 | 49.32 | 58.37 | 90.65 | 74.82 |
W | 1.24 | 4.00 | 4.00 | 2.00 | 2.00 | 2.00 | 2.29 | 1.05 | 0.85 | 1.41 | 1.64 | 2.38 | 1.92 | 1.26 |
Ga | 18.69 | 29.30 | 30.90 | 21.90 | 32.60 | 24.60 | 18.61 | 19.21 | 22.68 | 20.17 | 19.62 | 24.81 | 19.50 | 22.30 |
Rb | 402.73 | 450.00 | 491.00 | 397.00 | 688.00 | 437.00 | 357.05 | 248.32 | 289.71 | 298.42 | 408.07 | 312.29 | 276.00 | 325.39 |
Sr | 7.74 | 11.10 | 7.80 | 21.50 | 9.80 | 15.90 | 3.33 | 10.09 | 10.99 | 8.13 | 3.92 | 8.25 | 9.84 | 9.27 |
Y | 54.11 | 72.60 | 129.50 | 57.90 | 103.00 | 55.50 | 116.29 | 71.60 | 161.32 | 126.87 | 126.85 | 113.03 | 127.58 | 132.56 |
Zr | 156.70 | 153.00 | 155.00 | 131.00 | 152.00 | 101.00 | 83.81 | 177.41 | 74.19 | 111.64 | 99.75 | 107.94 | 148.15 | 159.04 |
Nb | 11.40 | 14.00 | 17.10 | 5.80 | 26.90 | 10.80 | 10.42 | 7.68 | 8.70 | 8.93 | 13.51 | 15.32 | 11.63 | 14.37 |
Ba | 50.29 | 20.00 | 20.00 | 130.00 | 10.00 | 110.00 | 6.13 | 37.94 | 14.10 | 21.16 | 14.74 | 15.56 | 27.40 | 31.75 |
Hf | 6.22 | 9.00 | 10.80 | 4.60 | 11.80 | 6.50 | 5.38 | 7.38 | 4.52 | 5.76 | 6.00 | 5.41 | 8.32 | 7.30 |
Ta | 1.69 | 3.79 | 3.35 | 0.59 | 6.77 | 2.83 | 2.10 | 0.62 | 0.84 | 1.19 | 1.53 | 2.31 | 1.45 | 1.19 |
Pb | 22.13 | 20.10 | 17.10 | 18.70 | 32.80 | 20.80 | 19.33 | 29.82 | 28.71 | 25.95 | 36.45 | 21.86 | 35.42 | 18.94 |
Th | 30.51 | 55.10 | 49.20 | 25.30 | 44.50 | 41.70 | 30.37 | 36.80 | 28.14 | 32.77 | 28.84 | 23.17 | 24.52 | 20.36 |
U | 3.17 | 6.92 | 5.87 | 4.77 | 5.83 | 4.56 | 2.97 | 2.95 | 3.34 | 3.10 | 3.24 | 4.22 | 3.92 | 5.24 |
La | 27.18 | 6.20 | 18.00 | 38.90 | 26.10 | 29.70 | 17.16 | 18.51 | 21.09 | 18.95 | 9.16 | 16.38 | 27.40 | 14.36 |
Ce | 55.34 | 23.10 | 39.30 | 86.80 | 71.80 | 58.20 | 35.06 | 41.46 | 56.38 | 44.27 | 23.56 | 57.80 | 76.82 | 61.49 |
Pr | 9.24 | 3.06 | 4.99 | 10.80 | 8.15 | 8.40 | 5.87 | 5.06 | 11.02 | 7.31 | 3.91 | 8.59 | 7.65 | 10.05 |
Nd | 30.16 | 12.80 | 19.90 | 40.40 | 27.40 | 31.20 | 20.09 | 15.30 | 46.79 | 27.42 | 14.36 | 15.91 | 32.64 | 19.78 |
Sm | 7.37 | 4.38 | 6.61 | 9.54 | 8.08 | 7.24 | 5.55 | 3.95 | 15.57 | 8.36 | 5.59 | 3.76 | 8.72 | 6.58 |
Eu | 0.07 | 0.03 | 0.03 | 0.14 | 0.03 | 0.03 | 0.02 | 0.07 | 0.06 | 0.05 | 0.02 | 0.04 | 0.02 | 0.03 |
Gd | 7.46 | 5.19 | 7.07 | 9.02 | 7.05 | 7.01 | 6.66 | 4.23 | 16.46 | 9.26 | 6.39 | 3.81 | 9.17 | 7.04 |
Tb | 1.06 | 1.14 | 1.73 | 1.58 | 1.99 | 1.22 | 1.15 | 0.68 | 2.89 | 1.55 | 1.26 | 2.03 | 1.52 | 1.76 |
Dy | 7.95 | 9.08 | 13.50 | 11.05 | 16.60 | 8.49 | 9.62 | 6.01 | 21.83 | 12.49 | 10.67 | 13.57 | 9.12 | 15.38 |
Ho | 1.47 | 2.16 | 3.14 | 2.13 | 3.68 | 1.78 | 1.99 | 1.27 | 4.11 | 2.44 | 2.20 | 1.70 | 2.64 | 1.88 |
