Genesis of High-Grade Gold Mineralization at the Guocheng Deposit, Jiaodong Peninsula: Constraints from Magnetite Geochemistry
Abstract
1. Introduction
2. Regional Geologic Setting
3. Deposit Geology
4. Samples and Analysis Methods
4.1. Samples
4.2. BGRIMM Process Mineralogy Analyzing System (BPMA)
4.3. LA-ICP-MS Analysis of Magnetite
5. Results
5.1. Mineral Size Distribution and Mineral Intergrowth Assemblages
5.2. LA-ICP-MS Trace Element Analysis of Magnetite
6. Discussion
6.1. Classification and Origins of Magnetite in Marble-Hosted Ores and Granite-Hosted Ores
6.2. Thermodynamic Conditions of High-Grade Disseminated Gold Ore Formation Constrained by Magnetite Geochemistry
- (1)
- Oxygen fugacity (fO2)
- (2)
- Sulfur fugacity (fS2)
7. Conclusions
- (1)
- Magnetite in the Guocheng gold deposit is of hydrothermal origin and was formed during the main mineralization stage. Petrographic observations indicate that most magnetite crystallized via dissolution–migration–recrystallization, while a minor proportion formed through in situ dissolution–recrystallization. The close association of all magnetite with gold and sulfides, together with their classification into the low-temperature hydrothermal category via Ga–V diagrams, indicates that they reliably record the ore-forming environment of gold precipitation.
- (2)
- A systematic comparison of magnetite geochemistry between the two ore types reveals distinct mineralization environments. Specifically, the lower V and chalcophile element (Co, Ni, Sn, Zn) concentrations in marble-hosted magnetite, demonstrate that it crystallized under increasing oxygen fugacity (fO2) and decreasing sulfur fugacity (fS2) compared to its granite-hosted counterpart.
- (3)
- The pronounced contrast in gold grades between the two ore types is closely related to the variations in fluid thermodynamic conditions induced by different fluid–rock reactions. In the marble-hosted ores, coupled carbonate dissolution and sulfide precipitation increased fO2 and decreased fS2, driving a mineralogical transition from pyrite to pyrrhotite–magnetite co-precipitation. This transition destabilized gold–sulfur complexes, enhanced gold precipitation efficiency, ultimately leading to the formation of high-grade disseminated ores.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunt, D.; Weeks, T. Process flowsheet selection. Dev. Miner. Process. 2005, 15, 73–96. [Google Scholar]
- Gao, P.; Zhang, Y.-J.; Liu, Z.-P.; Wang, P.-F.; Li, J.-Y.; Li, S.-B. Polymetallic metallogenic law and mineral resources prediction in Shanghuangqi Banner area in North Hebei province. Contrib. Geol. Miner. Resour. Res. 2024, 39, 35–44. [Google Scholar]
- Huang, H.-G.; Li, Z.; Liu, X.-L.; Zhang, C.-G.; Liu, L.-Q. Geological characteristics and genesis of Chafang gold deposit in Fanshi County, Shanxi Province. Contrib. Geol. Miner. Resour. Res. 2024, 39, 169–176. [Google Scholar]
- Qiu, K.-F.; Yu, H.-C.; Deng, J.; McIntire, D.; Gou, Z.-Y.; Geng, J.-Z.; Chang, Z.-S.; Zhu, R.; Li, K.-N.; Goldfarb, R. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Petrella, L.; Thébaud, N.; Evans, K.; LaFlamme, C.; Occhipinti, S. The role of competitive fluid-rock interaction processes in the formation of high-grade gold deposits. Geochim. Cosmochim. Acta 2021, 313, 38–54. [Google Scholar] [CrossRef]
- Herzog, M.; LaFlamme, C.; Beaudoin, G.; Barré, G.; Martin, L.; Savard, D. Fluid-rock sulfidation reactions control Au-Ag-Te-Bi precipitation in the Val-d’Or orogenic gold vein field (Abitibi subprovince, Canada). Miner. Depos. 2024, 59, 1039–1064. [Google Scholar] [CrossRef]
