Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada
Abstract
:1. Introduction
2. Geology of Adakitic Intrusions in New Brunswick
3. Methodology
3.1. Dataset and Geochemical Characteristics
3.2. ML Models
4. Results
4.1. Key Geochemical Variables for Adakite Fertility
4.2. Scatter Plot Analysis for Classifying Fertile and Barren Adakites
4.3. Modeling
4.3.1. Training Data
4.3.2. Applying ML Methods and Optimization
4.3.3. Performance Results
5. Discussion
6. Conclusions
- This study demonstrates the efficacy of ML in classifying fertile and barren adakites, highlighting the importance of geochemical assessment prior to utilizing adakitic intrusions as evidence layers in mineral prospectivity mapping;
- Analyzing a dataset of 99 fertile and 66 barren adakites from New Brunswick, this research identifies REEs, including Gd, Dy, and La, with Hf, as the most reliable indicators of fertility, consistently ranking highest across multiple feature selection techniques, including ANOVA, information gain, and ReliefF;
- Among the seven ML models tested, SVM exhibited the best performance, achieving an AUC of 0.91 and a classification accuracy of 93.75%. This was followed by gradient boosting, with an AUC of 0.90, and random forest, which attained an AUC of 0.89;
- These models were subsequently applied to a global dataset comprising 829 adakite samples, predicting fertility patterns. Validation with 160 globally recognized fertile adakites further confirmed the superior predictive accuracy of the SVM model;
- The linear discriminant analysis (LDA) of 1596 scatter plots revealed that element–element relationships (e.g., Ga vs. Dy, Ga vs. Gd, and Pr vs. Gd) and element–major oxide relationships (e.g., Fe2O3 vs. Gd and Al2O3 vs. Hf) provided the highest discriminatory power, whereas major oxide–major oxide, ratio–ratio, and major oxide–ratio plots were less effective;
- These findings underscore the potential of machine learning-based classification to enhance mineral exploration strategies. It emphasizes that not all intrusive units, including adakites, are inherently fertile and should not be directly used as evidence layers in mineral prospectivity mapping without prior analysis.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karbalaeiramezanali, A.; Feizi, F.; Jafarirad, A.; Lotfi, M. Application of Best-Worst method and Additive Ratio Assessment in mineral prospectivity mapping: A case study of vein-type copper mineralization in the Kuhsiah-e-Urmak area. Iran. Ore Geol. Rev. 2020, 117, 103268. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- Karbalaeiramezanali, A.; Feizi, F.; Jafarirad, A.; Lotfi, M. Geochemical anomaly and mineral prospectivity mapping for vein-type copper mineralization, Kuhsiah-e-Urmak area, Iran: Application of sequential Gaussian simulation and multivariate regression analysis. Nat. Resour. Res. 2020, 29, 41–70. [Google Scholar] [CrossRef]
- Karbalaeiramezanali, A.; Yousefi, F.; Lentz, D.R.; Thorne, K.G. Machine learning for predicting fertility of adakites worldwide: Insights from geochemical data of adakites in the Northern Appalachians, New Brunswick. In Proceedings of the Exploration, Mining and Petroleum (EMP) New Brunswick Conference 2024, Fredericton, NB, Canada, 27–29 October 2024. [Google Scholar]
- Drummond, M.S.; Defant, M.J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. Solid Earth 1990, 95, 21503–21521. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.; Rapp, R.; Moyen, J.-F.; Champion, D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Moyen, J.-F. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 2009, 112, 556–574. [Google Scholar] [CrossRef]
- Yousefi, F.; Lentz, D.R. Formation of high-silica adakites and their relationship with slab break-off: Implications for generating fertile Cu-Au-Mo porphyry systems. Geosci. Front. 2024, 15, 101927. [Google Scholar] [CrossRef]
- Yousefi, F.; Lentz, D.R.; Walker, J.A.; Thorne, K.G. Development of high-silica adakitic intrusions in the Northern Appalachians of New Brunswick (Canada), and their correlation with slab break-off: Insights into the formation of fertile Cu-Au-Mo porphyry systems. Geosciences 2024, 14, 241. [Google Scholar] [CrossRef]
- Kamvong, T.; Zaw, K.; Meffre, S.; Maas, R.; Stein, H.; Lai, C.K. Adakites in the Truong Son and Loei fold belts, Thailand and Laos: Genesis and implications for geodynamics and metallogeny. Gondwana Res. 2014, 26, 165–184. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348, 1005179. [Google Scholar] [CrossRef]
- Yousefi, F.; Lentz, D.R.; Thorne, K.G. Mineral chemistry of the Eagle Lake Granite porphyry, southwestern New Brunswick, Canada: Implications for Cu-Mo-Au mineralization. Can. J. Miner. Pet. 2023, 61, 445–465. [Google Scholar] [CrossRef]
- Zuo, R. Machine learning of mineralization-related geochemical anomalies: A review of potential methods. Nat. Resour. Res. 2017, 26, 457–464. [Google Scholar] [CrossRef]
