Predicting Manganese Mineralization Using Multi-Source Remote Sensing and Machine Learning: A Case Study from the Malkansu Manganese Belt, Western Kunlun
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Data Acquisition and Preprocessing
3.1.1. GF-2 Remote Sensing Data
3.1.2. Sentinel-2 Remote Sensing Data
3.1.3. Landsat-8 Remote Sensing Data
3.1.4. ASTER Remote Sensing Data
3.2. Research Methods
3.2.1. Alteration Information Extraction
- (1)
- Principal Component Analysis (PCA).
- (2)
- Spectral Angle Mapper (SAM).
3.2.2. Remote Sensing Geological Interpretation
3.2.3. Machine Learning
- (1)
- Random Forest (RF).
- (2)
- Naïve Bayes (NB).
- (3)
- eXtreme Gradient Boosting (XGBoost).
- (4)
- Receiver Operating Characteristic Curve (ROC).
4. Predictive Factors
4.1. Geologic Factor
4.1.1. Stratum Lithology
4.1.2. Regional Structure
4.2. Orographic Factor
4.3. Spectral Features
4.4. Alteration Anomaly Information
4.4.1. Alteration Information Extraction Based on PCA
4.4.2. Alteration Information Extraction Based on SAM
5. Predictive Modeling
5.1. Selection and Establishment of Training Samples
5.2. Model Construction
5.3. Evaluation of Model Accuracy
5.4. Metallogenic Prediction Results
- (1)
- Random Forest Model: The high favorability and very high favorability zones occupy the smallest area proportions, covering 0.87% and 0.23% of the study area, respectively, with distribution probabilities slightly lower than those in the NB model. Regarding known mineral occurrences, eight mineral points are located within the high favorability or higher zones, two within the medium favorability zone, and three within the low and very low favorability zones. The proportion of mineral points in the medium favorability and above zones is 76.9%, the lowest among the three models.
- (2)
- Gaussian Naïve Bayes Model: The proportions of the high favorability and very high favorability zones are moderate, at 0.84% and 0.31% of the study area, respectively, with the latter representing the highest value among the three models. For known mineral occurrences, eight points are located in the high favorability or above zones, three in the medium favorability zone, and two in the low and very low favorability zones. The proportion of mineral points in the medium favorability and above zones is 84.6%.
- (3)
- eXtreme Gradient Boosting Model: The high favorability and very high favorability zones exhibit the largest area proportions, covering 1.24% and 0.20% of the study area, respectively. Among the known mineral occurrences, five points are located in the high and very high favorability zones, six in the medium favorability zone, and two in the low and very low favorability zones. The proportion of mineral points in the medium favorability and above zones is also 84.6%.
6. Discussion
6.1. Extraction of Remote Sensing Geological Information
6.2. Feature Factor Selection and Weight Analysis
6.3. Study on Metallogenic Prediction Model of Manganese Ore
6.4. Deficiency and Outlook
7. Conclusions
- By integrating multi-source remote sensing data, ore-controlling stratigraphy, linear structures, and alteration anomalies were extracted using PCA, MNF, ICA, SAM, and directional filtering techniques. This approach facilitated stratigraphic subdivision and clarified boundary delineations. High-density areas of linear structures demonstrated a strong spatial correlation with known deposits, indicating that manganese mineralization is influenced by regional tectonics. Additionally, the results indicated that alteration mainly occurs along faults, with iron staining, pyrolusite, and chloritization being especially significant for manganese mineralization.
- The results of the feature factor weighting indicate that the factors of structural density and stratigraphy have the greatest impact on mineralization in the study area, followed by the importance of three factors: Sb3/Sb8, NDRI, and iron staining anomalies.
