Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon
Abstract
:1. Introduction
2. Regional Geological Characteristics
3. Ore Deposit Geological Characteristics
4. Samples and Methods
4.1. FI Analysis
4.2. Isotope Analysis
4.3. Garnet and Zircon LA–ICP–MS U-Pb Dating
5. Results
5.1. FI Types
5.2. FI Microthermometric Data
5.3. Stable Isotopes
5.3.1. H–O Isotopes
5.3.2. C–O Isotopes
5.4. Geochronological Data
5.4.1. Garnet U-Pb Age Data
5.4.2. Zircon U-Pb Age Data
6. Discussion
6.1. Source of Ore-Forming Fluids
6.2. Fluid Evolution
6.3. Timing of Magmatic-Hydrothermal Activity
6.4. Ore Genesis
7. Conclusions
- The Huanggang skarn-type iron-tin deposit comprises seven stages of mineralization: (I) anhydrous skarn, (II) hydrous skarn, (III) cassiterite-quartz-calcite, (IV) pyrite-arsenopyrite-quartz-fluorite, (V) polymetallic sulfides-quartz, and (VI) carbonate stages.
- Fluid inclusion and C–H–O isotopic evidence suggests that the ore-forming fluids were initially a high-temperature high-salinity magmatic-derived system with intense boiling and changed to a medium-to-low-temperature, low-salinity NaCl–H2O system in the later stages with meteoric water mixing.
- The precipitation of magnetite and cassiterite was closely related to the joint effects of fluid boiling caused by decompression and fluid mixing induced by the adding of a certain amount of meteoric water.
- U-Pb dating of garnet and zircon yields a lower-intercept age of 132.1 ± 4.7 Ma and a weighted mean age of 132.6 ± 0.9 Ma, respectively, corresponding to the timing of skarn formation and crystallization of K-feldspar granite.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stage | Mineral | Fis Type | Frequency | Size (μm) | Tm-ice (°C) | Tm-NaCl (°C) | Th-tot (°C) | Salinity (wt% NaCl Equiv.) |
---|---|---|---|---|---|---|---|---|
I | Garnet | LV | 40 | 5 to 15 | −5.4 to −1.8 | 411 to 513 | 3.05 to 8.40 | |
VL | 39 | 3 to 15 | −13.2 to −9.2 | 392 to 497 | 13.33 to 17.19 | |||
SL | 16 | 5 to 12 | 351 to 475 | 401 to 501 | 42.50 to 56.44 | |||
II | Quartz | LV | 37 | 5 to 15 | −4.6 to −1.5 | 336 to 429 | 2.56 to 7.30 | |
VL | 39 | 3 to 15 | −13.6 to −10.0 | 317 to 426 | 13.99 to 17.56 | |||
SL | 23 | 5 to 12 | 314 to 403 | 332 to 420 | 39.27 to 47.77 | |||
III | Quartz | LV | 29 | 5 to 15 | −4.0 to −1.7 | 292 to 418 | 2.89 to 6.43 | |
VL | 37 | 3 to 15 | −11.1 to −8.7 | 286 to 411 | 12.54 to 15.15 | |||
SL | 12 | 5 to 12 | 301 to 385 | 272 to 396 | 38.24 to 45.85 | |||
IV | Quartz | LV | 24 | 5 to 12 | −3.5 to −0.8 | 231 to 327 | 1.39 to 5.70 | |
VL | 19 | 3 to 12 | −8.6 to −7.1 | 224 to 318 | 10.62 to 12.42 | |||
Fluorite | LV | 23 | 5 to 12 | −3.8 to −0.9 | 255 to 347 | 1.56 to 6.14 | ||
VL | 15 | 3 to 12 | −8.4 to −7.3 | 243 to 331 | 10.87 to 12.19 | |||
V | Quartz | LV | 27 | 5 to 12 | −1.5 to −0.5 | 223 to 274 | 0.87 to 2.56 | |
VL | 34 | 3 to 12 | −7.1 to −4.9 | 201 to 281 | 7.72 to 10.62 | |||
VI | Calcite | VL | 38 | 3 to 10 | −5.5 to −2.7 | 169 to 213 | 4.48 to 8.54 |
Sample | Stage | Mineral | δ18OV-SMOW (‰) | δD (‰) | Th (°C) | δ18OH2O (‰) |
---|---|---|---|---|---|---|
HG-1-1 | I | Garnet | 3.8 | −92.3 | 453 | 5.0 |
HG-1-2 | I | Garnet | 3.8 | −101.2 | 453 | 5.0 |
HG-2-1 | I | Garnet | 4.8 | −91.4 | 453 | 6.0 |