- Zou, S.; Chen, X.; Brzozowski, M.J.; Leng, C.; Xu, D. Application of machine learning to characterizing magma fertility in porphyry Cu deposits. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024584. [Google Scholar] [CrossRef]
- Nathwani, C.L.; Wilkinson, J.J.; Fry, G.; Armstrong, R.N.; Smith, D.J.; Ihlenfeld, C. Machine learning for geochemical exploration: Classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation. Miner. Deposita 2022, 57, 1143–1166. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Zhou, Y.; Zhang, P. Crucial geochemical signal identification for Cu-fertile magmas in Paleo-Tethyan arc based on machine learning. Math. Geosci. 2023, 55, 799–828. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; Yang, J.; Cheng, Q. Machine learning prediction of ore deposit genetic type using magnetite geochemistry. Nat. Resour. Res. 2023, 32, 99–116. [Google Scholar] [CrossRef]
- Yang, X.-M.; Lentz, D.R.; McCutcheon, S.R. Petrochemical evolution of subvolcanic granitoid intrusions within the Late Devonian Mount Pleasant Caldera, southwestern New Brunswick, Canada: Comparison of Au versus Sn-W-Mo-polymetallic mineralization systems. Atl. Geol. 2003, 39, 97–122. [Google Scholar]
- Yang, X.M.; Lentz, D.R.; Chi, G.; Kyser, T.K. Fluid–mineral reaction in the Lake George Granodiorite, New Brunswick, Canada: Implications for Au–W–Mo–Sb mineralization. Can. Mineral. 2004, 42, 1443–1464. [Google Scholar]
- Yang, X.-M.; Lentz, D.R.; Chi, G.; Thorne, K.G. Geochemical characteristics of gold-related granitoids in southwestern New Brunswick, Canada. Lithos 2008, 104, 355–377. [Google Scholar]
- Ruitenberg, A.A.; Fyffe, L.R. Mineral deposits associated with granitoid intrusions and related subvolcanic stocks in New Brunswick and their relationship to Appalachian tectonic evolution. Canadian Institute of Mining and Metallurgy. Bulletin 1982, 75, 83–97. [Google Scholar]
- Pilote, J.L.; Barr, S.M.; Wilson, R.A.; McClenaghan, S.; Kamo, S.; McNicoll, V.J.; Bevier, M.L. Precise age and petrology of Silurian-Devonian plutons in the Benjamin River–Charlo area, northern New Brunswick. Atl. Geol. 2012, 48, 97–123. [Google Scholar] [CrossRef]
- Walker, J.A.; Gower, S.; McCutcheon, S.R. Antinouri-Nicholas Project, Gloucester and Restigouche Counties, Northern New Brunswick; Information Circular, 91; New Brunswick Department of Natural Resources and Energy, Mineral Resources: Fredericton, NB, Canada, 1991; pp. 87–100. [Google Scholar]
- Whalen, J.B.; Jenner, G.A.; Longstaffe, F.J.; Hegner, E. Nature and evolution of the eastern margin of lapetus: Geochemical and isotopic constraints from Siluro-Devonian granitoid plutons in the New Brunswick Appalachians. Can. J. Earth Sci. 1996, 33, 140–155. [Google Scholar] [CrossRef]
- Wanless, R.K.; Stevens, R.D.; LaChance, G.R.; DiLabio, R.N. K-Ar age determinations of samples from various areas of New Brunswick. In Age Determinations and Geological Studies. K-Ar Isotopic Ages, Report 10; Geological Survey of Canada: Ottawa, ON, Canada, 1972; Volume 71, pp. 68–77. [Google Scholar]
- Davis, W.; Chi, G.; Castonguay, S.; McLeod, M.J. Temporal Relationships Between Plutonism, Metamorphism, and Gold Mineralization in Southwestern New Brunswick: U–Pb and 40Ar-39Ar Geochronological Constraints; Geological Survey of Canada: Ottawa, ON, Canada, 2004; 20p. [Google Scholar]
- Butt, K.A. Genesis of Granitic Stocks in Southwestern New Brunswick. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 1976. [Google Scholar]
- Wilson, R.A. The Middle Paleozoic Rocks of Northern and Western New Brunswick, Canada; Memoir 4; New Brunswick Department of Energy and Resource Development, Geological Surveys Branch: Fredericton, NB, Canada, 2017; 319p. [Google Scholar]
- Yousefi, F.; Lentz, D.R.; Thorne, K.G.; McFarlane, C.R.; Cousens, B. Petrogenesis of Eagle Lake Granite and its associated Cu–Mo–Au mineralization, southwestern New Brunswick, Canada. Minerals 2023, 13, 594. [Google Scholar] [CrossRef]
- Yousefi, F.; White, T.; Lentz, D.R.; McFarlane, C.R.; Thorne, K.G. Middle Devonian Evandale porphyry Cu-Mo (Au) deposit, southwestern New Brunswick, Canada: Analysis of petrogenesis to potential as a source for distal intrusion-related epithermal gold mineralization. Ore Geol. Rev. 2023, 162, 105716. [Google Scholar] [CrossRef]
- Bevier, M.L.; Whalen, J.B. Tectonic significance of Silurian magmatism in the Canadian Appalachians. Geology 1990, 18, 411–414. [Google Scholar]
- Roddick, J.C.; Bevier, M.L. U-Pb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons, Canadian Appalachians. Chem. Geol. 1995, 119, 307–329. [Google Scholar]
- Massawe, R.J.; Lentz, D.R. Evaluation of crystallization and emplacement conditions of the McKenzie Gulch porphyry dykes using chemistry of rock-forming minerals: Implications for mineralization potential. Ore Geol. Rev. 2020, 116, 103256. [Google Scholar] [CrossRef]
- Forbes, E. New Brunswick. The Canadian Encyclopedia. 2024. Available online: https://www.thecanadianencyclopedia.ca/en/article/new-brunswick (accessed on 24 March 2025).