- The multi-source mineralization information data were input into three models—RF, NB, and XGB—for training, yielding AUC values of 0.975, 0.983, and 0.916, respectively, with all three models demonstrating excellent performance. Using the natural break method to classify mineralization prediction probability levels, the advantages of the three models were integrated, successfully delineating eleven mineralization prospect areas. This confirms the effectiveness of the fusion of multi-source remote sensing information with machine learning methods, thereby providing new insights and directions for mineral exploration in the study area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, H.X.; He, T.; Chen, D.; Xiao, L. Geological Characteristics and Ore Searching Potential of Fengjiawan Manganese Mine, Zunyi, Guizhou, China. China Manganese Ind. 2024, 42, 31–36. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, P.; Zhang, H.K.; Jiang, J.S. The main types, distributionand current development of manganese ore deposits. Geol. China 2021, 48, 102–119. [Google Scholar]
- Cong, Y.; Dong, Q.J.; Xiao, K.Y.; Chen, J.P.; Gao, Y.B.; Yin, J.N. Characteristics and predicted potential of Mn resources in China. Earth Sci. Front. 2018, 25, 118–137. [Google Scholar] [CrossRef]
- Deng, W.B.; Zhang, Y.W.; Kong, L.H.; Shang, L. Current status of manganese ore resources in China and selecting for national physical geological data of manganese ore deposits. China Min. 2019, 28, 175–182. [Google Scholar]
- Luo, H.B. The direction of prospecting for high quality manganese ore resources in China. Geol. Prospect. 2002, 38, 8–11. [Google Scholar]
- Yan, W.Z.; Liu, S.W.; Yang, L.Y.; Cao, Y.C.; An, D.J.; Huang, G.Y. Current Status and Technological Advances in Development and Utilizationof Manganese Resources. China Manganese Ind. 2024, 42, 16–21+26. [Google Scholar] [CrossRef]
- Gao, Y.; Bagas, L.; Liu, Y.; Li, W.; Hattori, K.; Papineau, D.; Jing, D.; Chen, D.; Teng, J.; He, Y.; et al. Discovery of Late Carboniferous High-Grade Carbonate-Hosted Manganese Mineralization in the Maerkansu Area of the Western Kunlun Orogen, Northwest China. Gondwana Res. 2024, 133, 129–147. [Google Scholar] [CrossRef]
- Ren, H.; Liu, M.; Wang, Z.G.; Wu, H.; Mao, J.W. Security of Manganese Resources and Industrial Chain in China. Strateg. Study CAE 2022, 24, 20–28. [Google Scholar] [CrossRef]
- Xu, S.Q.; Feng, J.; Feng, C.R.; Zhang, L.C.; Zhang, B.L. Geological Characteristics and Mineral Resource Potential Assessment of Manganese Deposits Belt of Maerkansu-Muhu in Western Kunlun. Xinjiang Geol. 2018, 36, 68–73. [Google Scholar]
- Zhang, B.L.; Zhang, L.C.; Feng, J.; Xu, S.Q.; Feng, C.R.; Hao, Y.H.; Zheng, M.T.; Peng, Z.D.; Dong, Z.G. Genesis of The Large-scale Orto Karnash Manganese Carbonate Deposit in the Malkansu District, Western Kunlun: Evidence from Geological Features. Geol. Rev. 2018, 64, 361–377. [Google Scholar] [CrossRef]
- Gao, Y.B.; Teng, J.X.; Li, W.Y.; Chen, D.H.; Sui, Q.L.; Jing, D.L.; He, Y.K.; Bai, J.K. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, Northwest China. Acta Petrol. Sin. 2018, 34, 2341–2358. [Google Scholar]
- Gao, Y.B.; Teng, J.X.; Chen, D.H.; Sui, Q.L. Metallogenic Geological Characteristics and Prospecting Direction of Maerkansu Manganese Ore Belt in West Kunlun, Xinjiang. Northwestern Geol. 2017, 50, 261–269. [Google Scholar] [CrossRef]