Er | 4.92 | 7.65 | 11.90 | 6.81 | 14.60 | 6.31 | 7.20 | 4.80 | 13.37 | 8.46 | 7.88 | 8.07 | 9.56 | 10.24 |
Tm | 0.74 | 1.38 | 1.99 | 1.11 | 2.66 | 0.95 | 1.25 | 0.87 | 1.82 | 1.32 | 1.32 | 1.05 | 1.54 | 1.72 |
Yb | 5.33 | 11.55 | 16.05 | 7.44 | 23.00 | 7.61 | 8.95 | 5.91 | 11.75 | 8.85 | 9.35 | 8.71 | 9.76 | 11.45 |
Lu | 0.85 | 1.74 | 2.51 | 0.98 | 3.23 | 1.03 | 1.37 | 0.98 | 1.67 | 1.36 | 1.45 | 1.19 | 1.74 | 1.08 |
ΣREE | 159.14 | 89.46 | 146.72 | 226.7 | 214.37 | 169.17 | 121.94 | 109.10 | 224.81 | 152.09 | 97.12 | 142.61 | 198.3 | 162.84 |
LREE | 129.36 | 49.57 | 88.83 | 186.58 | 141.56 | 134.77 | 83.75 | 84.35 | 150.91 | 106.36 | 56.60 | 102.48 | 153.25 | 112.29 |
HREE | 29.78 | 39.89 | 57.89 | 40.12 | 72.81 | 34.40 | 38.19 | 24.75 | 73.90 | 45.73 | 40.52 | 40.13 | 45.05 | 50.55 |
LREE/HREE | 4.34 | 1.24 | 1.53 | 4.65 | 1.94 | 3.92 | 2.19 | 3.41 | 2.04 | 2.33 | 1.40 | 2.55 | 3.40 | 2.22 |
(La/Yb)N | 3.44 | 0.36 | 0.76 | 3.53 | 0.77 | 2.63 | 1.29 | 2.11 | 1.21 | 1.44 | 0.66 | 1.27 | 1.89 | 0.85 |
(La/Sm)N | 2.32 | 0.89 | 1.71 | 2.56 | 2.03 | 2.58 | 1.94 | 2.95 | 0.85 | 1.43 | 1.03 | 2.74 | 1.98 | 1.37 |
(Gd/Yb)N | 1.13 | 0.36 | 0.36 | 0.98 | 0.25 | 0.74 | 0.60 | 0.58 | 1.13 | 0.84 | 0.55 | 0.35 | 0.76 | 0.50 |
δEu | 0.03 | 0.02 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.02 | 0.01 | 0.03 | 0.01 | 0.01 |
Samples | Elementcontent/×10−6 | Isotopicratios | Age/Ma | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | 207Pb/ 206Pb | 1σ | 207Pb/ 235U | 1σ | 206Pb/ 238U | 1σ | |
K-feldspar granite | |||||||||||||||
KM-1-1 | 2.54 | 158.49 | 395.23 | 0.05414 | 0.00130 | 0.36097 | 0.01011 | 0.04829 | 0.00089 | 376.8 | 53.9 | 312.9 | 7.5 | 304.0 | 5.5 |
KM-1-2 | 0.96 | 59.35 | 148.20 | 0.05389 | 0.00171 | 0.36744 | 0.01449 | 0.04899 | 0.00097 | 366.6 | 71.3 | 317.8 | 10.8 | 308.3 | 5.9 |
KM-1-3 | 1.11 | 68.48 | 181.20 | 0.05354 | 0.00132 | 0.37193 | 0.00966 | 0.05029 | 0.00063 | 351.8 | 55.5 | 321.1 | 7.1 | 316.3 | 3.9 |
KM-2-1 | 1.57 | 96.25 | 222.31 | 0.05337 | 0.00160 | 0.36462 | 0.01163 | 0.04951 | 0.00082 | 344.4 | 68.0 | 315.7 | 8.7 | 311.5 | 5.1 |
KM-2-2 | 1.59 | 97.67 | 230.70 | 0.05331 | 0.00172 | 0.36176 | 0.01353 | 0.04887 | 0.00096 | 342.0 | 72.9 | 313.5 | 10.1 | 307.6 | 5.9 |
KM-2-3 | 1.13 | 73.35 | 163.84 | 0.05398 | 0.00178 | 0.35816 | 0.01022 | 0.04842 | 0.00064 | 370.2 | 74.1 | 310.8 | 7.6 | 304.8 | 3.9 |
KM-3-1 | 1.20 | 70.02 | 179.37 | 0.05378 | 0.00129 | 0.37694 | 0.00993 | 0.05073 | 0.00064 | 361.8 | 53.9 | 324.8 | 7.3 | 319.0 | 3.9 |