HG-3-1 | I | Garnet | 4.2 | −96.6 | 453 | 5.4 |
HG-5-1 | II | Quartz | 9.5 | −106.3 | 376 | 4.9 |
HG-5-2 | II | Quartz | 8.9 | −104.7 | 376 | 4.3 |
HG-7-1 | III | Quartz | 9.2 | −106.2 | 353 | 4.0 |
HG-8-1 | IV | Quartz | 7.6 | −108.6 | 288 | 0.3 |
HG-9-2 | IV | Quartz | 6.1 | −117.4 | 288 | −1.2 |
HG-10-1 | V | Quartz | 5.9 | −114.3 | 243 | −3.4 |
Sample | Mineralization Stages | Mineral | δ13CV-PDB (‰) | δ18OV-PDB (‰) | δ18OV-SMOW (‰) |
---|---|---|---|---|---|
HG-7 | VI | Calcite | −11.1 | −30.9 | −0.9 |
HG-12-1 | VI | Calcite | −11.5 | −31.9 | −1.9 |
HG-7-1 | VI | Calcite | −10.9 | −30.7 | −0.7 |
HG-13-1 | VI | Calcite | −12.2 | −32.1 | −2.2 |
Samples | Th | U | Th/U | Isotopic Ratios | |||||
---|---|---|---|---|---|---|---|---|---|
ppm | ppm | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb/206Pb | 1σ | ||
HG-1 | 0.87 | 2.01 | 0.43 | 0.0630 | 0.0016 | 6.054 | 0.1976 | 0.6244 | 0.0383 |
HG-2 | 1.23 | 2.63 | 0.47 | 0.1184 | 0.0026 | 13.014 | 0.3314 | 0.7973 | 0.0257 |
HG-3 | 0.33 | 0.95 | 0.35 | 0.1885 | 0.0041 | 21.678 | 0.5510 | 0.8341 | 0.0275 |
HG-4 | 0.49 | 2.14 | 0.23 | 0.2858 | 0.0083 | 34.925 | 1.0865 | 0.8863 | 0.0453 |
HG-5 | 0.31 | 0.74 | 0.42 | 0.0212 | 0.0005 | 2.395 | 0.0508 | 0.0835 | 0.0055 |
HG-6 | 0.85 | 1.73 | 0.49 | 0.0299 | 0.0008 | 3.382 | 0.1745 | 0.3093 | 0.0135 |
HG-7 | 1.77 | 2.21 | 0.80 | 0.0329 | 0.0011 | 3.747 | 0.1138 | 0.3651 | 0.0136 |
HG-8 | 0.63 | 1.58 | 0.40 | 0.1112 | 0.0029 | 12.085 | 0.4862 | 0.7884 | 0.0260 |
HG-9 | 0.55 | 2.57 | 0.21 | 0.2242 | 0.0062 | 26.412 | 1.6145 | 0.8543 | 0.0334 |
HG-10 | 0.31 | 0.88 | 0.35 | 0.2683 | 0.0133 | 32.980 | 1.9301 | 0.8916 | 0.0596 |
HG-11 | 0.74 | 2.19 | 0.34 | 0.1246 | 0.0034 | 12.843 | 0.4170 | 0.7476 | 0.0223 |
HG-12 | 0.71 | 2.97 | 0.24 | 0.1158 | 0.0028 | 12.046 | 0.3725 | 0.7546 | 0.0215 |
HG-13 | 1.41 | 3.51 | 0.40 | 0.1518 | 0.0050 | 17.385 | 0.7369 | 0.8305 | 0.0531 |
HG-14 | 0.76 | 1.23 | 0.62 | 0.1999 | 0.0041 | 23.362 | 0.3878 | 0.8478 | 0.0159 |
HG-15 | 0.98 | 2.26 | 0.43 | 0.0642 | 0.0013 | 7.467 | 0.1917 | 0.6437 | 0.0169 |
HG-16 | 0.33 | 0.96 | 0.34 | 0.1445 | 0.0063 | 16.862 | 0.8729 | 0.8463 | 0.0706 |
HG-17 | 0.79 | 3.21 | 0.25 | 0.1045 | 0.0041 | 10.495 | 0.5164 | 0.7286 | 0.0263 |
HG-18 | 0.28 | 1.44 | 0.19 | 0.1720 | 0.0043 | 20.857 | 0.6284 | 0.8794 | 0.0387 |
HG-19 | 1.01 | 2.31 | 0.44 | 0.1252 | 0.0040 | 13.224 | 0.5320 | 0.7661 | 0.0412 |
HG-20 | 0.42 | 0.89 | 0.47 | 0.1340 | 0.0032 | 14.325 | 0.4402 | 0.7751 | 0.0262 |
HG-21 | 0.64 | 1.02 | 0.63 | 0.1386 | 0.0042 | 14.478 | 0.5420 | 0.7574 | 0.0231 |
HG-22 | 0.75 | 2.63 | 0.29 | 0.0865 | 0.0026 | 8.819 | 0.3127 | 0.7390 | 0.0296 |
HG-23 | 1.23 | 2.37 | 0.52 | 0.3161 | 0.0085 | 38.561 | 1.3332 | 0.8848 | 0.0284 |
HG-24 | 1.35 | 2.86 | 0.47 | 0.0946 | 0.0031 | 9.786 | 0.4235 | 0.7503 | 0.0510 |
HG-25 | 0.73 | 2.4 | 0.30 | 0.0923 | 0.0030 | 8.969 | 0.3640 | 0.7050 | 0.0541 |
Samples | Content | Isotopic Ratios | Isotopic Age Values (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th ppm | U ppm | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |
HG-1-1 | 1347.3 | 8426.5 | 0.16 | 0.05037 | 0.00094 | 0.15625 | 0.00319 | 0.02085 | 0.00023 | 212.2 | 42.75 | 147.4 | 2.8 | 133.0 | 1.4 |
