Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Conservation: An Overview
Abstract
1. Introduction
2. Literature Review and Conceptual Background
2.1. Brief Background on Organic-Inorganic Framework of Hybrid Hydrophobic Coatings
2.2. Trends in Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Structures
2.3. Historical Background of Stone Structures and Extent of Damage
2.4. Stones in Heritage Structures, Degradation and Conservation Strategies
2.5. Formulation of Nanosilica-Based Hybrid Hydrophobic Coatings
| Ref. | Substrate Source | Substrate | Stone Composition | Coating Formulation |
|---|---|---|---|---|
| [26] | Xi’an, China | Red sandstone | Quartz, calcite, feldspar | DTMS, n-SiO2, n-TiO2, Iso-Propanol |
| [63] | Dali Prefecture, Yunnan Province, China | Yunnan marble | Calcium carbonate | Perfluoroalkylpolyether (PFPE), n-Al2O3, n-SiO2 |
| Qingshi stone | Quartz, graphite, ferric oxides | |||
| Hedishi stone | ||||
| [83] | Rosales Quarry, Albacete, Spain | Albamiel mediterranean Calcarenite stone | Calcium carbonate (CaCO3) | ISO-DGE (n-SiO2), APTS, GPTMS, IBuTMS, Carvacrol/Curcumin, TEOS |
| [87] | Zhenjiang, Jiangsu, China | Jiaoshan Stones | Not Indicated | Dodecafluoroheptyl methacrylate (DFMA), acrylates, Nanosilica (TEOS-based) |
| [88] | Not Indicated | Glass | GB a | Nanoparticles (n-ZnO) and SiO2 nanoparticles (n-SiO2) |
| [89] | Apulia, Italy | Leece stone | Calcite limestone | Colloidal n-SiO2 |
| Tuscany, Italy | Carrara marble | Limestone and dolostone minor (CaCO3 > 90%) | ||
| [90] | Apulia Region, Italy | Leece stone | Porous calcarenite | Fluorine Resin, n-SiO2 |
| Trani stone | Compact calcarenite | |||
| [92] | Portugal | Natural Portuguese stones | Calcium carbonate, quartz, plagioclase, alkali feldspar | FAKOLITH FK-7, CN2-SiO2 |
| [93] | Tuscany, Italy | Carrara marble | Calcium carbonate (CaCO3) | NanoEstel (n-SiO2), Estel 1000, TEOS |
| [94] | Henan Province, China | Zhouqiao stone | Illite, diopside, and albite | Potassium methyl silicate + n-SiO2 MTH + n-SiO2 MTI-2080 + n-SiO2 |
| [95] | Rome, Italy | Sperone stone | Volcanic scoriae | Silo N7 (functionalized n-SiO2) |
| [96] | Not indicated | Glass | GB a | Epoxy-silica Hybrid nanocomposite |
| [97] | Not indicated | Glass | GB a | Trichloromethylsilane (TCMS), n-SiO2 |
| [98] | Villa Vela, Italy | White Noto | Middle—Late Miocene Palazzolo carbonate | Fluoline HY, Wacker 290, n-SiO2 |
| Contrada Petraro, Italy | Comiso | Late OligoceneLate Miocene carbonate |
2.6. Evaluation and Methodologies of Nanosilica-Based Hybrid Hydrophobic Coatings
3. Performance Evaluation of Nanosilica-Based Hybrid Hydrophobic Coatings
3.1. Water Contact Angle
3.2. Water Absorption by Capillarity
3.3. Water Vapor Permeability
3.4. pH
3.5. Other Notable Properties
4. Future Research Directions
5. Summary
- Research articles related to nanosilica-based hybrid hydrophobic coatings (HHCs) are increasing annually from 2014 to 2024.
- The majority of research articles on stone heritage structure conservation came from China and Italy, which could be attributed to the large number of ancient stone heritage structures in these countries.
- Materials used in stone heritage structures are geological materials available locally, such as carbonate materials (e.g., limestone, dolomite, and Palazzolo carbonates) and silica-rich materials (e.g., Qingshi stone, Hedishi stone, and red sandstone).
- The highest water contact angle (WCA) of 150.7° with a low total color difference (TCD) of 3.07 was achieved using Silo N7, a functionalized nanosilica coating applied to red sandstone.
- Using a combination of nanosilica and fluororesin, the Lecce stone achieved a high WCA of 142° and a low total color difference (TCD) value of 1.39, indicating the formulation’s suitability for coating calcareous stones.
- Different pH levels in the coating affected the TCD values, with pH 10 yielding a TCD of 8.80 and pH 2 resulting in a lower TCD of 3.64.
- Color difference analysis is essential in heritage protection to ensure aesthetic preservation, and coatings should maintain a TCD below the perceptible threshold for the human eye (TCD < 5).