- Zha, B.; Xie, Z.M. Discovery and Significance of Aoertuokanashi-muhu Rich-Manganese Ore Belt in Xinjiang. Xinjiang Geol. 2018, 36, 102–105. [Google Scholar]
- Zha, B.; Zhang, L.C.; Zhang, B.L.; Dong, Z.G.; Wang, B.; Xie, Z.M. Geology Characteristic and Metallogenic Conditions of the Manganese Ore Belt in Maerkansu, Aketao, Xinjiang. Xinjiang Geol. 2019, 37, 75–84. [Google Scholar]
- Zhang, B.L.; Zhang, L.C.; Dong, Z.G.; Peng, Z.D.; Zhu, M.T.; Wang, C.L. Metallogenic regularity of Paleozoic sedimentary iron-manganese deposits in the northern segment of West Kunlun and its relationship with the evolution of the Proto-Paleo-Tethys Ocean. Geol. Sci. 2022, 57, 1047–1063. [Google Scholar]
- Zhang, L.C.; Zhang, B.L.; Dong, Z.G.; Xie, Y.Q.; Li, W.J.; Peng, Z.D.; Zhu, M.T.; Wang, C.L. Tectonic Setting and Metallogenetic Conditions of Carboniferous Malkansu Giant Manganese Belt in West Kunlun Orogen. J. Jilin Univ. Earth Sci. Ed. 2020, 50, 1340–1357. [Google Scholar] [CrossRef]
- Chen, D.H.; Sui, Q.L.; Guo, Z.P.; Zhao, X.J.; Teng, J.X.; Gao, Y.B. Sedimentary Environment of Mn-bearing Carbonate from the Muhu Manganese Deposit in Malkansu, West Kunlun: Evidences from Fusulinids and C-0-Sr lsotopes. Northwestern Geol. 2022, 55, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.C.; Dong, Z.G.; Zhang, B.L.; Li, W.J.; Peng, Z.D.; Wang, C.L.; Zhu, M.T. Controlling factors and “Malkansu style” metallogenetic model of high grade manganese ore in West Kunlun orogen. Acta Geol. Sin. 2022, 96, 3195–3210. [Google Scholar] [CrossRef]
- Dong, Z.G.; Zhang, L.C.; Dong, F.Y.; Zhang, B.L.; Xie, Y.Q.; Zha, B.; Peng, Z.D.; Wang, C.L. Geological Characteristics, Ore-Controlling Factors and Metallogenic Model of Muhu Manganese Deposit in West Kunlun, China. J. Jilin Univ. Earth Sci. Ed. 2020, 50, 1358–1372. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, S.; Lu, Y.; Xu, S.; Shu, Y.; Wang, Y. Productivity or Preservation? The Factors Controlling the Organic Matter Accumulation in the Late Katian through Hirnantian Wufeng Organic-Rich Shale, South China. Mar. Pet. Geol. 2019, 109, 22–35. [Google Scholar] [CrossRef]
- Li, W.-J.; Peng, Z.-D.; Dong, Z.-G.; Zhang, B.-L.; Gao, B.-Y.; Zhang, L.-C.; Zhu, M.-T.; Robbins, L.J.; Konhauser, K.O. Direct Re-Os dating of manganese carbonate ores and implications for the formation of the ortokarnash manganese deposit, northwest China. Econ. Geol. 2022, 117, 237–252. [Google Scholar] [CrossRef]
- Chen, D.H.; Sui, Q.L.; Zhao, X.J.; Jing, D.L.; Teng, J.X.; Gao, Y.B. Geology, Geochemical Characteristics, and Sedimentary Environment of Mn-bearing Carbonate from the Late Carboniferous Muhu Manganese Deposit in West Kunlun. Acta Sedimentol. Sin. 2019, 37, 477–490. [Google Scholar] [CrossRef]
- Zhang, Z.; Zuo, R.; Xiong, Y. A Comparative Study of Fuzzy Weights of Evidence and Random Forests for Mapping Mineral Prospectivity for Skarn-Type Fe Deposits in the Southwestern Fujian Metallogenic Belt, China. Sci. China Earth Sci. 2016, 59, 556–572. [Google Scholar] [CrossRef]