- Farsang, S.; Zajacz, Z. Sulfur species and gold transport in arc magmatic fluids. Nat. Geosci. 2024, 18, 98–104. [Google Scholar] [CrossRef]
- Lang, X.-C.; Han, X.-B.; Zhi, Y.-D.; Li, P.-L.; Wu, Q.-H. Geological characteristics and ore-forming mechanism of Au deposits in Kanggur area, East Tianshan mountainous district, Xinjiang Autonomous Region. Contrib. Geol. Miner. Resour. Res. 2024, 39, 177–185. [Google Scholar]
- Zhu, Y.; An, F.; Tan, J. Geochemistry of hydrothermal gold deposits: A review. Geosci. Front. 2011, 2, 367–374. [Google Scholar] [CrossRef]
- Liu, W.; Etschmann, B.; Testemale, D.; Hazemann, J.-L.; Rempel, K.; Müller, H.; Brugger, J. Gold transport in hydrothermal fluids: Competition among the Cl−, Br−, HS− and NH3 (aq) ligands. Chem. Geol. 2014, 376, 11–19. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Weng, W.; Dong, C.; Yang, L.; Wang, X.; Deng, J. Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits. Ore Geol. Rev. 2022, 149, 105090. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Han, J.-H. Study on ore material of Au-minerals in Au deposit in surrounding of Bieluwu Cu deposit in Sunituyue Banner, Inner Mongolia. Contrib. Geol. Miner. Resour. Res. 2025, 40, 27–32. [Google Scholar]
- Qiu, K.-F.; Deng, J.; Yu, H.-C.; Rasbury, T.; Tang, Y.-W.; Zhu, R.; Zhang, P.-C.; Goldfarb, R. The Zaozigou orogenic gold-antimony deposit, West Qinling Orogen, China: Structural controls on multiple mineralization events. Geol. Soc. Am. Bull. 2024, 136, 4218–4232. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, Z.; Liu, Y.; Wu, J.; Huang, B.; He, H.; Luo, Y.; Fan, P.; Wang, X.; Liu, X.; et al. The Contribution of Carbonaceous Material to Gold Mineralization in the Huangjindong Deposit, Central Jiangnan Orogen, China. Minerals 2024, 14, 1042. [Google Scholar] [CrossRef]
- Gao, H.; Chen, J.; Leng, C.; Hu, Y.; Xie, H.; Li, Z. Ore-forming mechanism of Huxu Au-dominated polymetallic deposit in the Dongxiang Basin, South China: Constraints from in-situ trace elements and S–Pb isotopes of pyrite. Acta Geochim. 2024, 43, 1223–1240. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Zhang, L.; Yang, L.-Q.; Sun, S.-C.; Li, R.-H.; Gao, X.; Olin, P.; Shu, L.; Zhang, Q.-B.; Chen, X.-G.; et al. Ore-forming fluid evolution and gold precipitation mechanism at Huangjindong gold deposit, southern China: Insights from fluid inclusions and trace elements in quartz. Ore Geol. Rev. 2025, 178, 106444. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Li, R.H.; Groves, D.I.; Santosh, M.; Wang, Z.L.; Sai, S.X.; Wang, S.R.; Li, S. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geol. J. 2018, 54, 378–391. [Google Scholar] [CrossRef]
- He, D.-Y.; Qiu, K.-F.; Simon, A.C.; Pokrovski, G.S.; Yu, H.-C.; Connolly, J.A.; Li, S.-S.; Turner, S.; Wang, Q.-F.; Yang, M.-F.; et al. Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones. Proc. Natl. Acad. Sci. USA 2024, 121, e2404731121. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yang, L.-Q.; Groves, D.I.; Zhang, L.; Qiu, K.-F.; Wang, Q.-F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Qiu, K.-F.; Goldfarb, R.J.; Deng, J.; Yu, H.-C.; Gou, Z.-Y.; Ding, Z.-J.; Wang, Z.-K.; Li, D.-P. Chapter 35: Gold Deposits of the Jiaodong Peninsula, Eastern China. In Geology of the World’s Major Gold Deposits and Provinces; Society of Economic Geologists: Littleton, CO, USA, 2020; pp. 753–774. [Google Scholar]