- Notable properties achieved with nanosilica, in combination with other nanomaterials, include UV durability, thermomechanical stability, biocidal efficiency, and graffiti protection.
- Future research on HHC for heritage structure conservation should address potential physical and environmental hazards, while integrating emerging technologies such as AI, IoT, and smartphones to enable accessible heritage conservation testing.
- It should also be emphasized that despite the promising results reported by previous studies on stone heritage conservation, the lack of standardized testing protocols limited comparability and reproducibility. Establishing and following standardized methodologies would enable more consistent evaluation and provide clearer guidance for practical conservation applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CNT | Carbon Nanotubes |
| DFMA | Dodecafluoroheptyl Methacrylate |
| DTMS | Dodecyltrimethoxysilane |
| HC | Hydrophobic Coating |
| HHC | Hybrid Hydrophobic Coating |
| MTH | Methyltrimethoxysilane |
| NP | Nanoparticles |
| PFPE | Perfluoroalkyl polyether |
| SA | Surface Area |
| SCA | Static Contact Angle |
| TCD | Total Color Difference |
| TEOS | Tetraethoxysilane |
| UV | Ultraviolet |
| WCA | Water Contact Angle |
References
- Patil, S.M.; Kasthurba, A.K. Weathering of stone monuments: Damage assessment of basalt and laterite. Mater. Today Proc. 2020, 43, 1647–1658. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Ahuja, I.P.S.; Hashmi, M.S.J. On technological solutions for repair and rehabilitation of heritage sites: A review. Adv. Mater. Process. Technol. 2020, 6, 146–166. [Google Scholar] [CrossRef]
- Blavier, C.L.S.; Huerto-Cardenas, H.E.; Aste, N.; Del Pero, C.; Leonforte, F.; Della Torre, S. Adaptive measures for preserving heritage buildings in the face of climate change: A review. Build. Environ. 2023, 245, 110832. [Google Scholar] [CrossRef]
- Mehta, P. A conceptual understanding of scientific and legal perspective of acid precipitation and its impacts: A review. J. Appl. Sci. Res. 2015, 3, 54–75. [Google Scholar]
- Columbu, S.; Lisci, C.; Sitzia, F.; Lorenzetti, G.; Lezzerini, M.; Pagnotta, S.; Raneri, S.; Legnaioli, S.; Palleschi, V.; Gallello, G.; et al. Mineralogical, petrographic and physical-mechanical study of Roman construction materials from the Maritime Theatre of Hadrian’s Villa (Rome, Italy). Measurement 2018, 127, 264–276. [Google Scholar] [CrossRef]
- Columbu, S.; Gaviano, E.; Costamagna, L.G.; Fancello, D. Mineralogical-Petrographic and Physical-Mechanical Features of the Construction Stones in Punic and Roman Temples of Antas (SW Sardinia, Italy): Provenance of the Raw Materials and Conservation State. Minerals 2021, 11, 964. [Google Scholar] [CrossRef]
- Bergin, M.H.; Tripathi, S.N.; Jai Devi, J.; Gupta, T.; Mckenzie, M.; Rana, K.S.; Shafer, M.M.; Villalobos, A.M.; Schauer, J.J. The discoloration of the Taj Mahal due to particulate carbon and dust deposition. Environ. Sci. Technol. 2015, 49, 808–812. [Google Scholar] [CrossRef]
- Berto, L.; Talledo, D.A.; Bruschi, G.; Zamboni, I.; Lazzarini, E.; Zofrea, C.; Faccio, P.; Saetta, A. A Multidisciplinary Approach for the Vulnerability Assessment of a Venetian Historic Palace: High Water Phenomena and Climate Change Effects. Buildings 2022, 12, 431. [Google Scholar] [CrossRef]
- Sardaro, R.; La Sala, P.; De Pascale, G.; Faccilongo, N. The conservation of cultural heritage in rural areas: Stakeholder preferences regarding historical rural buildings in Apulia, southern Italy. Land Use Policy 2021, 109, 105662. [Google Scholar] [CrossRef]
- La Russa, M.F.; Rovella, N.; Alvarez de Buergo, M.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M.; Ruffolo, S.A. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog. Org. Coat. 2016, 91, 1–8. [Google Scholar] [CrossRef]
- Young, M.E.; Alakomi, H.-L.; Fortune, I.; Gorbushina, A.A.; Krumbein, W.E.; Maxwell, I.; McCullagh, C.; Robertson, P.; Saarela, M.; Valero, J.; et al. Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ. Geol. 2008, 56, 631–641. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Giacopetti, L.; Arca, M.; Carcangiu, G.; Columbu, S.; Gimeno, D.; Isaia, F.; Lippolis, V.; Meloni, P.; Ezquerra, A.N.; et al. Ammonium monoethyloxalate (AmEtOx): A new agent for the conservation of carbonate stone substrates. New J. Chem. 2021, 45, 5327–5339. [Google Scholar] [CrossRef]
- Columbu, S.; Lisci, C.; Sitzia, F.; Buccellato, G. Physical–mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: The case study of Pietra Cantone (southern Sardinia, Italy). Environ. Earth Sci. 2017, 76, 148. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef] [PubMed]
- Macleod, I.D. Analysis of poultice-based desalination of a nineteenth century brick and stone cathedral after the event; a longitudinal study of surface chloride readings. AICCM Bull. 2021, 42, 82–90. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage–An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef]
- Barbieri, N. Acid Rain Damaged Gargoyle. Available online: https://commons.wikimedia.org/wiki/File:-_Acid_rain_damaged_gargoyle_-.jpg (accessed on 8 December 2024).