HG-1-2 | 1898.2 | 10,293.0 | 0.18 | 0.05194 | 0.00062 | 0.1582 | 0.002 | 0.02069 | 0.00021 | 282.8 | 27.12 | 149.1 | 1.8 | 132.0 | 1.4 |
HG-1-3 | 4042.2 | 12,729.4 | 0.32 | 0.04928 | 0.00219 | 0.14391 | 0.00704 | 0.02067 | 0.00029 | 161.2 | 100.71 | 136.5 | 6.3 | 131.9 | 1.8 |
HG-1-4 | 544.1 | 1497.1 | 0.36 | 0.04948 | 0.00188 | 0.1423 | 0.00586 | 0.02112 | 0.00027 | 170.9 | 86.26 | 135.1 | 5.2 | 134.7 | 1.7 |
HG-1-5 | 1035.2 | 6655.9 | 0.16 | 0.04805 | 0.00143 | 0.13836 | 0.00449 | 0.02097 | 0.00025 | 101.6 | 69.08 | 131.6 | 4.0 | 133.8 | 1.6 |
HG-1-6 | 1106.2 | 2769.6 | 0.40 | 0.04848 | 0.00145 | 0.14002 | 0.00455 | 0.0207 | 0.00025 | 122.9 | 68.74 | 133.1 | 4.1 | 132.1 | 1.6 |
HG-1-7 | 504.6 | 4015.5 | 0.13 | 0.04929 | 0.00071 | 0.15076 | 0.00234 | 0.02077 | 0.00022 | 198 | 31 | 133 | 1.7 | 129.5 | 1.2 |
HG-1-8 | 3915.4 | 6824.9 | 0.57 | 0.0549 | 0.0007 | 0.1554 | 0.0034 | 0.0205 | 0.0004 | 406 | 23 | 147 | 2.9 | 130.6 | 2.4 |
HG-1-9 | 2073.5 | 9005.6 | 0.23 | 0.0525 | 0.0005 | 0.1539 | 0.0017 | 0.0212 | 0.0001 | 309 | 24 | 145 | 1.5 | 135.2 | 0.9 |
HG-1-10 | 227.8 | 445.6 | 0.51 | 0.05124 | 0.00141 | 0.14641 | 0.00442 | 0.0208 | 0.00024 | 251.6 | 62.29 | 138.7 | 3.9 | 132.7 | 1.5 |
HG-1-11 | 90.9 | 1690.4 | 0.05 | 0.0528 | 0.0007 | 0.1533 | 0.0026 | 0.0209 | 0.0002 | 320 | 25 | 145 | 2.3 | 133.5 | 1.3 |
HG-1-12 | 1061.9 | 7061.0 | 0.15 | 0.0491 | 0.0005 | 0.1403 | 0.0017 | 0.0207 | 0.0002 | 150 | 24 | 133 | 1.5 | 132.0 | 1.1 |
HG-1-13 | 1839.2 | 10,368.3 | 0.18 | 0.05283 | 0.00059 | 0.15964 | 0.00187 | 0.02064 | 0.00021 | 321.4 | 25.19 | 150.4 | 1.6 | 131.7 | 1.3 |
HG-1-14 | 454.9 | 6221.5 | 0.07 | 0.0506 | 0.0005 | 0.1450 | 0.0018 | 0.0207 | 0.0002 | 220 | 22 | 137 | 1.6 | 132.3 | 1.1 |
References
- John, R. Hydrothermal ore deposits I: Magmatic and orogenic environments. In Ore Deposit Geology; Cambridge University Press: New York, NY, USA, 2013; pp. 135–147. [Google Scholar]
- Zhao, Y.M.; Lin, W.W.; Bi, C.E.; Li, D.X. Basic geological characteristics of skarn deposits of China. Bull. Chin. Acad. Geol. Sci. 1986, 14, 59–87. (In Chinese) [Google Scholar]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn Deposits; Economic Geology Publishing Company: Littleton, CO, USA, 1981; Volume 75th Anniversary, pp. 317–391. [Google Scholar]
- Meinert, L.D. Mineralogy and petrology of iron skarns in western British Columbia, Canada. Econ. Geol. 1984, 79, 869–882. [Google Scholar] [CrossRef]
- Zhao, Y.M. Some new important advances in study of skarn deposits. Miner. Depos. 2012, 21, 113–136, (In Chinese with English Abstract). [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World Skarn Deposits; Society of Economic Geologists: Littleton, CO, USA, 2005; Volume 100th Anniversary, pp. 236–299. [Google Scholar]
- Chen, Y.; Zhang, Z.C. Study on source, transport and the enrichment mechanism of iron in iron skarn deposits. Rock Miner. Anal. 2012, 31, 889–897. [Google Scholar]
- Yao, Y. Magnesian and Calcic Skarn Type Tin-Polymetallic Mineralization in the Nanling Range: Case Study from Hehuaping and Xitian. Ph.D. Thesis, Nanjing University, Nanjing, China, 2012. (In Chinese with English Abstract). [Google Scholar]