KM-3-2 | 0.78 | 42.33 | 110.98 | 0.05417 | 0.00179 | 0.36923 | 0.01357 | 0.04936 | 0.00080 | 378.1 | 74.3 | 319.1 | 10.1 | 310.6 | 4.9 |
KM-4-1 | 3.62 | 231.06 | 543.79 | 0.05398 | 0.00124 | 0.36430 | 0.00880 | 0.04877 | 0.00068 | 370.1 | 51.6 | 315.4 | 6.6 | 307.0 | 4.2 |
KM-4-2 | 2.15 | 130.76 | 324.51 | 0.05397 | 0.00155 | 0.37737 | 0.01225 | 0.05061 | 0.00080 | 369.8 | 64.8 | 325.1 | 9.0 | 318.3 | 4.9 |
KM-5-1 | 1.77 | 109.96 | 241.19 | 0.05400 | 0.00139 | 0.37773 | 0.01111 | 0.05049 | 0.00065 | 371.1 | 58.1 | 325.4 | 8.2 | 317.5 | 4.0 |
KM-5-2 | 6.03 | 362.18 | 813.59 | 0.05329 | 0.00071 | 0.38122 | 0.00530 | 0.05169 | 0.00039 | 341.4 | 30.3 | 327.9 | 3.9 | 324.9 | 2.4 |
KM-6-1 | 0.71 | 46.39 | 121.53 | 0.05414 | 0.00161 | 0.36966 | 0.01218 | 0.04957 | 0.00088 | 376.9 | 66.9 | 319.4 | 9.0 | 311.9 | 5.4 |
Biotite K-feldspar granite | |||||||||||||||
LY-1-1 | 3.43 | 196.00 | 1218.6 | 0.05195 | 0.00158 | 0.36257 | 0.00930 | 0.05062 | 0.00082 | 283.0 | 71.0 | 314.0 | 7.0 | 318.0 | 5.0 |
LY-1-2 | 3.84 | 246.60 | 591.20 | 0.05605 | 0.00195 | 0.38388 | 0.01321 | 0.04954 | 0.00107 | 454.0 | 40.0 | 330.0 | 10.0 | 312.0 | 7.0 |
LY-1-3 | 0.94 | 55.05 | 162.02 | 0.05542 | 0.00136 | 0.37933 | 0.00919 | 0.04981 | 0.00066 | 429.0 | 31.0 | 327.0 | 7.0 | 313.0 | 4.0 |
LY-1-4 | 3.46 | 199.72 | 554.43 | 0.05552 | 0.00183 | 0.38696 | 0.01241 | 0.05054 | 0.00121 | 433.0 | 34.0 | 332.0 | 9.0 | 318.0 | 7.0 |
LY-2-1 | 1.46 | 79.52 | 193.51 | 0.05698 | 0.00410 | 0.39176 | 0.02701 | 0.04987 | 0.00104 | 491.0 | 164.0 | 336.0 | 20.0 | 314.0 | 6.0 |
LY-2-2 | 3.15 | 200.27 | 320.16 | 0.05508 | 0.00112 | 0.37651 | 0.00854 | 0.04941 | 0.00071 | 415.0 | 26.0 | 324.0 | 6.0 | 311.0 | 4.0 |
LY-2-3 | 1.11 | 56.77 | 143.94 | 0.05376 | 0.00368 | 0.37184 | 0.02396 | 0.05017 | 0.00115 | 361.0 | 158.0 | 321.0 | 18.0 | 316.0 | 7.0 |
LY-3-1 | 2.39 | 145.78 | 368.81 | 0.05473 | 0.00196 | 0.39058 | 0.01307 | 0.05189 | 0.00138 | 401.0 | 34.0 | 335.0 | 10.0 | 326.0 | 8.0 |
LY-3-2 | 1.09 | 62.50 | 168.58 | 0.05377 | 0.00132 | 0.37687 | 0.01037 | 0.05067 | 0.00088 | 361.0 | 32.0 | 325.0 | 8.0 | 319.0 | 5.0 |
LY-3-3 | 5.56 | 281.14 | 676.25 | 0.05327 | 0.00360 | 0.35883 | 0.02377 | 0.04885 | 0.00065 | 340.0 | 157.0 | 311.0 | 18.0 | 307.0 | 4.0 |
LY-4-1 | 0.58 | 35.53 | 82.88 | 0.05402 | 0.00166 | 0.37425 | 0.01367 | 0.04977 | 0.00083 | 372.0 | 52.0 | 323.0 | 10.0 | 313.0 | 5.0 |
LY-4-2 | 5.99 | 314.24 | 857.01 | 0.05642 | 0.00256 | 0.38615 | 0.01642 | 0.04964 | 0.00077 | 469.0 | 103.0 | 332.0 | 12.0 | 312.0 | 5.0 |
Biotite granite | |||||||||||||||