- Fyffe, L.R.; Thorne, K.G.; Dunning, G.R.; Martin, D.A. U–Pb geochronology of the Sisson Brook Granite Porphyry, York County, west-central New Brunswick. In Geological Investigations in New Brunswick for 2007; Martin, G.L., Ed.; New Brunswick Department of Natural Resources, Minerals, Policy and Planning Division: Fredericton, NB, Canada, 2008; Volume 1, pp. 35–54. [Google Scholar]
- Whalen, J.B. Geology, Petrography, and Geochemistry of Appalachian Granites in New Brunswick and Gaspésie, Québec; Geological Survey of Canada Bulletin: Ottawa, ON, Canada, 1993; Volume 436, 130p. [Google Scholar]
- Stephenson, E.M.; Meinert, L.D.; Mortensen, J.K.; Hussey, J. Age and skarn alteration of the Porphyry Mountain Cu-Mo deposit, Mines Gaspé, Québec. Geol. Soc. Am. Annu. Meet. Program Abstr. 1998, 30, 372. [Google Scholar]
- Marcelissen, M.; Hollings, P.; Cooke, D.R.; Baker, M.J.; Belousov, I.; Orovan, E.; Friedman, R. Geochronology of the Mines Gaspé porphyry deposit, Québec, Canada. Can. J. Earth Sci. 2024, 61, 876–893. [Google Scholar] [CrossRef]
- Government of New Brunswick. Mineral Occurrence Database. Available online: https://dnr-mrn.gnb.ca/mineraloccurrence/ (accessed on 18 March 2025).
- New Brunswick Department of Natural Resources and Energy Development. NB DNRED Mineral Occurrence Web App. ArcGIS. Available online: https://nbdnr.maps.arcgis.com/apps/webappviewer/index.html?id=9222d8a1ccf54f4a9655c9d7026112a3&locale=en (accessed on 18 March 2025).
- McLeod, M.J. Geology, Geochemistry, and Related Mineral Deposits of the Saint George Batholith, Charlotte, Queens, and Kings Counties, New Brunswick; Mineral Resources 5; New Brunswick, Natural Resources and Energy: Fredericton, NB, Canada, 1990; 169p. [Google Scholar]
- Yousefi, F. Petrogenetic Analysis of Arc-Related Devonian Magmatic Rocks in Relation to the Formation of Magmatic Hydrothermal Cu ± Mo ± Au Deposits in the New Brunswick Segment of the Northern Appalachians. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 2024. [Google Scholar]
- Wilson, R.A.; Kamo, S.L. Geochronology and lithogeochemistry of granitoid rocks from the central part of the Central plutonic belt, New Brunswick, Canada: Implications for Sn-W-Mo exploration. Atl. Geol. 2016, 52, 125–167. [Google Scholar] [CrossRef]
- McCutcheon, S.R.; Bevier, M.L. Implications of field relations and U-Pb geochronology for the age of gold mineralization and timing of Acadian deformation in northern New Brunswick. Atl. Geol. 1990, 26, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Bevier, M.L.; Barr, S.M. U-Pb age constraints on the stratigraphy and tectonic history of the Avalon terrane, New Brunswick, Canada. J. Geol. 1990, 98, 53–63. [Google Scholar]
- Mohammadi, N.; Lentz, D.R.; Thorne, K.G.; Walker, J.; Rogers, N.; Cousens, B.; McFarlane, C.R. U-Pb and Re-Os geochronology and lithogeochemistry of granitoid rocks from the Burnthill Brook area in central New Brunswick, Canada: Implications for critical mineral exploration. Geochemistry 2024, 84, 126087. [Google Scholar] [CrossRef]
- Heidarian, H. Examination of Mesothermal to Epithermal Orogenic-to Intrusion-Related Sb-Bearing Gold Systems in a Southern New Brunswick Segment of the Northern Appalachians. Ph.D. Thesis, University of New Brunswick, Fredericton, NB, Canada, 2022. [Google Scholar]
- Wilson, R.A. Geology of the McCormack Lake and Ten Mile Pool areas (NTS 21 O/10b and c), Restigouche County, New Brunswick. In Exploration and Mining New Brunswick; Merlini, S.A.A., Ed.; New Brunswick Department of Natural Resources, Minerals, Policy and Planning Division, Information Circular: Fredericton, NB, Canada, 2004; pp. 63–66. [Google Scholar]
- Azadbakht, Z.; Rogers, N.; Lentz, D.R.; McFarlane, C.R.M. Petrogenesis and associated mineralization of Acadian related granitoids in New Brunswick. In Targeted Geoscience Initiative; Natural Resources Canada: Saint John, NB, Canada, 2018; pp. 243–278. [Google Scholar]
- Feng, C.; Wang, H.; Lu, N.; Chen, T.; He, H.; Lu, Y.; Tu, X.M. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105–109. [Google Scholar]
- Hoffmann, G.; Klawonn, F.; Lichtinghagen, R.; Orth, M. The zlog value as a basis for the standardization of laboratory results. Lab. Med. 2017, 41 (Suppl. S1), 20170135. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, M.K.; Fu, N.; Liu, J.; Wang, J.; Srebric, J. Investigating the impact of data normalization methods on predicting electricity consumption in a building using different artificial neural network models. Sustain. Cities Soc. 2025, 118, 105570. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Mahmud, M.P.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Shakhovska, N.; Ilchyshyn, B.; Singh, K.K. Effect of data scaling methods on machine learning algorithms and model performance. Mathematics 2022, 10, 1942. [Google Scholar] [CrossRef]
- DIGIS Team. JETOA_ADAKITE.csv: GEOROC Compilation: Rock Types, version 1; Göttingen Research Online/Data: Göttingen, Germany, 2021. [Google Scholar] [CrossRef]
- Cooke, R.; Agnew, P.; Hollings, P.; Baker, M.; Chang, Z.; Wilkinson, J.J.; Ahmed, A.; White, N.C.; Zhang, L.; Thompson, J.; et al. Recent advances in the application of mineral chemistry to exploration for porphyry copper–gold–molybdenum deposits: Detecting the geochemical fingerprints and footprints of hypogene mineralization and alteration. Geochem. Explor. Environ. Anal. 2020, 20, 176–188. [Google Scholar]