- Yin, J.; Li, N. Ensemble Learning Models with a Bayesian Optimization Algorithm for Mineral Prospectivity Mapping. Ore Geol. Rev. 2022, 145, 104916. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-Based Mineral Prospectivity Mapping Using Machine Learning Methods: A Case Study from Tongling Ore District, Eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Sun, X.; Deng, J.; Gong, Q.; Wang, Q.; Yang, L.; Zhao, Z. Kohonen Neural Network and Factor Analysis Based Approach to Geochemical Data Pattern Recognition. J. Geochem. Explor. 2009, 103, 6–16. [Google Scholar] [CrossRef]
- Prado, E.M.G.; De Souza Filho, C.R.; Carranza, E.J.M.; Motta, J.G. Modeling of Cu-Au Prospectivity in the Carajás Mineral Province (Brazil) through Machine Learning: Dealing with Imbalanced Training Data. Ore Geol. Rev. 2020, 124, 103611. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, J.; Cheng, B.; Liu, Y.; Qiao, K.; Cui, X.; Yin, Y.; Li, C. Spatial Analysis of Structure and Metal Mineralization Based on Fractal Theory and Fry Analysis: A Case Study in Nenjiang−Heihe Metallogenic Belt. Minerals 2023, 13, 313. [Google Scholar] [CrossRef]
- Liu, D.C.; Ye, F.W.; Zhao, Y.J.; Yang, X.; Yi, P.Y.; Dong, X.Z. Comprehensive Study and Deepened Application of Remote Sensing Information:A Case Study of Uranium Exploration. Remote Sens. Nat. Resour. 2011, 90, 14–19. [Google Scholar]
- Wang, R.S.; Xiong, S.Q.; Nie, H.F.; Liang, S.N.; Qi, Z.R.; Yang, J.Z.; Yan, B.K.; Zhao, F.Y.; Fan, J.H.; Tong, L.Q.; et al. Remote sensing geological exploration technology and application research. Acta Geol. Sin. 2011, 85, 1699–1743. [Google Scholar]
- AlKashghari, W.A.; Matsah, M.; Baggazi, H.M.; EL-Sawy, E.-S.K.; Elfakharani, A.; El-Shafei, M.K. Detection of Alteration Zones Using ASTER Imagery and Geological Field Observations: Al Wajh Area, Northwestern Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2020, 13, 763. [Google Scholar] [CrossRef]
- Fan, Y.-H.; Wang, H. Application of Remote Sensing to Identify Copper–Lead–Zinc Deposits in the Heiqia Area of the West Kunlun Mountains, Chinas. Sci. Rep. 2020, 10, 12309. [Google Scholar] [CrossRef]
- Esmaeili, S.; Tangestani, M.H.; Tayebi, M.H. Sub-Pixel Mapping of Copper- and Iron-Bearing Metamorphic Rocks Using ASTER Data: A Case Study of Toutak and Surian Complexes, NE Shiraz, Iran. Nat. Resour. Res. 2020, 29, 2933–2948. [Google Scholar] [CrossRef]
- Takodjou Wambo, J.D.; Pour, A.B.; Ganno, S.; Asimow, P.D.; Zoheir, B.; Salles, R.D.R.; Nzenti, J.P.; Pradhan, B.; Muslim, A.M. Identifying High Potential Zones of Gold Mineralization in a Sub-Tropical Region Using Landsat-8 and ASTER Remote Sensing Data: A Case Study of the Ngoura-Colomines Goldfield, Eastern Cameroon. Ore Geol. Rev. 2020, 122, 103530. [Google Scholar] [CrossRef]
- He, L.; Lyu, P.; He, Z.; Zhou, J.; Hui, B.; Ye, Y.; Hu, H.; Zeng, Y.; Xu, L. Identification of Radioactive Mineralized Lithology and Mineral Prospectivity Mapping Based on Remote Sensing in High-Latitude Regions: A Case Study on the Narsaq Region of Greenland. Minerals 2022, 12, 692. [Google Scholar] [CrossRef]
- Lyu, P.; He, L.; He, Z.; Liu, Y.; Deng, H.; Qu, R.; Wang, J.; Zhao, Y.; Wei, Y. Research on Remote Sensing Prospecting Technology Based on Multi-Source Data Fusion in Deep-Cutting Areas. Ore Geol. Rev. 2021, 138, 104359. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhang, S.T.; Chu, G.B.; Zhang, Y.; Cheng, J.M.; Tian, J.; Han, J.S. The short wave infrared (SWlR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China. Acta Petrol. Sin. 2019, 35, 3629–3643. [Google Scholar]