- Audetat, A.; Gunther, D.; Heinrich, C.A. Formation of a magmatic–hydrothermal ore deposit: Insights with LA–ICP–MS analysis of fluid inclusions. Science 1998, 279, 2091–2094. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z. The Mineralization and Mechanism of the Iron Skarn Deposits in Laiwu District, Shandong Province. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Liu, X.C.; Yu, P.P.; Xiao, C.H. Tin transport and cassiterite precipitation from hydrothermal fluids. Geosci. Front. 2023, 14, 101624. [Google Scholar] [CrossRef]
- Sun, M.G.; Mathur, R.; Gao, C.H.; Chen, Y.J.; Yuan, S.D. Equilibrium Sn isotope fractionation between aqueous Sn and Sn-bearing minerals: Constrained by first-principles calculations. Am. Miner. 2024, 109, 265–273. [Google Scholar] [CrossRef]
- Sengor, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Hao, J.J.; Zhai, M.G. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1–20. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353, (In Chinese with English Abstract). [Google Scholar]
- Ren, Y.S.; Hao, Y.J.; Zhao, H.L.; Chen, C.; Yang, Q.; Duan, M.X.; Sun, Q. Paleozoic mineralization and typical deposits in the eastern segment of Xingmeng orogenic belt. Miner. Deposits 2014, 33, 125–126, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.; Quan, J.Y.; Zhang, Y.J.; Liu, Z.H.; Li, W.; Wang, Y.; Qian, C.; Zhang, L.; Ge, J.T. Late Mesozoic tectonic evolution of the southern Great Xing’an Range, NE China: Evidence from whole–rock geochemistry, and zircon U-Pb ages and Hf isotopes from volcanic rocks. Lithos 2022, 362–363, 105409. [Google Scholar] [CrossRef]
- Wang, M.; Fan, J.Z.; Wang, Z.W.; Ma, Y.Y. Comprehensive prospecting model for Lead–Zinc deposit of Huanggang– Ganzhuermiao metallogenic belt, Inner Mongolia. Earth Sci. Front. 2009, 16, 318–324. [Google Scholar] [CrossRef]
- Wang, C.Y. Lead–Zinc Polymetallic Metallogenic Series and Prospecting Direction of Huanggangliang–Ganzhuermiao Metallogenic Belt, Inner Mongolia. Ph.D. Thesis, Jilin University, Changchun, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Wang, C.M. Carbon and Oxygen Isotopic Composition and Its Genetic Significance in the Dajing Deposit, Inner Mongolia, China. J. Jilin Univ. Earth Sci. Ed. 2010, 40, 810–820. [Google Scholar]
- Shu, Q.H.; Lai, Y.; Sun, Y.; Wang, C.; Meng, S. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, Northeast China: Evidence from isotopes (S, Pb) and fluid inclusions. Econ. Geol. 2013, 108, 835–860. [Google Scholar] [CrossRef]
- Li, J.F. Mineralization and Periphery Metallogenic Prediction of the Hongling Pb–Zn Polymetallic Deposit in Chifeng, Inner Mongolia. Ph.D. Thesis, Jilin University, Changchun, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Wang, C.Y.; Li, J.F.; Wang, K.Y.; Yu, Q.; Liu, G.H. Geology, Fluid Inclusion, and Stable Isotope Study of the Skarn–Related Pb–Zn (Cu-Fe-Sn) Polymetallic Deposits in the Southern Great Xing’an Range, China: Implications for Deposit Type and Metallogenesis. Arab. J. Geosci. 2018, 11, 88. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Zhai, D.G.; Liu, J.L.; Li, P.L.; Li, K.; Sun, H.J. Fluid inclusion and stable (H–O–C) isotope studies of the giant Shuangjianzishan epithermal Ag-Pb-Zn deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2019, 115, 103170. [Google Scholar] [CrossRef]