- Yousefi, F.; Lentz, D.R.; McFarlane, C.R.; Walker, J.A.; Thorne, K.G. Zircon compositional systematics from Devonian oxidized I-type granitoids: Examination of porphyry Cu fertility indices in the New Brunswick Appalachians, Canada. Front. Earth Sci. 2024, 12, 1363029. [Google Scholar]
- Lu, Y.-J.; Loucks, R.R.; Fiorentini, M.; McCuaig, T.C.; Evans, N.J.; Yang, Z.-M.; Hou, Z.-Q.; Kirkland, C.L.; Parra-Avila, L.A.; Kobussen, A. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. In Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J.P., Ed.; Special Publication No. 19; Society of Economic Geologists: Littleton, CO, USA, 2016; pp. 1–57. [Google Scholar]
- Mackenzie, W.S.; Cox, K.G.; Bell, J.D.; Pankhurst, R.J. The Interpretation of Igneous Rocks; George Allen and Unwin: Crows Nest, Australia, 1979. [Google Scholar]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 134, 304–316. [Google Scholar] [CrossRef]
- Falloon, T.J.; Danyushevsky, L.V.; Crawford, A.J.; Meffre, S.; Woodhead, J.D.; Bloomer, S.H. Boninites and adakites from the northern termination of the Tonga Trench: Implications for adakite petrogenesis. J. Petrol. 2008, 49, 697–715. [Google Scholar] [CrossRef]
- Archibald, D.B.; Murphy, J.B. A slab failure origin for the Donegal composite batholith, Ireland as indicated by trace-element geochemistry. Geol. Soc. London Spéc. Publ. 2021, 503, 347–370. [Google Scholar] [CrossRef]
- Du, J.-G.; Du, Y.-S.; Cao, Y. Important role of hornblende fractionation in generating the adakitic magmas in Tongling, Eastern China: Evidence from amphibole megacryst and cumulate xenoliths and host gabbros. Int. Geol. Rev. 2018, 60, 1381–1403. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.-F.; Zhao, Z.-H.; Bao, Z.-W.; Xu, W.; Xiong, X.-L. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem. J. 2004, 38, 417–434. [Google Scholar] [CrossRef]
- Akame, J.M.; Oliveira, E.P.; Poujol, M.; Hublet, G.; Debaille, V. LA–ICP–MS zircon U Pb dating, Lu Hf, Sm Nd geochronology and tectonic setting of the Mesoarchean mafic and felsic magmatic rocks in the Sangmelima granite-greenstone terrane, Ntem Complex (South Cameroon). Lithos 2020, 372, 105702. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Special Paper: Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Goss, A.R.; Kay, S.M. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28° S, ~68° W). Earth and Planetary. Sci. Lett. 2009, 279, 97–109. [Google Scholar] [CrossRef]
- Condie, K.C. TTGs and adakites: Are they both slab melts? Lithos 2005, 80, 33–44. [Google Scholar] [CrossRef]
- Xu, W.C.; Zhang, H.F.; Luo, B.J.; Guo, L.; Yang, H. Adakite-like geochemical signature produced by amphi-bole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos 2015, 232, 197–210. [Google Scholar] [CrossRef]
- Bebout, G.E.; Ryan, J.G.; Leeman, W.P.; Bebout, A.E. Fractionation of trace elements by subduction-zone metamorphism—Effect of convergent-margin thermal evolution. Earth Planet. Sci. Lett. 1999, 171, 63–81. [Google Scholar] [CrossRef]
- Wang, Q.; Wyman, D.A.; Xu, J.; Wan, Y.; Li, C.; Zi, F.; Jiang, Z.; Qiu, H.; Chu, Z.; Zhao, Z.; et al. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contrib. Mineral. Petrol. 2008, 155, 473–490. [Google Scholar] [CrossRef]
- Dokuz, A.; Uysal, I.; Siebel, W.; Turan, M.; Duncan, R.; Akçay, M. Post-collisional adakitic volcanism in the eastern part of the Sakarya Zone, Turkey: Evidence for slab and crustal melting. Contrib. Miner. Pet. 2013, 166, 1443–1468. [Google Scholar] [CrossRef]
- Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 2005, 46, 921–944. [Google Scholar] [CrossRef]
- Castillo, P.R. Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geol. Soc. Am. Bull. 2008, 120, 451–462. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, X.; Wang, Q.; Bai, Z.; Qiao, Y. Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites. Gondwana Res. 2009, 16, 216–226. [Google Scholar] [CrossRef]
- Yang, Z.; Cao, K. Post-collisional porphyry copper deposits in Tibet: An overview. Earth Sci. Rev. 2024, 258, 104954. [Google Scholar] [CrossRef]
- Zheng, S.; An, Y.; Lai, C.; Wang, H.; Li, Y. Genesis of high-Mg adakites in the southeastern margin of North China Craton: Geochemical and U-Pb geochronological perspectives. Front. Earth Sci. 2021, 9, 731233. [Google Scholar] [CrossRef]
- Kerrich, R.; Said, N.; Manikyamba, C.; Wyman, D. Sampling oxygenated Archean hydrosphere: Implications from fractionations of Th/U and Ce/Ce* in hydrothermally altered volcanic sequences. Gondwana Res. 2013, 23, 506–525. [Google Scholar] [CrossRef]
- Chiaradia, M. Magmatic controls on metal endowments of porphyry Cu-Au deposits. In Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards; Sholeh, A., Wang, R., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2021; Volume 1, pp. 1–24. [Google Scholar]
- Wells, T.J.; Meffre, S.; Cooke, D.R.; Steadman, J.; Hoye, J.L. Assessment of magmatic fertility using pXRF on altered rocks from the Ordovician Macquarie Arc, New South Wales. Aust. J. Earth Sci. 2021, 68, 397–409. [Google Scholar] [CrossRef]
- Ponyalou, O.L.; Petterson, M.G.; Espi, J.O. The petrology and geochemistry of REE-enriched, alkaline volcanic rocks of Ambitle Island, Feni Island Group, Papua New Guinea. Geosciences 2023, 13, 339. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B Methodol. 1958, 20, 215–242. Available online: https://www.jstor.org/stable/2983890 (accessed on 24 March 2025).