- Qiu, K.F.; Deng, J.; Sai, S.X.; Yu, H.C.; Tamer, M.T.; Ding, Z.J.; Yu, X.F.; Goldfarb, R. Low-temperature thermochronology for defining the tectonic controls on heterogeneous gold endowment across the Jiaodong peninsula, eastern China. Tectonics 2023, 42, e2022TC007669. [Google Scholar] [CrossRef]
- Qiu, K.-F.; Romer, R.L.; Long, Z.-Y.; Yu, H.-C.; Turner, S.; Wan, R.-Q.; Li, X.-Q.; Gao, Z.-Y.; Deng, J. Potassium isotopes as a tracer of hydrothermal alteration in ore systems. Geochim. Cosmochim. Acta 2024, 368, 185–196. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Qiu, K.-F.; Yin, R.; Long, Z.-Y.; Feng, Y.-C.; Yu, H.-C.; Gao, Z.-Y.; Deng, J. Lithospheric mantle as a metal storage reservoir for orogenic gold deposits in active continental margins: Evidence from Hg isotopes. Geology 2024, 52, 423–428. [Google Scholar] [CrossRef]
- Fan, H.; Lan, T.; Li, X.; Santosh, M.; Yang, K.; Hu, F.; Feng, K.; Hu, H.; Peng, H.; Zhang, Y. Conditions and processes leading to large-scale gold deposition in the Jiaodong province, eastern China. Sci. China Earth Sci. 2021, 64, 1504–1523. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.-P.; Li, C.-Y.; Jiang, M.-Y. Rb-Sr isochron age of the Guocheng gold deposit in the Jiaodong Peninsula, Shandong. Geol. China 2020, 47, 894–895. [Google Scholar]
- Wu, J.; Chen, Y.; Zheng, C.; Li, H.; Yonezu, K.; Tang, Y.; Zong, Q. Genesis of the Longkou–Tudui gold deposit, Jiaodong Peninsula, eastern China: Constraints from zircon U-Pb dating, fluid inclusion studies and C–H–O–S stable isotopes. Ore Geol. Rev. 2021, 139, 104449. [Google Scholar] [CrossRef]
- Cui, T.; Yu, H.-C.; Jowitt, S.M.; Li, Z.-S.; Wei, X.-L.; Zou, S.-H.; Bo, J.-W.; Pei, L.; Li, S.-S.; Nassif, M.T.; et al. Chlorite composition records the formation of increased oxygen fugacity-induced disseminated gold mineralization within the Guocheng gold deposit, China. Geol. Soc. Am. Bull. 2025, 137, 4786–4800. [Google Scholar] [CrossRef]
- Yang, L.-Q.; Deng, J.; Wang, Z.-L.; Guo, L.-N.; Li, R.-H.; Groves, D.I.; Danyushevsky, L.V.; Zhang, C.; Zheng, X.-L.; Zhao, H. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment. Econ. Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Deng, J.; Qiu, K.-F.; Wang, Q.-F.; Goldfarb, R.; Yang, L.-Q.; Zi, J.-W.; Geng, J.-Z.; Ma, Y. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.F.; Yang, L.-Q.; Groves, D.I.; Sai, S.-X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120 ± 2 Ma during cooling of pregold granite intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Tan, J.; Wei, J.; Li, Y.; Fu, L.; Li, H.; Shi, W.; Tian, N. Origin and geodynamic significance of fault-hosted massive sulfide gold deposits from the Guocheng–Liaoshang metallogenic belt, eastern Jiaodong Peninsula: Rb–Sr dating, and H–O–S–Pb isotopic constraints. Ore Geol. Rev. 2015, 65, 687–700. [Google Scholar] [CrossRef]
- Bo, J.-W.; Ding, Z.-J.; Deng, J.; Sun, F.-Y.; Qiu, K.-F.; Song, M.-C. Metallogenic characteristics and mineralization of supergiant gold deposits (223 t) in the northeastern margin of the Jiaolai Basin, Shandong Province: A review. China Geol. 2025, 8, 806–842. [Google Scholar]
- Dare, S.A.S.; Barnes, S.-J.; Beaudoin, G.; Méric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Miner. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Huang, X.-W.; Sappin, A.-A.; Boutroy, É.; Beaudoin, G.; Makvandi, S. Trace Element Composition of Igneous and Hydrothermal Magnetite from Porphyry Deposits: Relationship to Deposit Subtypes and Magmatic Affinity. Econ. Geol. 2019, 114, 917–952. [Google Scholar] [CrossRef]