- Rafferty, J. What Happened to Acid Rain? Britannica. Available online: https://www.britannica.com/story/what-happened-to-acid-rain (accessed on 8 December 2024).
- Azadi, N.; Parsimehr, H.; Ershad-Langroudi, A. Cultural heritage protection via hybrid nanocomposite coating. Plast. Rubber Compos. 2020, 49, 414–424. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Duong, X.Q.; Rowinski, L.; Nguyen, X.P. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere 2021, 277, 130274. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, X.; Chen, S.; Lin, H.; Li, Z.; Lin, X. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Compos. B Eng. 2022, 243, 110104. [Google Scholar] [CrossRef]
- Pagnin, L.; Guarnieri, N.; Izzo, F.C.; Goidanich, S.; Toniolo, L. Protecting Street Art from Outdoor Environmental Threats: What Are the Challenges? Coatings 2023, 13, 2044. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Aquaro, M.; Dilorenzo, D.; Frigione, M. Eco-Friendly Protective Coating to Extend the Life of Art-Works and Structures Made in Porous Stone Materials. Coatings 2021, 11, 1270. [Google Scholar] [CrossRef]
- Torabi-Kaveh, M.; Moshrefyfar, M.; Shirzaei, S.; Moosavizadeh, S.M.A.; Ménendez, B.; Maleki, S. Application of resin-TiO2 nanoparticle hybrid coatings on travertine stones to investigate their durability under artificial aging tests. Constr. Build. Mater. 2022, 322, 126511. [Google Scholar] [CrossRef]
- Liu, F.; Liu, A.; Tao, W.; Yang, Y. Preparation of UV curable organic/inorganic hybrid coatings-a review. Prog. Org. Coat. 2020, 145, 105685. [Google Scholar] [CrossRef]
- Peng, M.; Wang, L.; Guo, L.; Guo, J.; Zheng, L.; Yang, F.; Ma, Z.; Zhao, X. A Durable Nano-SiO2-TiO2/Dodecyltrimethoxysilane Superhydrophobic Coating for Stone Protection. Coatings 2022, 12, 1397. [Google Scholar] [CrossRef]
- Shu, H.; Yang, M.; Liu, Q.; Luo, M. Study of TiO2-Modified Sol Coating Material in the Protection of Stone-Built Cultural Heritage. Coatings 2020, 10, 179. [Google Scholar] [CrossRef]
- Otilia Cinteză, L.; Antonia Tănase, M. Multifunctional ZnO Nanoparticle: Based Coatings for Cultural Heritage Preventive Conservation. In Thin Films; IntechOpen: London, UK, 2021. [Google Scholar]
- Marey Mahmoud, H. An effective polymer nanocomposite based on tetraethoxysilane (TEOS) and SiO2-Al2O3 nanoparticles for super protection of damaged ancient Egyptian wall paintings. Pigment. Resin Technol. 2022, 51, 344–353. [Google Scholar] [CrossRef]
- Liu, Q.; Lv, Y.; Li, J.; Xu, W. Study on Application of Nanosilica in Paper Coating. Adv. Mat. Res. 2011, 311–313, 502–506. [Google Scholar] [CrossRef]
- Ranjbar, Z.; Rastegar, S. The influence of surface chemistry of nano-silica on microstructure, optical and mechanical properties of the nano-silica containing clear-coats. Prog. Org. Coat. 2009, 65, 125–130. [Google Scholar] [CrossRef]
- Allahverdi, A.; Ehsani, M.; Janpour, H.; Ahmadi, S. The effect of nanosilica on mechanical, thermal and morphological properties of epoxy coating. Prog. Org. Coat. 2012, 75, 543–548. [Google Scholar] [CrossRef]
- Puchy, V.; Hvizdos, P.; Dusza, J.; Kovac, F.; Inam, F.; Reece, M.J. Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram. Int. 2013, 39, 5821–5826. [Google Scholar] [CrossRef]
- Ahmad, I.; Kennedy, A.; Zhu, Y.Q. Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 2010, 269, 71–78. [Google Scholar] [CrossRef]