- Petrelli, M. Machine learning in petrology: State-of-the-art and future perspectives. J. Pet. 2024, 65, egae036. [Google Scholar] [CrossRef]
- Petrelli, M.; Perugini, D. Solving petrological problems through machine learning: The study case of tectonic discrimination using geochemical and isotopic data. Contrib. Mineral. Petrol. 2016, 171, 57. [Google Scholar] [CrossRef]
- Petrelli, M.; Bizzarri, R.; Morgavi, D.; Baldanza, A.; Perugini, D. Combining machine learning techniques, microanalyses, and large geochemical datasets for tephrochronological studies in complex volcanic areas: New age constraints for the Pleistocene magmatism of central Italy. Quat. Geochronol. 2017, 40, 33–44. [Google Scholar] [CrossRef]
- Lacassie, J.P.; del Solar, J.R.; Roser, B.; Hervé, F. Visualization of volcanic rock geochemical data and classification with artificial neural networks. Math. Geol. 2006, 38, 697–710. [Google Scholar] [CrossRef]
- Das, P.; Iyer, S.D. Geochemical characterization of oceanic basalts using artificial neural networks. Geochem. Trans. 2009, 10, 1. [Google Scholar] [CrossRef]
- Schönig, J.; von Eynatten, H.; Tolosana-Delgado, R.; Meinhold, G. Garnet major-element composition as an indicator of host-rock type: A machine learning approach using the random forest classifier. Contrib. Miner. Pet. 2021, 176, 98. [Google Scholar] [CrossRef]
- Weber, G.; Blundy, J. A machine learning-based thermobarometer for magmatic liquids. J. Pet. 2024, 65, egae020. [Google Scholar] [CrossRef]
- Hussain, J.; Zafar, T.; Fu, X.; Ali, N.; Chen, J.; Frontalini, F.; Hussain, J.; Lina, X.; Kontakiotis, G.; Koumoutsakou, O. Petrological controls on the engineering properties of carbonate aggregates through a machine learning approach. Sci. Rep. 2024, 14, 31948. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Wang, W.; Xu, F.; Qi, X.; Cui, Y. Lithology identification of igneous rocks based on XGBoost and conventional logging curves, a case study of the eastern depression of Liaohe Basin. J. Appl. Geophys. 2021, 195, 104480. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, Y.; Deng, H. Gradient boosting decision tree for lithology identification with well logs: A case study of Zhaoxian gold deposit, Shandong Peninsula, China. Nat. Resour. Res. 2021, 30, 3197–3217. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, Z.; Costa, F. Insights on source lithology and pressure-temperature conditions of basalt generation using machine learning. Earth Space Sci. 2024, 11, e2024EA003732. [Google Scholar] [CrossRef]
- Itano, K.; Ueki, K.; Iizuka, T.; Kuwatani, T. Geochemical discrimination of monazite source rock based on machine learning techniques and multinomial logistic regression analysis. Geosciences 2020, 10, 63. [Google Scholar] [CrossRef]
- Duan, Y.; Xie, J.; Su, Y.; Liang, H.; Hu, X.; Wang, Q.; Pan, Z. Application of the decision tree method to lithology identification of volcanic rocks-taking the Mesozoic in the Laizhouwan Sag as an example. Sci. Rep. 2020, 10, 19209. [Google Scholar] [CrossRef] [PubMed]
- Ståhle, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: Burlington, MA, USA, 1992; Volume 1. [Google Scholar]
- Gini, C.W. Variability and Mutability, Contribution to the Study of Statistical Distributions and Relations; Studi Economico-Giuridici della R. Universita de Cagliari: Cagliari, Italy, 1912. [Google Scholar]
- Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London Edinb. Dublin Philos. Mag. J. Sci. 1900, 50, 157–175. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings 1992; Morgan Kaufmann: Burlington, MA, USA, 1992; pp. 249–256. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- ACTLabs. Home. Available online: https://actlabs.com/ (accessed on 24 March 2025).
- Norrish, K.; Hutton, J. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 1969, 33, 431–453. [Google Scholar] [CrossRef]
- Hoffman, E.L. Instrumental neutron activation in geoanalysis. J. Geochem. Explor. 1992, 44, 297–319. [Google Scholar] [CrossRef]
- Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002, 6, 429–449. [Google Scholar] [CrossRef]
- Dietterich, T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 1995, 27, 326–327. [Google Scholar] [CrossRef]