- Shi, J.P.; Wu, G.; Chen, G.Z.; Yang, F.; Zhang, T. Genesis of the Supergiant Shuangjianzishan Ag–Pb–Zn Deposit in the Southern Great Xing’an Range, NE China: Constraints from Geochronology, Isotope Geochemistry, and Fluid Inclusion. Minerals 2024, 14, 60. [Google Scholar] [CrossRef]
- Safonova, I.Y.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Ma, X.L.; Wang, K.Y.; Zhou, H.Y.; Li, S.D.; Li, J.; Shi, K.T.; Wang, Z.G.; Yang, H.; Lai, C.K. Genesis and tectonic setting of Shenshan Fe-Cu deposit in Inner Mongolia, Northeast China: Constraints from geochemistry, U-Pb and Re–Os geochronology, and Hf isotopes. Ore Geol. Rev. 2019, 112, 103046. [Google Scholar] [CrossRef]
- Zhou, Z.H. Geology and Geochemistry of Huanggang Sn-Fe Deposit, Inner Mongolia. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Zhou, Z.H.; Mao, J.W.; Lyckberg, P. Geochronology and isotopic geochemistry of the A–type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. J. Asian Earth Sci. 2012, 49, 272–286. [Google Scholar] [CrossRef]
- Mei, W.; Lv, X.B.; Gao, X.F.; Liu, Z.; Zhao, Y.; Ai, Z.L.; Tang, R.K.; Abfaua, M.M. Ore genesis and hydrothermal evolution of the Huanggang skarn iron–tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore Geol. Rev. 2015, 64, 239–252. [Google Scholar] [CrossRef]
- Wang, C.; Shao, Y.J.; Zhang, X.; Dick, J.; Liu, Z.F. Trace Element Geochemistry of Magnetite: Implications for Ore Genesis of the Huanggangliang Sn-Fe Deposit, Inner Mongolia, Northeastern China. Minerals 2018, 8, 195. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, Z.; Liu, Y.X. The chemical composition of trapiche–like quartz from Huanggangliang area, Inner Mongolia, China. Crystals 2022, 12, 122. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Allen, M.B.; Han, C. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Ouyang, H.G.; Mao, J.W.; Zhou, Z.H.; Su, H.M. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Res. 2015, 27, 1153–1172. [Google Scholar] [CrossRef]
- Ouyang, H.G. Metallogenesis of Bairendaba−Weilasituo Silver-Polymetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing’an Range, NE China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Jiang, B.; Wang, D.H.; Chen, Y.C.; Zhang, T.; Pu, X.L.; Ma, W.W.; Wang, Y.; Wu, G.; Wu, L.W.; Zhang, T.; et al. Classification, metallogenesis and exploration of silver deposits in Daxing’anling of Inner Mongolia and its adjacent areas. China Geol. 2022, 5, 1–19. [Google Scholar] [CrossRef]
- Li, Y.S.; Liu, Z.F.; Shao, Y.J.; Chen, K.; Zhang, J.K.; Zhang, Y.C.; Zhang, T.D. Genesis of the Huanggangliang Fe-Sn polymetallic deposit in the southern Da Hinggan Range, NE China: Constraints from geochronology and cassiterite trace element geochemistry. Ore Geol. Rev. 2022, 151, 105226. [Google Scholar] [CrossRef]
- Wang, L.J.; Shimazaki, H.; Shiga, Y. Skarns and genesis of the Huanggang Fe-Sn deposit, Inner Mongolia, China. Resour. Geol. 2001, 51, 359–376. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Mao, M.J.; Wang, J.P.; Yang, Y.Q. S–Pb isotopic geochemistry, U-Pb and Re–Os geochronology of the Huanggangliang Fe-Sn deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2014, 59, 109–122. [Google Scholar] [CrossRef]