- Lee, K.-S.; Jang, B.-K.; Sakka, Y. Damage and wear resistance of Al2O3–CNT nanocomposites fabricated by spark plasma sintering. J. Ceram. Soc. Jpn. 2013, 121, 867–872. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, Y.; Tang, Y.; Li, Q.; Zhong, B.; Zeng, X.; Xie, D.; Jia, Z.; Jia, D. A novel nanosilica-supported ultraviolet absorber for the preparation of robust biodegradable plastic film with high ultraviolet aging resistance. Polym. Compos. 2019, 40, 4154–4161. [Google Scholar] [CrossRef]
- Jašková, V.; Hochmannová, L.; Vytřasová, J. TiO2 and ZnO Nanoparticles in Photocatalytic and Hygienic Coatings. Int. J. Photoenergy 2013, 2013, 795060. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Dao, P.H.; Duong, K.L.; Duong, Q.H.; Vu, Q.T.; Nguyen, A.H.; Mac, V.P.; Le, T.L. Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Prog. Org. Coat. 2017, 110, 114–121. [Google Scholar] [CrossRef]
- Adebanjo, A.U.; Abbas, Y.M.; Shafiq, N.; Khan, M.I.; Farhan, S.A.; Masmoudi, R. Optimizing nano-TiO2 and ZnO integration in silica-based high-performance concrete: Mechanical, durability, and photocatalysis insights for sustainable self-cleaning systems. Constr. Build. Mater. 2024, 446, 138038. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Anis, A.; Alam, M.; Ubaidullah, M.; Al-Zahrani, S.M. Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers 2021, 13, 1490. [Google Scholar] [CrossRef]
- Dhoke, S.K.; Bhandari, R.; Khanna, A.S. Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties. Prog. Org. Coat. 2009, 64, 39–46. [Google Scholar] [CrossRef]
- Parimalam, M.; Islam, M.R.; Yunus, R.M. Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex. Polym. Test. 2018, 70, 197–207. [Google Scholar] [CrossRef]
- Zheng, C.-F.; Yang, Z.-F.; Lv, C.-C.; Zhou, X.-P.; Xie, X.-L. Thermal stability and abrasion resistance of polyacrylate/nano-silica hybrid coatings. Iran. Polym. J. 2013, 22, 465–471. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, Y.; Xiao, F. Thermal stable superhydrophobic polyphenylsilsesquioxane/nanosilica composite coatings. Appl. Surf. Sci. 2011, 258, 1572–1580. [Google Scholar] [CrossRef]
- Palraj, S.; Selvaraj, M.; Maruthan, K.; Rajagopal, G. Corrosion and wear resistance behavior of nano-silica epoxy composite coatings. Prog. Org. Coat. 2015, 81, 132–139. [Google Scholar] [CrossRef]
- Langroudi, A.E.; Rahimi, A. Synthesis and characterisation of nano silica-based coatings for protection of antique articles. Int. J. Nanotechnol. 2009, 6, 915. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat. 2017, 112, 319–329. [Google Scholar] [CrossRef]
- Roguska, A.; Pisarek, M.; Andrzejczuk, M.; Lewandowska, M. Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO2 nanotube composite layers intended for antibacterial coatings. Thin Solid Films 2014, 553, 173–178. [Google Scholar] [CrossRef]
- Nguyen, V.; Vu, V.; Nguyen, T.; Nguyen, T.; Tran, V.; Nguyen-Tri, P. Antibacterial Activity of TiO2- and ZnO-Decorated with Silver Nanoparticles. J. Compos. Sci. 2019, 3, 61. [Google Scholar] [CrossRef]
- Phoohinkong, W.; Kitthawee, U. Low-Cost and Fast Production of Nano-Silica from Rice Husk Ash. Adv. Mat. Res. 2014, 979, 216–219. [Google Scholar] [CrossRef]
- Ibrahim, S.; Sultan, M. Superhydrophobic Coating Polymer/Silica Nanocomposites: Part I Synthesis and Characterization as Eco-Friendly Coating. Silicon 2020, 12, 805–811. [Google Scholar] [CrossRef]
- Sprenger, S. Nanosilica-Toughened Epoxy Resins. Polymers 2020, 12, 1777. [Google Scholar] [CrossRef]
- Barbhuiya, G.H.; Moiz, M.A.; Hasan, S.D.; Zaheer, M.M. Effects of the nanosilica addition on cement concrete: A review. Mater. Today Proc. 2020, 32, 560–566. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, S.; Singh, S.K. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater. Sci. Eng. 2019, 5, 4882–4898. [Google Scholar] [CrossRef]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Zeng, K.; Yang, F.; Zhu, H.; Liu, Q. Advanced design of Chinese traditional materials for the conservation of historic stone buildings. J. Archaeol. Sci. 2011, 38, 1896–1900. [Google Scholar] [CrossRef]