- Mavrogiorgos, K.; Kiourtis, A.; Mavrogiorgou, A.; Menychtas, A.; Kyriazis, D. Bias in machine learning: A literature review. Appl. Sci. 2024, 14, 8860. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Guo, Z.-F.; Wilson, M.; Liu, J. Post-collisional adakites in South Tibet: Products of partial melting of subduction-modified lower crust. Lithos 2007, 96, 205–224. [Google Scholar] [CrossRef]
- Guo, F.; Fan, W.; Li, C. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: Magma genesis and implications for crustal recycling beneath continental collisional orogens. Geol. Mag. 2006, 143, 1–13. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Y.J.; McCuaig, T.C.; Zheng, Y.Y.; Chang, H.F.; Guo, F.; Xu, L.J. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol. 2018, 59, 341–386. [Google Scholar] [CrossRef]
- Hu, Y.B.; Liu, J.Q.; Ling, M.X.; Liu, Y.; Ding, X.; Liu, D.Y.; Sun, W.D. Constraints on the origin of adakites and porphyry Cu-Mo mineralization in Chongjiang, Southern Gangdese, the Tibetan Plateau. Lithos 2017, 292, 424–436. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, F.; Xu, Z.; Li, W.; Wang, X.; Liu, A.; Jiang, L.; Li, S.; Jiang, X.; Yan, Q.; et al. The origin of Gangjiang adakite-like intrusions and associated porphyry Cu–Mo mineralization in the central Gangdese porphyry Cu belt, southern Tibet. Ore Geol. Rev. 2024, 172, 106190. [Google Scholar] [CrossRef]
- Yang, Z.-M.; Lu, Y.-J.; Hou, Z.-Q.; Chang, Z.-S. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Pet. 2015, 56, 227–254. [Google Scholar] [CrossRef]
- Yang, Z.M.; Goldfarb, R.; Chang, Z.S. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate. Soc. Econ. Geol. Spec. Publ. 2016, 19, 279–300. [Google Scholar]
- Ou, Q.; Wang, Q.; Wyman, D.A.; Zhang, H.X.; Yang, J.H.; Zeng, J.P.; Hao, L.-L.; Chen, Y.-W.; Liang, H.; Qi, Y. Eocene adakitic porphyries in the central-northern Qiangtang Block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. J. Geophys. Res. Solid Earth 2017, 122, 1025–1053. [Google Scholar] [CrossRef]
- Naqvi, S.M.; Sarma, D.S.; Sawkar, R.H.; Mohan, M.R.; Prathap Rana, J.G.R. Role of adakitic magmatism and subduction in gold environment of Dharwar Neoarchaean greenstone belts, India. J. Geol. Soc. India 2008, 71, 875–888. [Google Scholar]
- González-Partida, E.; LeVresse, G.; Carrillo-Chávez, A.; Cheilletz, A.; Gasquet, D.; Jones, D. Paleocene adakite Au–Fe bearing rocks, Mezcala, Mexico: Evidence from geochemical characteristics. J. Geochem. Explor. 2003, 80, 25–40. [Google Scholar] [CrossRef]
- Polat, A.; Kerrich, R. Archean greenstone belt magmatism and the continental growth–mantle evolution connection: Constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa Subprovince, Superior Province, Canada. Earth Planet. Sci. Lett. 2000, 175, 41–54. [Google Scholar] [CrossRef]
- Polat, A.; Kerrich, R. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa Greenstone Belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contrib. Miner. Pet. 2001, 141, 36–52. [Google Scholar] [CrossRef]
- Bourdon, E.; Eissen, J.-P.; Gutscher, M.-A.; Monzier, M.; Samaniego, P.; Robin, C.; Bollinger, C.; Cotten, J. Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone : Adakites and high-Mg andesites from Pichincha volcano (Ecuador). BSGF-Earth Sci. Bull. 2002, 173, 195–206. [Google Scholar] [CrossRef]
- Chiaradia, M.; Müntener, O.; Beate, B. Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). J. Pet. 2011, 52, 1107–1141. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, Z.; Wei, R.; Zhao, R. Post-collisional adakitic porphyries in Tibet: Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geol. Sin. Geol. 2003, 77, 194–203. [Google Scholar] [CrossRef]
- Gao, Y.; Hou, Z.; Kamber, B.S.; Wei, R.; Meng, X.; Zhao, R. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib. Miner. Pet. 2007, 153, 105–120. [Google Scholar] [CrossRef]
- Feizi, F.; Karbalaei-Ramezanali, A.A.; Farhadi, S. Application of multivariate regression on magnetic data to determine further drilling site for iron exploration. Open Geosci. 2021, 13, 138–147. [Google Scholar] [CrossRef]
- Karbalaeiramezanali, A.; Parsa, M.; Lentz, D.R.; Thorne, K.G. Prospectivity modeling of Devonian intrusion-related W–Mo–Sb–Au deposits in the Pokiok Plutonic Suite, West-Central New Brunswick, Canada, using a Monte Carlo-based framework. Nat. Resour. Res. 2025, 34, 669–702. [Google Scholar] [CrossRef]