- Hou, Z.X.; Liu, Z.N.; Han, W.; Wang, W.C. The Occurrence State of Tin and Beryllium in Polymetallic Ore from Huanggangliang Area, Hexigten County, Inner Mongolia, China. Acta Geol. Sin. 2017, 37, 807–812, (In Chinese with English Abstract). [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Bottinga, V.; Javoy, M. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophys. Space Phys. 1975, 13, 401–418. [Google Scholar] [CrossRef]
- Lichtenstein, U.; Hoernes, S. Oxygen isotope fractionation between grossilar-spessarine garnet and water: An experimental investigation. Eur. J. Miner. 1992, 4, 239–249. [Google Scholar] [CrossRef]
- Gonfiantini, R.; Stichler, W.; Rozanski, K. Standards and Intercomparison Materials Distributed by the International Atomic Energy Agency for Stable Isotope Measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light Elements; IAEA: Vienna, Austria, 1995; pp. 13–29. [Google Scholar]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans–North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, G.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA–ICP–MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; p. 70. [Google Scholar]
- Ludwig, K.R. User’s manual for Isoplot 3.75: A Geochronological toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2012; pp. 1–70. [Google Scholar]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 7th ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Zhou, Z.H.; Wang, A.S.; Li, T. Fluid inclusion characteristics and metallogenic mechanism of Huanggang Sn-Fe deposit in Inner Mongolia. Miner. Depos. 2011, 30, 867–889, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Y.M. Ore-Controlling Factors and Ore-Prospecting Models for Copper Polymetallic Ore Deposits in Southeastern Inner Mongolia; Seismological Press: Beijing, China, 1994; p. 191. (In Chinese) [Google Scholar]
- Feng, J.Z. The isotopic characteristics of polymetallic deposits from Huanggangliang to Meng’en, Eastern Inner Mogolia. Liaoning Geol. 1992, 2, 117–126, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.J.; Shimazaki, H.; Wang, J.B.; Wang, Y.Z. Ore-forming fluid and metallization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia. Sci. China 2001, 44, 735–747. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, S.T.; Deng, J.; Liu, J.M. The exhalative genesis of the stratabound skarn in the Huanggangliang Sn-Fe polymetallic deposit of Inner Mongolia. Acta Petrol. Mineral. 2007, 26, 409–417, (In Chinese with English Abstract). [Google Scholar]
- Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarn in Cu–Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ. Geol. 1992, 87, 1927–1944. [Google Scholar]
- Taylor, H.P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Ore Deposit; Barnes, H.L., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1997; pp. 229–302. [Google Scholar]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef]
- Yang, T.L.; Ni, P.; Pan, J.Y.; Chi, Z.; Ding, J.Y.; Wang, Q. Episodic fluid evolution in the formation of the large scale Luoyang Fe deposit, Fujian, eastern China. Ore Geol. Rev. 2020, 120, 103412. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D. New evidence of magmatic–fluid–related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology 2002, 30, 335–338. [Google Scholar] [CrossRef]