- Gherardi, F.; Maravelaki, P.N. Advances in the application of nanomaterials for natural stone conservation. RILEM Tech. Lett. 2022, 7, 20–29. [Google Scholar] [CrossRef]
- Fernández, A.S.; Gomez, L.S.; Rabanal, M.E.; González, R.F. New nanomaterials for applications in conservation and restoration of stony materials: A review. Mater. Construcción 2017, 67, 325. [Google Scholar]
- Tariq, L.R.; & Jafaar, A.M.; Jafaar, A.M. A Review of Nanotechnology in Self-Healing of Ancient and Heritage Buildings: Heritage buildings, Nanomaterial, Nano architecture, Nanotechnology in construction. Int. J. Nanoelectron. Mater. 2024, 17, 153–163. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. Nano-Silica-Modified Concrete: A Bibliographic Analysis and Comprehensive Review of Material Properties. Nanomaterials 2022, 12, 1989. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Chaudhary, S.; Kaur, H.; Chaudhary, M.; Jena, K.C. Hydrolysis and Condensation of Tetraethyl Orthosilicate at the Air–Aqueous Interface: Implications for Silica Nanoparticle Formation. ACS Appl. Nano Mater. 2022, 5, 411–422. [Google Scholar] [CrossRef]
- Yuan, J.; Zhou, S.; Gu, G.; Wu, L. Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. J. Mater. Sci. 2005, 40, 3927–3932. [Google Scholar] [CrossRef]
- Xie, Z.; Duan, Z.; Zhao, Z.; Li, R.; Zhou, B.; Yang, D.; Hu, Y. Nano-materials enhanced protectants for natural stone surfaces. Herit. Sci. 2021, 9, 122. [Google Scholar] [CrossRef]
- Kongchan, S.; Pacaphol, K.; Aht-Ong, D. Waterborne Silane/Polysiloxane Hydrophobic Coating for Stone-Built Cultural Heritage Conservation. SIAM Sci. Innov. Adv. Mater. 2023, 3, 66001. [Google Scholar]
- Vale, L. Architecture, Power and National Identity; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Henneberg, K.V. Monuments, Public Space, and the Memory of Empire in Modern Italy. Hist. Mem. 2004, 16, 37. [Google Scholar] [CrossRef]
- Jokilehto, J. A History of Architectural Conservation, 2nd ed.; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Yang, X.; Jiang, X.W.; Ouyang, K.G.; Ji, T.T.; Gao, Y.F.; Geng, X.H.; Niu, R.; Huang, J.Z.; Yan, H.B.; Wan, L. The mechanisms of salt weathering responsible for sandstone deterioration in the Yungang Grottoes, China. Eng. Geol. 2025, 350, 107989. [Google Scholar] [CrossRef]
- Primavori, P. Carrara Marble: A Nomination for ‘Global Heritage Stone Resource’ from Italy; Special Publications; Geological Society: London, UK, 2015; Volume 407, pp. 137–154. [Google Scholar] [CrossRef]
- Qin, T.; Yu, H.; Dai, S.; Zhang, P. Study on deterioration of historic masonry in the forbidden city in Beijing aided by gis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 585–591. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, B.; Zhang, J.; Zhai, K.; Luo, L. Weathering Characteristics of White Marble Relics Around the Hall of Supreme Harmony (Taihe Dian) in the Forbidden City. KSCE J. Civ. Eng. 2023, 27, 794–804. [Google Scholar] [CrossRef]
- Malesani, P.; Pecchioni, E.; Cantisani, E.; Fratini, F. Geolithology and provenance of materials of some historical buildings and monuments in the centre of Florence (Italy). Epis. J. Int. Geosci. 2003, 26, 250–255. [Google Scholar] [CrossRef]
- Collins, G. The Geology and Tectonic Settings of China’s Mineral Deposits. Econ. Geol. 2013, 108, 909–910. [Google Scholar] [CrossRef]