- Zeng, L.-P.; Zhao, X.-F.; Spandler, C.; Hu, H.; Hu, B.; Li, J.-W.; Hu, Y. Origin of high-Ti magnetite in magmatic-hydrothermal systems: Evidence from iron oxide-apatite (IOA) deposits of eastern China. Econ. Geol. 2022, 117, 923–942. [Google Scholar]
- Yang, J.; Qiu, Y. Comparative study on mineral dissemination characteristics of phosphate ores by X-ray micro computed tomography and BGRIMM Process Mineralogy Analysis. Sci. Rep. 2022, 12, 21122. [Google Scholar] [CrossRef]
- Li, Y.; Kou, J.; Sun, C.; Wang, P.; Wang, X. Enhancing Copper Leaching from Refractory Copper Oxide Ore Using Organic Cationic Surfactant. Separations 2025, 12, 212. [Google Scholar] [CrossRef]
- Wen, L.-G.; Jia, M.-X.; Wang, Q.; Fu, Q.; Zhao, J.-J. A new SEM-based automated mineralogy system: BPMA and its application prospects in mining industry. Nonferrous Met. 2021, 2, 12–23. [Google Scholar]
- Feng, Y.-C.; Deng, J.; Yu, H.-C.; Fu, Q.; Cui, T.; Shan, W.; Li, Z.-S.; Li, S.-S. Gold occurrence and its indicative significance to mineralization process in Linglong gold district, Jiaodong gold province. Acta Petrol. Sin. 2023, 39, 377–392. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, Y.; McNaughton, N.; Groves, D.; Luo, Z.; Huang, J.; Miao, L.; Liu, Y. Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U–Pb zircon studies of granitoids. Ore Geol. Rev. 1998, 13, 275–291. [Google Scholar] [CrossRef]
- Tan, J.; Wei, J.; He, H.; Su, F.; Li, Y.; Fu, L.; Zhao, S.; Xiao, G.; Zhang, F.; Xu, J.; et al. Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong province: Evidence for a mantle source of gold. Chem. Geol. 2018, 480, 105–115. [Google Scholar] [CrossRef]
- Qiu, K.-F.; Romer, R.L.; Long, Z.-Y.; Williams-Jones, A.E.; Yu, H.-C.; Turner, S.; Wang, Q.-F.; Li, S.-S.; Zhang, J.-Y.; Duan, H.-R.; et al. The role of an oxidized lithospheric mantle in gold mobilization. Sci. Adv. 2024, 10, eado6262. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Z.; Zhao, Z.; Dai, L. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 2018, 61, 353–385. [Google Scholar] [CrossRef]
- Zhu, R.; Xu, Y. The subduction of the west Pacific plate and the destruction of the North China Craton. Sci. China Earth Sci. 2019, 62, 1340–1350. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Yang, J.-H.; Xu, Y.-G.; Wilde, S.A.; Walker, R.J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 2019, 47, 173–195. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Gao, S.; Ge, W.-C.; Wu, F.-Y.; Yang, J.-H.; Wilde, S.A.; Li, M. Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction-induced delamination. Chem. Geol. 2010, 276, 144–165. [Google Scholar] [CrossRef]
- Hacker, B.R.; Wallis, S.R.; McWilliams, M.O.; Gans, P.B. 40Ar/39Ar Constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. J. Metamorph. Geol. 2009, 27, 827–844. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Qiu, Y.; Groves, D.I.; McNaughton, N.J.; Wang, L.-G.; Zhou, T. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Miner. Depos. 2002, 37, 283–305. [Google Scholar] [CrossRef]
- Tan, J.; Wei, J.; Audétat, A.; Pettke, T. Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geol. Rev. 2012, 48, 70–87. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Gu, S.; Lash, G.G.; Zheng, C.; Chen, S.; Li, D.; Elatikpo, S.M.; Duan, L. Marble trace element and C-O isotope geochemistry of the Paleoproterozoic Jingshan Group, North China: Insights into BIF formation during the Lomagundi-Jatuli Event. Precambrian Res. 2023, 395, 107152. [Google Scholar] [CrossRef]