- Huang, J.H.; Chen, H.Y.; Han, J.S.; Lu, W.J.; Zhang, W.F. Spacial and temporal characteristics of mineralization and alteration zonation of the Honghai VMS Cu-Zn deposit in the Kalatag District, EastTianshan, NW China. Geochimica. 2016, 45, 582–600. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Cheng, Q.; Carranza, E.J.M. GIS-Based Mineral Potential Modeling by Advanced Spatial Analytical Methods in the Southeastern Yunnan Mineral District, China. Ore Geol. Rev. 2015, 71, 735–748. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Mapping Mineral Prospectivity Using an Extreme Learning Machine Regression. Ore Geol. Rev. 2017, 80, 200–213. [Google Scholar] [CrossRef]
- Esmaeiloghli, S.; Tabatabaei, S.H.; Carranza, E.J.M. Spatio-Geologically Informed Fuzzy Classification: An Innovative Method for Recognition of Mineralization-Related Patterns by Integration of Elemental, 3D Spatial, and Geological Information. Nat. Resour. Res. 2021, 30, 989–1010. [Google Scholar] [CrossRef]
- Xiao, K.Y.; Sun, L.; Li, N.; Wang, K.; Fan, J.F.; Ding, J.H. Mineral resources assessment under the thought of big data. Geol. Bull. China 2015, 34, 1266–1272. [Google Scholar]
- Qin, Y.; Wen, G.G.; Li, D.P. The discovery and significance of high-quality manganese-rich ore in Aketao area of West Kunlun, Xinjiang. West-China Explor. Eng. 2014, 26, 112–115. [Google Scholar]
- Wang, A.T.; Gao, Y.B.; Sun, J.G.; Chen, D.H.; Guo, Z.P.; Wang, Z.F.; Qian, J.L. Metallogenic prediction of manganese deposits with weighting of evidence based on MRAS in Maerkansu area, West Kunlun. Miner. Explor. 2024, 15, 428–434. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Lv, Z.-C.; Dong, Z.-G.; Zhang, X.; Yu, X.-F.; Li, Y.-S.; Zhen, S.-M.; Wang, C.-L. Source Characteristics of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains. Minerals 2022, 12, 786. [Google Scholar] [CrossRef]
- Li, X.Q.; Ni, B.; Peng, X. Analysis and Comparison of Extracting Manganese Mineralization Information from OLl and GF-2 Data:An Example of the Malkansu Manganese Mine in West Kunlun, Xinjiang. Geol. Prospect. 2020, 56, 1040–1049. [Google Scholar]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Pei, Q.M.; Sehn, J.L.; Wang, S.M.; Fang, D.R.; Gao, Y.Z.; Li, D.; Ma, S.B. Exploring Luorite Veins Using Multi-source Remote Sensing Astellite Data:A Case Study from the Shuitou Fluorite Deposit in Inner Mongolia, China. Northwestern Geol. 2024, 57, 121–134. [Google Scholar]
- Mami Khalifani, F.; Bahroudi, A.; Aliyari, F.; Abedi, M.; Yousefi, M.; Mohammadpour, M. Generation of an Efficient Structural Evidence Layer for Mineral Exploration Targeting. J. Afr. Earth Sci. 2019, 160, 103609. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Chang, C.-I. New Hyperspectral Discrimination Measure for Spectral Characterization. Opt. Eng. 2004, 43, 1777. [Google Scholar] [CrossRef]
- Keshava, N. Distance Metrics and Band Selection in Hyperspectral Processing with Applications to Material Identification and Spectral Libraries. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1552–1565. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Dai, X. Extracting Geological and Alteration Information and Predicting Antimony Ore Based on Multisource Remote Sensing Data in Huangyangling, Xinjiang. Front. Earth Sci. 2024, 12, 1366727. [Google Scholar] [CrossRef]