BL-1-1 | 12.68 | 708.02 | 2074.1 | 0.05211 | 0.00181 | 0.35929 | 0.01148 | 0.05001 | 0.00068 | 290.0 | 81.0 | 312.0 | 9.0 | 315.0 | 4.0 |
BL-1-2 | 4.48 | 294.17 | 726.30 | 0.05398 | 0.00171 | 0.36553 | 0.01312 | 0.04917 | 0.00069 | 370.0 | 55.0 | 316.0 | 10.0 | 309.0 | 4.0 |
BL-2-1 | 4.50 | 282.26 | 701.96 | 0.05314 | 0.00130 | 0.37390 | 0.01025 | 0.05115 | 0.00060 | 335.0 | 41.0 | 323.0 | 8.0 | 322.0 | 4.0 |
BL-2-2 | 3.38 | 201.25 | 411.03 | 0.05375 | 0.00114 | 0.37096 | 0.00974 | 0.05015 | 0.00070 | 360.0 | 35.0 | 320.0 | 7.0 | 315.0 | 4.0 |
BL-3-1 | 13.46 | 622.92 | 1332.4 | 0.05449 | 0.00442 | 0.37332 | 0.02981 | 0.04969 | 0.00073 | 391.0 | 186.0 | 322.0 | 22.0 | 313.0 | 5.0 |
BL-3-2 | 11.52 | 661.73 | 1973.7 | 0.05595 | 0.00106 | 0.39533 | 0.00822 | 0.05147 | 0.00110 | 450.0 | 21.0 | 338.0 | 6.0 | 324.0 | 7.0 |
BL-4-1 | 1.95 | 111.23 | 393.29 | 0.05336 | 0.00088 | 0.37922 | 0.00909 | 0.05152 | 0.00083 | 344.0 | 27.0 | 326.0 | 7.0 | 324.0 | 5.0 |
BL-4-2 | 19.73 | 1010.3 | 1384.5 | 0.06001 | 0.00567 | 0.41644 | 0.03772 | 0.05033 | 0.00135 | 604.0 | 212.0 | 354.0 | 27.0 | 317.0 | 8.0 |
Pluton | Sample | Sm | Nd | 147Sm/144Nd | 143Nd/144Nd | 2σ | εNd(0) | εNd(t) | 2σ | TDM | T2DM | TDMC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laoyaquan | LY-1 | 7.45 | 24.88 | 0.1810 | 0.512882 | 0.000007 | 4.76 | 5.06 | 0.07 | 1257 | 527 | 528 |
LY-2 | 4.08 | 16.29 | 0.1513 | 0.512798 | 0.000008 | 3.12 | 3.99 | 0.08 | 863 | 455 | 616 | |
LY-3 | 17.33 | 51.19 | 0.2045 | 0.512907 | 0.000006 | 5.25 | 5.10 | 0.06 | 4067 | 616 | 525 | |
Beilekuduke | BL-1 | 14.46 | 44.63 | 0.1958 | 0.512921 | 0.000008 | 5.52 | 5.54 | 0.08 | 1965 | 573 | 489 |
BL-2 | 3.57 | 16.77 | 0.1287 | 0.512781 | 0.000008 | 2.79 | 4.09 | 0.08 | 665 | 521 | 607 | |
Kamusite | KM-1 | 8.31 | 34.26 | 0.1466 | 0.512845 | 0.000008 | 4.04 | 5.00 | 0.08 | 697 | 533 | 533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Wang, Q.; Zhang, B.; Gong, X.; Su, C. Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China). Minerals 2025, 15, 710. https://doi.org/10.3390/min15070710
Yuan S, Wang Q, Zhang B, Gong X, Su C. Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China). Minerals. 2025; 15(7):710. https://doi.org/10.3390/min15070710
Chicago/Turabian StyleYuan, Shuai, Qiwei Wang, Bowen Zhang, Xiaoping Gong, and Chunmei Su. 2025. "Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)" Minerals 15, no. 7: 710. https://doi.org/10.3390/min15070710
APA StyleYuan, S., Wang, Q., Zhang, B., Gong, X., & Su, C. (2025). Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China). Minerals, 15(7), 710. https://doi.org/10.3390/min15070710