- Tan, J.; Wei, J.; Guo, L.; Zhang, K.; Yao, C.; Lu, J.; Li, H. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: Implications for North China Craton lithosphere evolution. Sci. China Ser. D Earth Sci. 2008, 51, 1483–1500. [Google Scholar] [CrossRef]
- Nadoll, P.; Koenig, A.E. LA-ICP-MS of magnetite: Methods and reference materials. J. Anal. At. Spectrom. 2011, 26, 1872–1877. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, K.; Hou, Z.; Pirajno, F.; Shivute, E.; Cai, Y. Fluid-rock reactions of the Triassic Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) constrained by QEMSCAN and iron isotope. Ore Geol. Rev. 2021, 132, 104068. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Palma, G.; Reich, M.; Barra, F.; Ovalle, J.T.; Del Real, I.; Simon, A.C. Thermal evolution of Andean iron oxide–apatite (IOA) deposits as revealed by magnetite thermometry. Sci. Rep. 2021, 11, 18424. [Google Scholar] [CrossRef]
- Wen, G.; Li, J.-W.; Hofstra, A.H.; Koenig, A.E.; Lowers, H.A.; Adams, D. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton. Geochim. Cosmochim. Acta 2017, 213, 255–270. [Google Scholar] [CrossRef]
- Knipping, J.L.; Bilenker, L.D.; Simon, A.C.; Reich, M.; Barra, F.; Deditius, A.P.; Wӓlle, M.; Heinrich, C.A.; Holtz, F.; Munizaga, R. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim. Cosmochim. Acta 2015, 171, 15–38. [Google Scholar] [CrossRef]
- Hassanpour, S.; Rajabpour, S. Magmatic–hydrothermal evolution of the Anjerd Cu skarn deposit, NW Iran: Perspectives on mineral chemistry, fluid inclusions and stable isotopes. Ore Geol. Rev. 2020, 117, 103269. [Google Scholar] [CrossRef]
- Anderson, J.L.; Barth, A.P.; Wooden, J.L.; Mazdab, F. Thermometers and Thermobarometers in Granitic Systems. Rev. Mineral. Geochem. 2008, 69, 121–142. [Google Scholar] [CrossRef]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Schirra, M.; Zajacz, Z.; Müller, D. Magnetite geochemistry of giant alkalic-type epithermal gold deposits: Insights into the magmatic evolution of mineralized alkaline systems. Geol. Soc. Lond. Spec. Publ. 2024, 551, 385–408. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.-W.; Lentz, D.; Ren, Z.; Zhao, X.-F.; Deng, X.-D.; Hall, D. Dissolution–reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geol. Rev. 2014, 57, 393–405. [Google Scholar] [CrossRef]
- Toplis, M.; Carroll, M. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral—Melt equilibria in ferro-basaltic systems. J. Petrol. 1995, 36, 1137–1170. [Google Scholar] [CrossRef]
- Dupuis, C.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner. Depos. 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Toplis, M.J.; Corgne, A. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib. Mineral. Petrol. 2002, 144, 22–37. [Google Scholar] [CrossRef]
- Bordage, A.; Balan, E.; de Villiers, J.P.R.; Cromarty, R.; Juhin, A.; Carvallo, C.; Calas, G.; Sunder Raju, P.V.; Glatzel, P. V oxidation state in Fe–Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Phys. Chem. Miner. 2011, 38, 449–458. [Google Scholar] [CrossRef]
- Reguir, E.P.; Chakhmouradian, A.R.; Halden, N.M.; Yang, P.; Zaitsev, A.N. Early Magmatic and Reaction-Induced Trends in Magnetite from the Carbonatites of Kerimasi, Tanzania. Can. Mineral. 2008, 46, 879–900. [Google Scholar] [CrossRef]
- Righter, K.; Leeman, W.P.; Hervig, R.L. Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chem. Geol. 2006, 227, 1–25. [Google Scholar] [CrossRef]