- Han, S.L.; Xiao, J.; Liu, W. Review on the of Machine Learning Method and Application in the Geophysical Exploration of Uranium Deposit. Uranium Geol. 2024, 40, 555–564. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Lai, Y.; He, L.; He, Z.; Wang, Z. Geological Hazard Susceptibility Analysis Based on RF, SVM, and NB Models, Using the Puge Section of the Zemu River Valley as an Example. Sustainability 2023, 15, 11228. [Google Scholar] [CrossRef]
- Li, S.H.; Zhang, J. Review of Bayesian networks structure learnind. Appl. Res. Comput. 2015, 32, 641–646. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Yan, H.B.; Liang, Y.H.; Lu, X.J.; Wang, J.H.; Wu, S.Y. Remote Sensing Modeling and Applications in Drought Monitoring Based on XGBoost and Fusion of Multi-dimensional Spatiotemporal Data. J. Geo-Inf. Sci. 2024, 26, 1531–1546. [Google Scholar]
- Omar, L.; Ivrissimtzis, I. Using Theoretical ROC Curves for Analysing Machine Learning Binary Classifiers. Pattern Recognit. Lett. 2019, 128, 447–451. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Yang, Y.; Li, C.; Yin, Y.; Zhao, X.; Zhao, N.; Tian, J.; Li, H. Metallogenic Prediction Based on Fractal Theory and Machine Learning in Duobaoshan Area, Heilongjiang Province. Ore Geol. Rev. 2024, 168, 106030. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Feng, X.L.; Wang, m.j.; Wen, C.M.; Zhang, H.H. The preliminary study of the exploration potential of the Liwu copper deposit and its surrounding areas, western Sichuan. Sediment. Geol. Tethyan Geol. 2007, 27, 9–13. [Google Scholar]
- Zang, Z.J. Study on Metallogenic Regularity and Prediction of Late Paleozoic Sedimentary Manganese Deposits near the Junction of West Kunlun Tectonic Belt and Southwest Tianshan Tectonic Belt. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2021. [Google Scholar]
- Kuleshov, V.N. Manganese Deposits: Communication 2. Major Epochs and Phases of Manganese Accumulation in the Earth’s History. Lithol. Miner. Resour. 2011, 46, 546–565. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Santosh, M.; Hui, B.; Sun, J.; Zhang, F.; Cheng, B.; Yang, Z.; Shi, X.; He, D.; et al. Cross Orogenic Belts in Central China: Implications for the Tectonic and Paleogeographic Evolution of the East Asian Continental Collage. Gondwana Res. 2022, 109, 18–88. [Google Scholar] [CrossRef]
- Schier, K.; Bau, M.; Smith, A.J.B.; Beukes, N.J.; Coetzee, L.L.; Viehmann, S. Chemical Evolution of Seawater in the Transvaal Ocean between 2426 Ma (Ongeluk Large Igneous Province) and 2413 Ma Ago (Kalahari Manganese Field). Gondwana Res. 2020, 88, 373–388. [Google Scholar] [CrossRef]
- Mao, X.C.; Zeng, W.B.; Zhou, S.G.; Yan, F.; Deng, J.Q.; Zhang, B.Y. Research on Relationship between Digital Terrain Characteristics and Spatial Distribution of Secondary Enrichment Manganese Ore in Western Guangxi and South-eastern Yunan, SW China. Geol. Prospect. 2009, 45, 292–298. [Google Scholar]
- Li, X.N.; Liu, X.J.; Jia, Z.Q. DEM Geomorphological Features and Topographical Factor Analysis of lon Adsorption Rare Earth Deposits in South China. South China Geol. 2023, 39, 376–386. [Google Scholar]