- Rye, R.O. The evolution of magmatic fluids in the epithermal environment; the stable isotope perspective. Econ. Geol. 1993, 88, 733–752. [Google Scholar] [CrossRef]
- Shmulovich, K.I.; Landwehr, D.; Simon, K.; Heinrich, W. Stable isotope fractionation between liquid and vapour in water–salt systems up to 600 °C. Chem. Geol. 1999, 157, 343–354. [Google Scholar] [CrossRef]
- Guo, X.G.; Gao, J.J.; Zhang, D.H.; Li, J.W.; Xiang, A.P.; Li, C.J.; Wang, S.Y.; Jiao, T.L.; Ren, C.H. Genesis of the Erdaohe skarn Pb–Zn–Ag deposit in the Great Hinggan Range, NE China: Evidence from geology, fluid inclusions, and H–O–S isotope systematics. Ore Geol. Rev. 2022, 140, 104414. [Google Scholar] [CrossRef]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusions; Science Press: Beijing, China, 2004; pp. 1–487. (In Chinese) [Google Scholar]
- Sterner, S.M.; Bodnar, R.J. Synthetic fluid inclusions in natural quartz. I. Compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Acta 1984, 48, 2659–2668. [Google Scholar] [CrossRef]
- Ren, L. Study on the Diagenesis Mechanisms and Metallogenic Model of Skarn-Type Fe-Cu (Mo) Polymetallic Deposit in the Lesser Xing’an Range, NE China. Ph.D. Thesis, Jilin University, Changchun, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Ramboz, C.; Pichavant, M.; Weisbrod, A. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data II: Interpretation of fluid inclusion data in terms of immiscibility. Chem. Geol. 1982, 37, 29–48. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Plant. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Brown, P.E.; Hagemann, S.G. MacFlincor and its application to fluids in Archean lode–gold deposits. Geochim. Cosmochim. Acta 1995, 59, 3943–3952. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure– composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 X NaCl. Geochim. Cosmochim. Acta. 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Mao, J.W. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range. Earth Sci. Front. 2022, 29, 176–199, (In Chinese with English Abstract). [Google Scholar]
- Zhang, B.H.; Cao, H.; Liu, F.Y.; Wang, F.X. Granite age and petrogeochemistry of skarn–type iron–tin deposits in the southern Great Khingan Mountains. Geol. Bull. China 2023. (In Chinese with English Abstract). [Google Scholar]
- Zhou, Z.H.; Lv, L.S.; Feng, J.R.; Li, C.; Li, T. Molybdenite Re–Os ages of Huanggang skarn Sn-Fe deposit and their geological significance, Inner Mongolia. Acta Geol. Sin. 2010, 26, 667–679, (In Chinese with English Abstract). [Google Scholar]
- Yao, M.J.; Gao, Y.; Liu, J.J.; Zhai, D.G. Isotope age of Re–Os in molybdenite and genetic implication of Huanggangliang Fe-Sn deposit in Inner Mongolia. Miner. Explor. 2016, 7, 399–403. [Google Scholar]
- Baker, T.; Lang, J.R. Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: An example from the Bismark Deposit, Mexico. Miner. Depos. 2003, 38, 474–495. [Google Scholar] [CrossRef]
- Baker, T.; Vanachterberg, E.; Ryan, C.G.; Lang, J.R. Composition and evolution of ore fluids in a magmatic–hydrothermal skarn deposit. Geology 2004, 32, 117–120. [Google Scholar] [CrossRef]