- Evans, K.A. A test of the viability of fluid–wall rock interaction mechanisms for changes in opaque phase assemblage in metasedimentary rocks in the Kambalda-St. Ives goldfield, Western Australia. Miner. Depos. 2009, 45, 207–213. [Google Scholar] [CrossRef]
- Hodkiewicz, P.F.; Groves, D.I.; Davidson, G.J.; Weinberg, R.F.; Hagemann, S.G. Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn, Western Australia. Miner. Depos. 2008, 44, 129–150. [Google Scholar] [CrossRef]
- Feng, K.; Fan, H.-R.; Ulrich, T.; Yang, K.-F.; Hu, F.-F.; Liu, X. Contribution of Precambrian basements to the Mesozoic ore-fluid system: An illustration using the Majiayao gold deposit, Jiaodong, China. Ore Geol. Rev. 2021, 139, 104447. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Akinfiev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold speciation and transport in geological fluids: Insights from experiments and physical-chemical modelling. Geol. Soc. Lond. Spec. Publ. 2014, 402, 9–70. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in Solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Hu, H.-L.; Fan, H.-R.; Liu, X.; Cai, Y.-C.; Yang, K.-F.; Ma, W.-D. Two-stage gold deposition in response to H2S loss from a single fluid in the Sizhuang deposit (Jiaodong, China). Ore Geol. Rev. 2020, 120, 103450. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, J.; Cao, Y.; Brzozowski, M. Compositional variations of magnetite in different sulfide ore types in the Jinchuan Ni-Cu-PGE sulfide deposit, NW China: Insights into the mineralizing processes of conduit-type systems. Chem. Geol. 2023, 637, 121679. [Google Scholar] [CrossRef]
- Wen, G.; Li, J.-W.; Hofstra, A.H.; Harlov, D.E.; Zhao, X.-F.; Lowers, H.A.; Koenig, A.E. Trace element fractionation in magnetite as a function of Fe depletion from ore fluids at the Baijian Fe-(Co) skarn deposit, eastern China: Implications for Co mineralization in Fe skarns. Am. Mineral. 2024, 109, 1657–1669. [Google Scholar] [CrossRef]
- Simpson, B.; Fitzherbert, J.; Moltzen, J.; Baillie, I.; Cox, B.; Huang, H. Magnetite trace element characteristics and their use as a proximity indicator to the Avoca Tank Cu-Au prospect, Girilambone copper province, New South Wales, Australia. Miner. Depos. 2024, 59, 169–187. [Google Scholar] [CrossRef]
- Duran, C.J.; Barnes, S.-J.; Mansur, E.T.; Dare, S.A.; Bédard, L.P.; Sluzhenikin, S.F. Magnetite chemistry by LA-ICP-MS records sulfide fractional crystallization in massive nickel-copper-platinum group element ores from the Norilsk-Talnakh mining district (Siberia, Russia): Implications for trace element partitioning into magnetite. Econ. Geol. 2020, 115, 1245–1266. [Google Scholar] [CrossRef]
- Wen, B.-J.; Fan, H.-R.; Hu, F.-F.; Liu, X.; Yang, K.-F.; Sun, Z.-F.; Sun, Z.-F. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
- Hayashi, K.-I.; Ohmoto, H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250–350 °C. Geochim. Cosmochim. Acta 1991, 55, 2111–2126. [Google Scholar] [CrossRef]
- Gibert, F.; Pascal, M.-L.; Pichavant, M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulphide complex of gold (AuHS) at 350 to 450 C and 500 bars. Geochim. Cosmochim. Acta 1998, 62, 2931–2947. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Kokh, M.A.; Guillaume, D.; Borisova, A.Y.; Gisquet, P.; Hazemann, J.-L.; Lahera, E.; Del Net, W.; Proux, O.; Testemale, D.; et al. Sulfur radical species form gold deposits on Earth. Proc. Natl. Acad. Sci. USA 2015, 112, 13484–13489. [Google Scholar] [CrossRef] [PubMed]









| Mineral | Marble-Hosted Ores | Granite-Hosted Ores | |
|---|---|---|---|