- Liu, X.S.; Chen, Y.C.; Wang, D.H.; Huang, F.; Zhao, Z. The Metallogenic Geomorphic Condition Analysis of the lon-absorbing Type Rare Earths Ore in the Eastern Nanling Region Based on DEM Data. Acta Geosci. Sin. 2016, 37, 174–184. [Google Scholar]
- Xi, H.P.; Wang, S.J.; Bai, X.Y.; Tang, H.; Wu, L.H.; Chen, F.; Xiao, J.Y.; Wang, M.M.; Li, H.W.; Cao, Y.; et al. Spatio-temporal characteristics of rocky desertification in typical Karst areas of Southwest China: A case study of Puding County, Guizhou Province. Acta Ecol. Sin. 2018, 38, 8919–8933. [Google Scholar] [CrossRef]
- Wang, R.D.; Xing, L.X. The Alteration Information Extraction by Remote Sensing. Global Geol. 2000, 19, 397–401. [Google Scholar]
- Crósta, A.P.; De Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Loughlin, W.P. Principal Component Analysis for Alteration Mapping. Photogramm. Eng. 1991, 57, 1163–1169. [Google Scholar]
- Carranza, E.J.M.; Laborte, A.G. Random Forest Predictive Modeling of Mineral Prospectivity with Small Number of Prospects and Data with Missing Values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [Google Scholar] [CrossRef]
- Zuo, R.; Xiong, Y. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Nat. Resour. Res. 2018, 27, 5–13. [Google Scholar] [CrossRef]
- Wu, G.P. Mapping Mineral Prospectivity for Molybdenum Polymetallic Mineralization by Machine Learning Methods in Jining, Inner Mongolia, China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2021. [Google Scholar]
- Qin, Y.Z.; Wu, W.C.; Xie, L.F.; Ou, P.H.; Huang, X.L. Application of Machine Learning Based Mineral Prospectivity Mapping in the Yuexi Antimony Orefield, Hunan Province. J. East China Inst. Technol. Nat. Sci. 2021, 44, 28–40. [Google Scholar]
- Zhang, Z.J.; Cheng, Q.M.; Yang, J.; Wu, G.P.; Ge, Y.Z. Machine learning for mineral prospectivity:A case study of iron-polymetallic mineral prospectivity in southwestern Fujian. Earth Sci. Front. 2021, 28, 221–235. [Google Scholar] [CrossRef]
- Xia, Q.L.; Zhao, M.Y.; Wang, X.C.; Leng, S.; Li, T.F.; Xiong, S.C. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies. Earth Sci. Front. 2021, 28, 56–66. [Google Scholar] [CrossRef]
- Nykänen, V.; Törmänen, T.; Niiranen, T. Cobalt Prospectivity Using a Conceptual Fuzzy Logic Overlay Method Enhanced with the Mineral Systems Approach. Nat. Resour. Res. 2023, 32, 2387–2416. [Google Scholar] [CrossRef]
- Nykänen, V.; Niiranen, T.; Molnár, F.; Lahti, I.; Korhonen, K.; Cook, N.; Skyttä, P. Optimizing a Knowledge-Driven Prospectivity Model for Gold Deposits Within Peräpohja Belt, Northern Finland. Nat. Resour. Res. 2017, 26, 571–584. [Google Scholar] [CrossRef]
- Khammar, F.; Nykänen, V.; Beier, C.; Niiranen, T. Translating Mineral Systems Criteria into a Prospectivity Model for IOCG Deposits in the Kolari Region, Finland. Ore Geol. Rev. 2024, 174, 106326. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Chen, Q.; Chai, W.; Li, Z.; Zhang, G.; Yang, H.; Niu, L. Mapping Hydrothermal Alteration of the Pulang Porphyry Copper Deposit, SW China, Using ASTER and ZY1-02D Satellite Data. Ore Geol. Rev. 2023, 161, 105605. [Google Scholar] [CrossRef]