- Zhao, W.W.; Zhou, M.-F.; Li, Y.H.M.; Zhao, Z.; Gao, J.-F. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. J. Asian Earth Sci. 2017, 137, 109–140. [Google Scholar] [CrossRef]
- Zaw, K.; Peters, S.G.; Cromie, P.; Burrett, C.; Hou, Z. Nature, diversity of deposit types and metallogenic relations of South China. Ore Geol. Rev. 2007, 31, 3–47. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Wang, J.; Yue, L.; Shi, E.; Wang, Z.; Yang, T. Impact of Acid, Salt, and Wetting-Drying Cycles on Weathering Deterioration of the Red Sandstone Used for Leshan Giant Buddha China. Int. J. Archit. Herit. 2025, 19, 457–484. [Google Scholar] [CrossRef]
- Phengsaart, T.; Srichonphaisan, P.; Kertbundit, C.; Soonthornwiphat, N.; Sinthugoot, S.; Phumkokrux, N.; Juntarasakul, O.; Maneeintr, K.; Numprasanthai, A.; Park, I.; et al. Conventional and recent advances in gravity separation technologies for coal cleaning: A systematic and critical review. Heliyon 2023, 9, e13083. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Eang, K.E.; Igarashi, T.; Kondo, M.; Nakatani, T.; Tabelin, C.B.; Fujinaga, R. Groundwater monitoring of an open-pit limestone quarry: Water-rock interaction and mixing estimation within the rock layers by geochemical and statistical analyses. Int. J. Min. Sci. Technol. 2018, 28, 849–857. [Google Scholar] [CrossRef]
- Eang, K.E.; Igarashi, T.; Fujinaga, R.; Kondo, M.; Tabelin, C.B. Groundwater monitoring of an open-pit limestone quarry: Groundwater characteristics, evolution and their connections to rock slopes. Environ. Monit. Assess. 2018, 190, 193. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, H.; Sun, B.; Yang, T. Effects of simulated atmospheric nitrogen deposition on the bacterial community structure and diversity of four distinct biocolonization types on stone monuments: A case study of the Leshan Giant Buddha, a world heritage site. Herit. Sci. 2024, 12, 23. [Google Scholar] [CrossRef]
- Dong, Q.; Sun, X.; Sheng, J.; Lei, N. An experimental investigation on the damage mechanisms of red glutenite in the Mount Wuyi cultural and natural heritage site subject to acid rain and wet-dry cycles: A macro-to-micro approach. Herit. Sci. 2024, 12, 273. [Google Scholar] [CrossRef]
- Irizar, P.; Pintor-Rial, A.; Maguregui, M.; Martinez-Arkarazo, I.; Cardiano, P.; Gómez-Laserna, O. Synergies of sugar-derived epoxy-silica hybrids and amino-functionalized silica NPs for advanced stone conservation. Prog. Org. Coat. 2024, 196, 108735. [Google Scholar] [CrossRef]
- Rosado, T.; Silva, M.; Galvão, A.; Mirão, J.; Candeias, A.; Caldeira, A.T. A first insight on the biodegradation of limestone: The case of the World Heritage Convent of Christ. Appl. Phys. A 2016, 122, 1012. [Google Scholar] [CrossRef]
- Mariani, A.; Malucelli, G. Consolidation of Stone Materials by Organic and Hybrid Polymers: An Overview. Macromol. Chem. Phys. 2023, 224, 2300053. [Google Scholar] [CrossRef]
- Abdi, Y.; Sabzi, M. The Effect of Salt Crystallization on Degradation of Limestones Used as Heritage Building Stone in Lorestan, Iran. Geoheritage 2024, 16, 118. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Jiang, Y.; Qiu, S.; Li, P.; Yang, D.; Qiu, F. Nano-silica/fluorinated polyacrylate composites as surface protective coatings for simulated stone cultural relic protection. J. Appl. Polym. Sci. 2022, 139, e52953. [Google Scholar] [CrossRef]
- Yumei, C.; Gang, W.; Pei, S.; Luo, H.; Xichen, Z.; Biao, Z.; Zhu, J. Nanosized ZnO/SiO2-Based Amphiphobic Coatings for Stone Heritage Protection. ACS Appl. Nano Mater. 2022, 5, 18708–18717. [Google Scholar] [CrossRef]