- Dramsch, J.S. 70 years of machine learning in geoscience in review. Adv. Geophys. 2020, 61, 1–55. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2018, 31, 1544–1554. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef]
Intrusion | Age | Mineral Occurrence |
---|---|---|
Nashwaak | 420.7 ± 1.8 Ma, U-Pb zircon, Late Silurian-Early Devonian [43] | — |
Mulligan Gulch | 419 ± 1 Ma, U-Pb zircon, Early Devonian [44] | Au |
Meto’mqwijuig Mountain | 415 ± 0.5 Ma, U-Pb zircon, Early Devonian [24] | — |
Hartfield | 415 ± 2 Ma, U-Pb titanite, Early Devonian [31] | Cu-Au-Mo |
Hawkshaw | 411 ± 1 Ma, U-Pb on titanite, Early Devonian [45] | W-Mo-Au |
Skiff Lake | 409 ± 2 Ma, U-Pb zircon, Early Devonian [31] | Mo |
Magaguadavic | 403 ± 2 Ma, U-Pb zircon, Early Devonian [26] | Cu-Mo-Au |
Allandale | 402 ± 1 Ma, U-Pb monazite, Early Devonian [31] | Be-W-Au |
Blue Mountain Granodiorite Suite | 400.7 ± 0.4 Ma, U-Pb zircon, Early Devonian [22] | Cu, Au, Mo |
Falls Creek | 394 ± 2 Ma, U-Pb zircon, Early Devonian (more details in [46]) | Mo, W |
Evandale | 391.2 ± 3.2 Ma, U-Pb zircon, Middle Devonian [29] | Cu-Mo |
McKenzie Gulch dykes | 386.2 ± 3.1 and 386.4 ± 3.3 Ma, U-Pb zircon, Late Devonian [32] | Cu-Ag-Au |
Popelogan (Cu-Mo), which is related to the Red Brook Granodiorite | 383 + 1/−3 Ma, U-Pb zircon, Late Devonian [DL] | Cu-Mo |
Nicholas Denys | 381 ± 4 Ma, U-Pb zircon, Late Devonian [23] | Mo-Cu-Fe |
Sorrel Ridge | 378.5 ± 3.0 Ma, U-Pb zircon, Late Devonian [47] | Cu-Mo, Sn, W |
Rivière Verte | 368 ± 2 Ma, U-Pb zircon, Late Devonian [28] | Cu-Mo |
Patapedia | 364.4 ± 0.4 Ma, U-Pb zircon, Late Devonian (V. McNicoll, in [48]) | Cu-Zn-Pb |
Eagle Lake | 360 ± 5 Ma, U-Pb zircon, Late Devonian [28] | Cu-Mo-Au |
Quisibis porphyry | undated | Cu-Mo |
Sugarloaf | undated | — |
Ranks | Variables | ANOVA | Info. Gain | Gain Ratio | Gini | χ2 | ReliefF | Scores |
---|---|---|---|---|---|---|---|---|
1 | Gd | 233.715 | 0.618 | 0.309 | 0.324 | 76.469 | 0.186 | 0.982 |
2 | Dy | 135.944 | 0.567 | 0.283 | 0.306 | 74.223 | 0.110 | 0.803 |
3 | Hf | 116.380 | 0.594 | 0.297 | 0.314 | 85.731 | 0.073 | 0.797 |
4 | La | 123.147 | 0.543 | 0.272 | 0.294 | 78.748 | 0.071 | 0.749 |
5 | Ho | 126.758 | 0.524 | 0.262 | 0.287 | 67.687 | 0.105 | 0.746 |
6 | Ce | 118.828 | 0.514 | 0.257 | 0.281 | 74.223 | 0.080 | 0.723 |
7 | Th | 104.741 | 0.503 | 0.252 | 0.271 | 74.678 | 0.086 | 0.708 |
8 | Ga | 13.501 | 0.486 | 0.244 | 0.268 | 61.920 | 0.154 | 0.669 |
9 | Pr | 107.823 | 0.444 | 0.222 | 0.245 | 65.575 | 0.072 | 0.634 |
10 | Zr | 91.049 | 0.372 | 0.186 | 0.215 | 59.762 | 0.089 | 0.572 |
11 | Nd | 72.105 | 0.392 | 0.196 | 0.214 | 59.440 | 0.054 | 0.537 |
12 | U | 51.010 | 0.396 | 0.198 | 0.215 | 60.000 | 0.031 | 0.505 |
13 | Sm | 67.836 | 0.325 | 0.163 | 0.175 | 40.669 | 0.075 | 0.460 |
14 | Eu/Eu* | 47.822 | 0.289 | 0.145 | 0.172 | 39.199 | 0.057 | 0.406 |
15 | Rb | 55.789 | 0.252 | 0.126 | 0.125 | 30.367 | 0.091 | 0.381 |
16 | (Eu/Eu*)/Y | 30.182 | 0.302 | 0.151 | 0.159 | 31.519 | 0.050 | 0.372 |
17 | Ta | 52.113 | 0.277 | 0.138 | 0.157 | 36.690 | 0.031 | 0.366 |
18 | Rb/Sr | 19.566 | 0.308 | 0.154 | 0.163 | 42.844 | 0.015 | 0.361 |
19 | Sr | 59.759 | 0.211 | 0.106 | 0.132 | 36.027 | 0.071 | 0.358 |
20 | Ce/Nd | 0.665 | 0.301 | 0.151 | 0.182 | 49.886 | 0.000 | 0.354 |
21 | Rb/Th | 42.107 | 0.281 | 0.141 | 0.175 | 27.312 | 0.030 | 0.352 |
22 | Nb | 68.889 | 0.214 | 0.107 | 0.129 | 35.623 | 0.053 | 0.348 |
23 | Al2O3 | 45.813 | 0.188 | 0.094 | 0.116 | 32.232 | 0.097 | 0.343 |
24 | Cs | 41.100 | 0.219 | 0.110 | 0.118 | 27.040 | 0.078 | 0.331 |
25 | K2O/Na2O | 23.702 | 0.277 | 0.138 | 0.156 | 21.207 | 0.040 | 0.323 |
26 | Th/La | 35.438 | 0.233 | 0.117 | 0.136 | 33.286 | 0.035 | 0.317 |
27 | La/Sm | 45.109 | 0.213 | 0.107 | 0.133 | 36.338 | 0.026 | 0.310 |
28 | CaO | 18.511 | 0.228 | 0.114 | 0.133 | 22.171 | 0.066 | 0.307 |
29 | K2O | 22.367 | 0.198 | 0.099 | 0.105 | 15.669 | 0.109 | 0.305 |
30 | MnO | 44.093 | 0.184 | 0.092 | 0.113 | 29.356 | 0.064 | 0.303 |
31 | Sr/Y | 38.322 | 0.177 | 0.089 | 0.105 | 25.977 | 0.051 | 0.273 |
32 | SiO2 | 27.911 | 0.173 | 0.087 | 0.109 | 21.207 | 0.055 | 0.260 |
33 | Eu | 32.005 | 0.182 | 0.091 | 0.098 | 25.021 | 0.044 | 0.259 |
34 | Y/MgO | 11.956 | 0.201 | 0.101 | 0.127 | 33.286 | 0.012 | 0.258 |