- Mujabar, P.S.; Dajkumar, S. Mapping of Bauxite Mineral Deposits in the Northern Region of Saudi Arabia by Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Satellite Data. Geo-Spat. Inf. Sci. 2019, 22, 35–44. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, S.; Di, B. Extracting Mineral Alteration Information Using WorldView-3 Data. Geosci. Front. 2017, 8, 1051–1062. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, M.; Dan, S.; Li, M.; Li, Y.; Yang, D.; Wang, Y. Optimization of Feature Selection in Mineral Prospectivity Using Ensemble Learning. Minerals 2024, 14, 970. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Xie, Y.Q.; Zhang, Y.; Jin, C.; Li, K.; Li, Y.F.; Duan, B.; Huang, J.B. Application of remote sensing technology in manganese prospecting in Maerkansu area of southwest Tianshan Mountains. Xinjiang Youse Jinshu 2018, 41, 24–27. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Sadeghi, M. Predictive Mapping of Prospectivity and Quantitative Estimation of Undiscovered VMS Deposits in Skellefte District (Sweden). Ore Geol. Rev. 2010, 38, 219–241. [Google Scholar] [CrossRef]
- Hu, D.Q.; He, F.B.; Li, H.; Hao, Y.H.; Zhang, Q.; Feng, C.R.; Liao, F.Y. Gold Mine in Muji Area of Xinjiang Based on Random Forest Algorithm Regional Metallogenic Prediction. Xinjiang Geol. 2024, 42, 158–163. [Google Scholar]
Data Name | Maximum Spatial Resolution(m) | Acquisition Time |
---|---|---|
GF-2 | 0.8 | 2020.08.08, 2022.08.08, 2022.10.16, 2023.11.29, 2023.09.16, 2022.10.01, 2022.10.21 |
ASTER L1T | 15 | 2007.04.15, 2003.08.17 |
Sentinel-2A | 10 | 2023.08.03 |
Landsat8 OLI | 15 | 2021.09.20, 2021.09.27 |
ACC | Precision | Recall | F1 | AUC | |
---|---|---|---|---|---|
RF | 0.852 | 0.92 | 0.873 | 0.898 | 0.975 |
NB | 0.867 | 0.909 | 0.910 | 0.908 | 0.983 |
XGBoost | 0.835 | 0.911 | 0.865 | 0.831 | 0.916 |
Low(%/km2) | Lower (%/km2) | Moderate (%/km2) | High (%/km2) | Very High (%/km2) | |
---|---|---|---|---|---|
RF | 90.80/1742.2105 | 6.54/125.5279 | 1.56/29.9609 | 0.87/16.655 | 0.23/4.4881 |
NB | 95.25/1827.7094 | 2.34/44.8821 | 1.26/24.2195 | 0.84/16.1899 | 0.31/5.8415 |
XGBoost | 92.61/1777.1701 | 4.48/85.8817 | 1.47/28.1785 | 1.24/23.9171 | 0.20/3.7465 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; He, L.; Gong, J.; He, Z.; Feng, Z.; Pang, J.; Zeng, W.; Yan, Y.; Yuan, Y. Predicting Manganese Mineralization Using Multi-Source Remote Sensing and Machine Learning: A Case Study from the Malkansu Manganese Belt, Western Kunlun. Minerals 2025, 15, 113. https://doi.org/10.3390/min15020113
Zhao J, He L, Gong J, He Z, Feng Z, Pang J, Zeng W, Yan Y, Yuan Y. Predicting Manganese Mineralization Using Multi-Source Remote Sensing and Machine Learning: A Case Study from the Malkansu Manganese Belt, Western Kunlun. Minerals. 2025; 15(2):113. https://doi.org/10.3390/min15020113
Chicago/Turabian StyleZhao, Jiahua, Li He, Jiansheng Gong, Zhengwei He, Ziwen Feng, Jintai Pang, Wanting Zeng, Yujun Yan, and Yan Yuan. 2025. "Predicting Manganese Mineralization Using Multi-Source Remote Sensing and Machine Learning: A Case Study from the Malkansu Manganese Belt, Western Kunlun" Minerals 15, no. 2: 113. https://doi.org/10.3390/min15020113
APA StyleZhao, J., He, L., Gong, J., He, Z., Feng, Z., Pang, J., Zeng, W., Yan, Y., & Yuan, Y. (2025). Predicting Manganese Mineralization Using Multi-Source Remote Sensing and Machine Learning: A Case Study from the Malkansu Manganese Belt, Western Kunlun. Minerals, 15(2), 113. https://doi.org/10.3390/min15020113