- Sbardella, F.; Bracciale, M.P.; Santarelli, M.L.; Asua, J.M. Waterborne modified-silica/acrylates hybrid nanocomposites as surface protective coatings for stone monuments. Prog. Org. Coat. 2020, 149, 105897. [Google Scholar] [CrossRef]
- Lettieri, M.; Masieri, M.; Frigione, M. Novel Nano-Filled Coatings for the Protection of Built Heritage Stone Surfaces. Nanomaterials 2021, 11, 301. [Google Scholar] [CrossRef]
- Mishra, R.; Militky, J.; Baheti, V.; Huang, J.; Kale, B.; Venkataraman, M.; Bele, V.; Arumugam, V.; Zhu, G.; Wang, Y. The production, characterization and applications of nanoparticles in the textile industry. Text. Prog. 2014, 46, 133–226. [Google Scholar] [CrossRef]
- Armal, F.; Dias, L.; Mirão, J.; Pires, V.; Sitzia, F.; Martins, S.; Costa, M.; Barrulas, P. Chemical Composition of Hydrophobic Coating Solutions and Its Impact on Carbonate Stones Protection and Preservation. Sustainability 2023, 15, 16135. [Google Scholar] [CrossRef]
- Luci, M.; De Leo, F.; De Pascale, D.; Galasso, C.; La Russa, M.F.; Lo Schiavo, S.; Ricca, M.; Ruffolo, S.A.; Ruocco, N.; Urzì, C. Surface-Active Ionic-Liquid-Based Coatings as Anti-Biofilms for Stone: An Evaluation of Their Physical Properties. Coatings 2023, 13, 1669. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Q.; Zheng, X.; Cheng, K.; Lang, R. Study on Anti-Weathering Protection of Excavated Ancient Stone Arch Bridge with Nano-Composites. Coatings 2023, 13, 1898. [Google Scholar] [CrossRef]
- Pelosi, C.; Lanteri, L.; Agresti, G.; Rubino, G.; Persia, F.; Bonifazi, G.; Serranti, S.; Capobianco, G. Experimental tests for evaluating the stability of a new nano-silica based protective for Sperone stone in comparison to traditional products. In AIP Conference Proceedings; Publishing LLC: Melville, NY, USA, 2020. [Google Scholar]
- Irizar, P.; Irto, A.; Martinez-Arkarazo, I.; Olazabal, M.Á.; Cardiano, P.; Gomez-Laserna, O. Sugar-derived bio-based resins as platforms for the development of multifunctional hybrids with potential application for stone conservation. Mater Today Commun. 2022, 31, 103662. [Google Scholar] [CrossRef]
- Ansari, A.; Saadatbakhsh, M.; Sohrabi, M.; Asl, S.J.; Nouri, N.M. Antifouling activity of superhydrophobic PDMS/hydrophobic silica coating. Surf. Eng. 2023, 39, 35–48. [Google Scholar] [CrossRef]
- Renda, V.; De Buergo, M.A.; Saladino, M.L.; Caponetti, E. Assessment of protection treatments for carbonatic stone using nanocomposite coatings. Prog. Org. Coat. 2020, 141, 105515. [Google Scholar] [CrossRef]
- Antonini, J.M.; McKinney, W.G.; Lee, E.G.; Afshari, A.A. Review of the physicochemical properties and associated health effects of aerosols generated during thermal spray coating processes. Toxicol. Ind. Health 2021, 37, 47–58. [Google Scholar] [CrossRef]
- UNI EN16581; Conservation of Cultural Heritage–Surface Protection for Porous Inorganic Materials–Laboratory Test Methods for the Evaluation of the Performance of Water Repellent Products. Ente Italiano di Normazione: Milano, Italy, 2016.
- UNI EN15802; Conservation of Cultural Property-Test Methods-Determination of Static Contact Angle. Ente Italiano di Normazione: Milano, Italy, 2010.
- UNI EN15801; Conservation of Cultural Property-Test Methods-Determination of Water Absorption by Capillarity. Ente Italiano di Normazione: Milano, Italy, 2010.
- UNI EN15803; Conservation of Cultural Property-Test Methods-Determination of Water Vapor Permeability. Ente Italiano di Normazione: Milano, Italy, 2010.
- UNI EN15886; Conservation of Cultural Property-Test Methods—Colour Measurement of Surfaces. Ente Italiano di Normazione: Milano, Italy, 2010.