35 | Fe2O3T | 32.708 | 0.124 | 0.062 | 0.082 | 11.663 | 0.113 | 0.256 |
36 | Y | 28.925 | 0.188 | 0.094 | 0.098 | 14.661 | 0.047 | 0.243 |
37 | MgO | 22.192 | 0.147 | 0.073 | 0.094 | 16.499 | 0.061 | 0.230 |
38 | Er | 24.205 | 0.201 | 0.100 | 0.107 | 10.967 | 0.029 | 0.228 |
39 | Yb | 27.683 | 0.170 | 0.085 | 0.094 | 14.661 | 0.031 | 0.216 |
40 | La/Yb | 25.948 | 0.121 | 0.060 | 0.071 | 14.661 | 0.067 | 0.209 |
41 | Lu | 16.351 | 0.189 | 0.095 | 0.116 | 3.512 | 0.023 | 0.201 |
42 | Nb/Y | 0.086 | 0.118 | 0.059 | 0.077 | 4.128 | 0.087 | 0.189 |
43 | Th/Ta | 10.093 | 0.133 | 0.067 | 0.086 | 23.692 | 0.012 | 0.180 |
44 | V | 15.625 | 0.125 | 0.062 | 0.079 | 14.464 | 0.031 | 0.175 |
45 | Nb/Ta | 0.654 | 0.142 | 0.071 | 0.088 | 22.817 | 0.007 | 0.173 |
46 | Ba | 16.685 | 0.122 | 0.061 | 0.072 | 11.840 | 0.035 | 0.169 |
47 | Zr/Nb | 4.607 | 0.036 | 0.018 | 0.024 | 3.969 | 0.112 | 0.143 |
48 | Na2O | 14.982 | 0.057 | 0.029 | 0.036 | 9.963 | 0.057 | 0.131 |
49 | P2O5 | 2.841 | 0.066 | 0.033 | 0.044 | 3.133 | 0.056 | 0.117 |
50 | Ce/Ce* | 11.482 | 0.085 | 0.042 | 0.052 | 13.497 | 0.010 | 0.116 |
51 | Sm/Yb | 1.550 | 0.096 | 0.048 | 0.064 | 1.542 | 0.021 | 0.108 |
52 | TiO2 | 5.791 | 0.073 | 0.036 | 0.048 | 0.115 | 0.027 | 0.092 |
53 | Cs/Th | 0.050 | 0.078 | 0.039 | 0.048 | 4.072 | 0.017 | 0.090 |
54 | Rb/Y | 3.867 | 0.046 | 0.023 | 0.031 | 6.428 | 0.027 | 0.080 |
55 | Zr/Sm | 2.319 | 0.004 | 0.002 | 0.003 | 0.217 | 0.074 | 0.072 |
56 | Ce/(Nd×Y) | 0.665 | 0.077 | 0.039 | 0.049 | 1.479 | 0.000 | 0.070 |
57 | Sr/MnO | 0.436 | 0.009 | 0.004 | 0.006 | 0.488 | 0.009 | 0.017 |
Model | AUC | CA | F1 | Precision | Recall | MCC |
---|---|---|---|---|---|---|
SVM | 0.91 | 0.88 | 0.89 | 0.88 | 0.89 | 0.87 |
Gradient boosting | 0.90 | 0.89 | 0.89 | 0.87 | 0.90 | 0.88 |
Random forest | 0.89 | 0.89 | 0.90 | 0.91 | 0.88 | 0.88 |
Neural network | 0.87 | 0.87 | 0.88 | 0.86 | 0.89 | 0.85 |
Decision tree | 0.88 | 0.88 | 0.87 | 0.86 | 0.89 | 0.86 |
AdaBoost | 0.88 | 0.87 | 0.88 | 0.85 | 0.88 | 0.85 |
Logistic regression | 0.88 | 0.85 | 0.86 | 0.84 | 0.87 | 0.82 |
Methods | Fertile | Barren | |
---|---|---|---|
SVM | Number | 491 | 338 |
% | 59.2 | 40.8 | |
Gradient boosting | Number | 448 | 381 |
% | 54.0 | 46.0 | |
Random forest | Number | 491 | 338 |
% | 59.2 | 40.8 | |
Neural network | Number | 382 | 447 |
% | 46.1 | 53.9 | |
Decision tree | Number | 484 | 345 |
% | 58.4 | 41.6 | |
AdaBoost | Number | 447 | 382 |
% | 53.9 | 46.1 | |
Logistic regression | Number | 226 | 603 |
% | 27.3 | 72.7 |
Place | Mineralization | Reference | Number of Fertile Samples | Total Number of Fertile Samples | Machine Learning Method | True Predicted as Fertile | Accuracy of Prediction (%) |
---|---|---|---|---|---|---|---|
South and Central Tibet | Cu-Au Porphyry and Epithermal deposits | [72,132,133] | 82 | 160 | SVM | 150 | 93.75 |
Dharwar Greenstone Belts of India | Orogenic Au deposits | [126] | 17 | Random forest | 136 | 85 | |
Guerrero Terrane of Southwestern Mexico | Au-Fe skarn deposits | [127] | 18 | Gradient boosting | 135 | 84.4 | |
Superior Province in Canada (Ontario and Quebec) | Porphyry-Epithermal-Skarn-REE deposits | [128,129] | 28 | Neural network | 135 | 84.4 | |
The Pichincha Volcano in Ecuador | Cu-Au porphyry and epithermal deposits | [130] | 2 | Decision tree | 132 | 82.5 | |
Sulu Belt in Eastern China | Cu porphyry deposits | [130] | 13 | AdaBoost | 131 | 81.88 | |
- | - | - | - | Logistic regression | 86 | 53.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbalaeiramezanali, A.; Yousefi, F.; Lentz, D.R.; Thorne, K.G. Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada. Minerals 2025, 15, 372. https://doi.org/10.3390/min15040372
Karbalaeiramezanali A, Yousefi F, Lentz DR, Thorne KG. Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada. Minerals. 2025; 15(4):372. https://doi.org/10.3390/min15040372
Chicago/Turabian StyleKarbalaeiramezanali, Amirabbas, Fazilat Yousefi, David R. Lentz, and Kathleen G. Thorne. 2025. "Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada" Minerals 15, no. 4: 372. https://doi.org/10.3390/min15040372
APA StyleKarbalaeiramezanali, A., Yousefi, F., Lentz, D. R., & Thorne, K. G. (2025). Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada. Minerals, 15(4), 372. https://doi.org/10.3390/min15040372