| Pyrrhotite | Pyrite | Pyrite | |
| pyrrhotite | \ | 47.84 | 8.06 |
| pyrite | 15.97 | \ | \ |
| magnetite | 4.59 | 6.42 | \ |
| sericite | 7.31 | 5.74 | 15.01 |
| iron chlorite | 42.95 | 12.96 | 2.80 |
| feldspar | \ | \ | 6.72 |
| quartz | \ | \ | 39.14 |
| other | 29.18 | 27.04 | 22.27 |
| Type | Samples | Ti | V | Al | Ga | Mg | Mn | Co | Ni | Sn | Zn |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Magnetite in marble-hosted ores | 25GC-M-01 | 1.55 | 1.53 | 92.64 | 5.14 | 18,889.51 | 1178.56 | 0 | 0.30 | 0.80 | 420.36 |
| 25GC-M-02 | 2.38 | 13.18 | 74.98 | 4.31 | 7893.42 | 1366.66 | 0 | 0.99 | 0.92 | 47.92 | |
| 25GC-M-03 | 7.48 | 128.52 | 160.68 | 4.73 | 7095.37 | 536.03 | 0.03 | 0.99 | 0.80 | 33.91 | |
| 25GC-M-04 | 9.65 | 44.02 | 308.51 | 4.85 | 10,008.75 | 1136.88 | 0.07 | 0.01 | 0.98 | 70.14 | |
| 25GC-M-05 | 2.68 | 21.37 | 125.60 | 6.83 | 3969.90 | 605.63 | 0.30 | 0.65 | 0.69 | 31.93 | |
| 25GC-M-06 | 14.70 | 34.86 | 512.36 | 5.41 | 10,867.31 | 981.48 | 0.09 | 0.19 | 0.94 | 77.45 | |
| 25GC-M-07 | 20.97 | 47.04 | 321.09 | 2.96 | 15,027.13 | 1039.42 | 0.03 | 6.06 | 1.16 | 48.09 | |
| 25GC-M-08 | 2.96 | 3.74 | 293.61 | 1.59 | 34,613.43 | 1334.99 | 0 | 0.34 | 1.29 | 103.06 | |
| 25GC-M-09 | 4.77 | 4.69 | 217.89 | 1.26 | 7811.52 | 1378.32 | 0.03 | 0.24 | 1.05 | 55.59 | |
| 25GC-M-10 | 0.60 | 0.53 | 49.97 | 1.94 | 25,943.93 | 1371.73 | 0 | 0.83 | 5.78 | 71.40 | |
| 25GC-M-11 | 0.85 | 1.07 | 29.27 | 1.18 | 12,772.48 | 1907.82 | 0 | 1.25 | 3.23 | 70.33 | |
| 25GC-M-12 | 0.70 | 1.02 | 27.67 | 1.44 | 2195.17 | 1146.40 | 0 | 1.26 | 0.37 | 20.75 | |
| 25GC-M-13 | 6.12 | 16.14 | 261.17 | 3.55 | 3874.90 | 1198.41 | 0 | 0.71 | 0.91 | 50.25 | |
| 25GC-M-14 | 2.16 | 2.42 | 167.76 | 2.04 | 1002.34 | 626.55 | 0.10 | 1.15 | 1.15 | 132.13 | |
| 25GC-M-15 | 1.95 | 2.33 | 130.12 | 2.05 | 1742.14 | 902.58 | 0 | 0.75 | 1.42 | 29.70 | |
| 25GC-M-16 | 1.23 | 1.83 | 124.46 | 1.09 | 465.84 | 693.22 | 0 | 0.83 | 1.30 | 25.81 | |
| 25GC-M-17 | 4.62 | 9.39 | 482.87 | 1.78 | 1822.56 | 898.60 | 0 | 3.20 | 2.96 | 22.28 | |
| 25GC-M-18 | 8.01 | 4.46 | 454.02 | 5.15 | 32,495.20 | 1669.53 | 0.02 | 0.50 | 2.89 | 113.97 | |
| 25GC-M-19 | 46.81 | 254.25 | 1953.28 | 19.38 | 2374.26 | 203.66 | 0.13 | 3.43 | 2.15 | 9.89 | |
| 25GC-M-20 | 5.84 | 144.75 | 1095.38 | 11.81 | 2817.30 | 174.57 | 0.04 | 8.66 | 1.97 | 8.68 | |
| 25GC-M-21 | 52.20 | 13.00 | 452.32 | 4.59 | 18,043.83 | 832.00 | 0.42 | 0.64 | 0.54 | 52.54 | |
| 25GC-M-22 | 60.29 | 12.82 | 527.37 | 4.44 | 17,130.37 | 2245.09 | 0.17 | 1.11 | 0.65 | 97.04 | |
| 25GC-M-23 | 6.43 | 7.60 | 314.82 | 2.68 | 15,909.26 | 910.37 | 0.08 | 0.76 | 0.69 | 49.77 | |
| 25GC-M-24 | 5.56 | 14.83 | 177.34 | 0.96 | 12,459.35 | 722.42 | 0 | 0.23 | 42.93 | 46.82 | |
| 25GC-M-25 | 3.05 | 7.72 | 242.24 | 1.42 | 25,015.49 | 1235.95 | 0.07 | 0.14 | 0.93 | 72.68 | |
| 25GC-M-26 | 5.94 | 5.60 | 384.56 | 1.18 | 14,140.47 | 430.01 | 0.02 | 4.80 | 0.46 | 44.40 | |
| 25GC-M-27 | 25.61 | 126.38 | 1305.63 | 3.58 | 17,423.18 | 1006.48 | 0 | 0.79 | 16.46 | 45.08 | |
| 25GC-M-28 | 9.64 | 7.49 | 492.82 | 3.84 | 20,988.47 | 848.98 | 0 | 0.54 | 0.54 | 77.17 | |
| 25GC-M-29 | 5.51 | 4.32 | 91.20 | 3.82 | 11,728.98 | 963.50 | 00 | 0.82 | 0.85 | 0.00 | |
| 25GC-M-30 | 2.73 | 21.21 | 564.11 | 5.96 | 13,807.69 | 3027.67 | 0.02 | 1.10 | 1.17 | 65.55 | |
| 25GC-M-31 | 0.70 | 20.12 | 140.46 | 3.95 | 7452.43 | 2585.04 | 0.04 | 0.86 | 0.82 | 36.35 | |
| 25GC-M-32 | 1.68 | 4.62 | 371.26 | 2.50 | 8322.82 | 2331.17 | 0.01 | 2.34 | 1.18 | 36.33 | |