- Sun, Q.F.; Wang, K.Y.; Wang, Y.C.; Yang, H.; Li, J.; Ma, X.L. Fluid evolution and ore genesis of the Chaobuleng skarn Fe-Zn polymetallic deposit, Northeast China: Evidence from fluid inclusions, C–O–S–Pb isotopes, and geochronology. J. Geochem. Explor. 2021, 227, 106796. [Google Scholar] [CrossRef]
- Wang, R.L. Metallogenic Mechanism of the Baiyinnuoer Pb-Zn Deposit in the Southern Great Xing’an Range. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2023. (In Chinese with English Abstract). [Google Scholar]
- Wang, F.; Zhou, X.H.; Zhang, L.C.; Ying, J.F.; Zhang, Y.T.; Wu, F.Y.; Zhu, R.X. Late Mesozoic volcanism in the Great Xing’an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth Planet. Sci. Lett. 2006, 251, 179–198. [Google Scholar] [CrossRef]
- Ma, X.L. Study on the Mineralization of Copper Polymetallic Deposits in the East Slope of Southern Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Qin, T. The Geochemical and Petrogenetic Studies on Late Mesozoic Volcanic Rocks in the Central Segment of Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2022. (In Chinese with English Abstract). [Google Scholar]
- Sun, Q.F. Study of Pb-Zn Polymetallic Mineralization in the Southern Section of the Tianshan-Tuquan Metallogenic Subzone of the Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2023. (In Chinese with English Abstract). [Google Scholar]
- Zhao, C.T.; Sun, J.G.; Chu, X.L.; Qin, K.Z.; Ren, L.; Xu, Z.K.; Liu, Y.; Han, J.L.; Bai, C.L.; Shu, W. Metallogeny of the Ergu Fe-Zn polymetallic deposit, central Lesser Xing’an Range, NE China: Evidence from skarn mineralogy, fluid inclusions and H–O–S–Pb isotopes. Ore Geol. Rev. 2021, 135, 104227. [Google Scholar] [CrossRef]
- Zhao, C.T. Mineralization, Metallogenic Model and Geodynamic Setting of Skarn type Au-Fe-Cu Polymetallic Deposits in the Central of Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2021. (In Chinese with English Abstract). [Google Scholar]
- Jackson, K.J.; Helgeson, H.C. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures. Geochim. Cosmochim. Acta 1985, 49, 1–22. [Google Scholar] [CrossRef]
- Heinrich, C.A. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ. Geol. 1990, 85, 457–481. [Google Scholar] [CrossRef]
- Halter, W.E.; Williams-Jones, A.E.; Kontak, D.J. Modeling fluid–rock interaction during greisenization at the East Kemptville tin deposit: Implications for mineralization. Chem. Geol. 1998, 150, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Wang, K.; Sun, Q.; Chen, J.; Wang, X.; Li, H. Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon. Minerals 2025, 15, 518. https://doi.org/10.3390/min15050518
Xue H, Wang K, Sun Q, Chen J, Wang X, Li H. Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon. Minerals. 2025; 15(5):518. https://doi.org/10.3390/min15050518
Chicago/Turabian StyleXue, Hanwen, Keyong Wang, Qingfei Sun, Junchi Chen, Xue Wang, and Haoming Li. 2025. "Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon" Minerals 15, no. 5: 518. https://doi.org/10.3390/min15050518
APA StyleXue, H., Wang, K., Sun, Q., Chen, J., Wang, X., & Li, H. (2025). Ore Genesis of the Huanggang Iron-Tin-Polymetallic Deposit, Inner Mongolia: Constraints from Fluid Inclusions, H–O–C Isotopes, and U-Pb Dating of Garnet and Zircon. Minerals, 15(5), 518. https://doi.org/10.3390/min15050518