| 25GC-M-33 | 7.21 | 13.07 | 339.63 | 2.74 | 18,549.06 | 2541.47 | 0 | 1.02 | 1.14 | 63.45 | |
| 25GC-M-34 | 3.04 | 13.62 | 406.69 | 2.93 | 18,903.83 | 3907.35 | 0 | 1.77 | 1.22 | 77.24 | |
| 25GC-M-35 | 5.50 | 29.81 | 432.78 | 5.17 | 7239.37 | 471.84 | 0.25 | 7.77 | 0.72 | 45.16 | |
| 25GC-M-36 | 1.07 | 24.56 | 60.22 | 3.61 | 8445.28 | 3839.19 | 0.06 | 2.75 | 0.90 | 25.51 | |
| 25GC-M-37 | 0.21 | 9.50 | 23.63 | 4.09 | 8595.96 | 3865.44 | 0.00 | 2.68 | 1.01 | 81.98 | |
| 25GC-M-38 | 15.31 | 303.28 | 1705.34 | 4.35 | 9295.10 | 1274.92 | 0.98 | 3.74 | 0.85 | 66.29 | |
| Magnetite in granite-hosted ores | 25GC-G-01 | 8.41 | 40.95 | 3388.67 | 8.24 | 4266.75 | 338.51 | 0.20 | 4.99 | 0.44 | 32.59 |
| 25GC-G-02 | 3.30 | 66.98 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 1.65 | 0.72 | 0.00 | |
| 25GC-G-03 | 7.64 | 12.52 | 527.87 | 8.41 | 65.03 | 125.09 | 0.09 | 2.98 | 8.61 | 47.18 | |
| 25GC-G-04 | 4.02 | 63.44 | 288.65 | 29.14 | 8178.99 | 3209.20 | 2.83 | 3.16 | 1.92 | 261.97 | |
| 25GC-G-05 | 6.73 | 54.43 | 983.83 | 7.68 | 2024.78 | 316.57 | 0.75 | 5.08 | 102.85 | 15.84 | |
| 25GC-G-06 | 8.92 | 45.70 | 519.42 | 7.23 | 957.40 | 380.63 | 0.73 | 4.54 | 25.94 | 11.10 | |
| 25GC-G-07 | 7.57 | 46.13 | 13,684.61 | 24.44 | 13,563.58 | 338.38 | 0.30 | 8.39 | 0.63 | 59.69 | |
| 25GC-G-08 | 18.81 | 66.40 | 1571.77 | 9.23 | 2748.99 | 510.74 | 0.32 | 6.41 | 15.18 | 16.16 | |
| 25GC-G-09 | 2.74 | 34.76 | 263.77 | 5.70 | 2257.63 | 911.11 | 0.53 | 5.61 | 0.58 | 8.10 | |
| 25GC-G-10 | 13.31 | 51.00 | 654.10 | 11.92 | 2665.75 | 1952.74 | 1.24 | 3.45 | 112.74 | 13.35 | |
| 25GC-G-11 | 18.11 | 52.19 | 1019.86 | 15.62 | 17,227.56 | 2550.01 | 0.85 | 5.62 | 0.95 | 32.31 | |
| 25GC-G-12 | 13.99 | 61.56 | 154.75 | 11.49 | 1064.08 | 347.78 | 0.48 | 5.08 | 276.48 | 16.78 | |
| 25GC-G-13 | 6.22 | 48.94 | 1082.95 | 13.49 | 23,869.25 | 3654.22 | 2.26 | 4.36 | 0.98 | 161.14 | |
| 25GC-G-14 | 20.74 | 41.07 | 14,453.95 | 20.46 | 17,632.71 | 798.36 | 0.85 | 6.53 | 4.02 | 163.69 | |
| 25GC-G-15 | 3.69 | 31.34 | 359.86 | 5.49 | 2052.51 | 621.53 | 0.20 | 2.30 | 0.48 | 12.66 | |
| 25GC-G-16 | 4.83 | 39.22 | 2511.24 | 7.83 | 2435.40 | 232.85 | 0.39 | 3.22 | 77.15 | 443.82 | |
| 25GC-G-17 | 8.80 | 52.20 | 674.62 | 6.65 | 829.39 | 79.89 | 0.23 | 3.75 | 9.20 | 22.53 | |
| 25GC-G-18 | 6.71 | 30.37 | 212.22 | 8.09 | 222.02 | 289.74 | 0.11 | 3.31 | 36.81 | 19.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.-H.; Cui, T.; Zhou, R.-Z.; Li, Y.-Y.; Fu, Q.; Qin, L.-Y.; Deng, Q.-J.; Wei, X.-F. Genesis of High-Grade Gold Mineralization at the Guocheng Deposit, Jiaodong Peninsula: Constraints from Magnetite Geochemistry. Minerals 2025, 15, 1267. https://doi.org/10.3390/min15121267
Sun N-H, Cui T, Zhou R-Z, Li Y-Y, Fu Q, Qin L-Y, Deng Q-J, Wei X-F. Genesis of High-Grade Gold Mineralization at the Guocheng Deposit, Jiaodong Peninsula: Constraints from Magnetite Geochemistry. Minerals. 2025; 15(12):1267. https://doi.org/10.3390/min15121267
Chicago/Turabian StyleSun, Ning-Han, Tao Cui, Rong-Zhi Zhou, Yu-Ying Li, Qiang Fu, Lian-Yuan Qin, Qian-Jie Deng, and Xu-Feng Wei. 2025. "Genesis of High-Grade Gold Mineralization at the Guocheng Deposit, Jiaodong Peninsula: Constraints from Magnetite Geochemistry" Minerals 15, no. 12: 1267. https://doi.org/10.3390/min15121267
APA StyleSun, N.-H., Cui, T., Zhou, R.-Z., Li, Y.-Y., Fu, Q., Qin, L.-Y., Deng, Q.-J., & Wei, X.-F. (2025). Genesis of High-Grade Gold Mineralization at the Guocheng Deposit, Jiaodong Peninsula: Constraints from Magnetite Geochemistry. Minerals, 15(12), 1267. https://doi.org/10.3390/min15121267