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, R.; Stroscio, A.; Maria Belfiore, C.; Barone, G.; Mazzoleni, P. Chemical and colorimetric analysis for the characterization of degradation forms and surface colour modification of building stone materials. Constr. Build. Mater. 2021, 302, 124356. [Google Scholar] [CrossRef]
- Vasanelli, E.; Calia, A.; Masieri, M.; Baldi, G. Stone consolidation with SiO2 nanoparticles: Effects on a high porosity limestone. Constr Build Mater. 2019, 219, 154–163. [Google Scholar] [CrossRef]
- Sayan, P. Effect of sodium oleate on the agglomeration of calcium carbonate. Cryst. Res. Technol. 2005, 40, 226–232. [Google Scholar] [CrossRef]
- Hu, A.; Li, R.; Chen, G.; Chen, S. Impact of Respiratory Dust on Health: A Comparison Based on the Toxicity of PM2.5, Silica, and Nanosilica. Int. J. Mol. Sci. 2024, 25, 7654. [Google Scholar] [CrossRef]
- Laohaviraphap, N.; Waroonkun, T. Integrating Artificial Intelligence and the Internet of Things in Cultural Heritage Preservation: A Systematic Review of Risk Management and Environmental Monitoring Strategies. Buildings 2024, 14, 3979. [Google Scholar] [CrossRef]
- Sirisathitkul, Y.; Dinmeung, N.; Noonsuk, W.; Sirisathitkul, C. Accuracy and precision of smartphone colorimetry: A comparative analysis in RGB, HSV, and CIELAB color spaces for archaeological research. STAR Sci. Technol. Archaeol. Res. 2025, 11, e2444168. [Google Scholar] [CrossRef]





| Property | Nanomaterials | Mode of Action | Ref. |
|---|---|---|---|
| High SA 1 | n-SiO2, CNTs 2 | Ensure smooth dispersion and coverage | [30,31,32] |
| Durability | Al2O3, CNTs 2 | Increase wear resistance | [33,34,35] |
| UV Resistance | TiO2, ZnO | Prevent degradation from sunlight | [36,37,38] |
| Chemical Resistance | n-SiO2, graphene oxide | Protect against harsh chemicals | [39,40,41,42] |
| Thermal Stability | n-SiO2, MgO | Ensure performance under high temperatures | [32,43,44,45] |
| Low Color Difference | n-SiO2 | Suitable for glass and transparent coatings | [46,47] |
| Antimicrobial | TiO2, ZnO | Inhibit bacterial growth | [48,49] |
| Cost Effectivity | n-SiO2 | Cheaper cost of production | [50,51] |
| Refs. | Study | Scope | Differentiation with This Work |
|---|---|---|---|
| [57] | Advances in the application of nanomaterials for natural stone conservation. | Common nanomaterials with biocidal properties used in cleaning, consolidating, and coating. | Focused on nanomaterials with biocidal properties like n-silver, n-copper, n-TiO2 and n-ZnO but did not include nanosilica, including its use in HHCs. |
| [58] | New nanomaterials for applications in conservation and restoration of stony materials: A review. | Nanomaterial-based consolidants, hybrid polymers nanocomposites, and self-cleaning coatings. | Discussed n-CuO, n-silver, n-Ca(OH)2, n-TiO2 and n-ZnO for antimicrobial coatings but did not include nanosilica-based HHCs. |
| [59] | A review of nanotechnology in self-healing of ancient and heritage buildings: Heritage buildings, nanomaterial, nano architecture, nanotechnology in construction. | Applications of nanotechnology in conserving and restoring inorganic archaeological materials, particularly stone artifacts and buildings. | Briefly mentioned nanosilica in the discussion but did not provide details and data on its properties, including its application in HHCs. |
| [60] | Nano-silica-modified concrete: A bibliographic analysis and comprehensive review of material properties. | Nanosilica applications in cementitious materials. | Focused on nanosilica-modified concrete and did not include nanosilica HHCs in heritage structures. |
| Ref. | Nanosilica Size | Polymerization Process | Application Methods |
|---|---|---|---|
| [26] | 7–40 nm | Emulsifier-based | Not Indicated |
| [63] | 30 nm | Emulsifier-based | Dipping/Immersion |
| [83] | Not indicated | Water/Alcohol-based | Not Indicated |
| [87] | Not indicated | Alcohol-based | Brushing |
| [88] | 12 nm | Water-based | Spraying |
| [89] | 15 nm | Water-based | Brushing |
| Methanol-based | |||
| [90] | 40–50 nm | Water-based | Brushing |
| [92] | Not indicated | Water-based | Spraying |
| [95] | 10–20 nm | Ethanol-based | Brushing |
| [94] | Not indicated | Ethanol/Water-based | Brushing |
| [95] | Not indicated | Water-based | Brushing |
| [96] | 5 nm | Alcohol-based | Not Indicated |
| [97] | 20 nm | Solvent-based | Spraying |
| [98] | 7 nm | Emulsifier-based | Brushing |
| Standard | Title | Scope | Ref. |
|---|---|---|---|
| EN 16581 | Surface Protection for Porous Inorganic Materials | General framework for testing water-repellent products on stone and other porous inorganic substrates | [100] |
| EN 15802 | Determination of static contact angle (SCA) | Measures surface hydrophobicity | [101] |
| EN 15801 | Determination of capillary water absorption | Evaluates resistance to water penetration | [102] |
| EN 15803 | Determination of water vapor permeability | Measures the ‘breathability’ of the stone after treatment | [103] |
| EN 15886 | Determination of total color difference (ΔE/TCD) | Assesses visual compatibility | [104] |
| Refs. | Substrate | pH | CA | TCD | CWA | WVP | Notable Property Tests |
|---|---|---|---|---|---|---|---|
| [26] | Red sandstone | − | 152.5° (SCA) | 1.80 | − | − | UV Shielding performance |
| [63] | Yunnan marble | − | 139.3° (SCA) | − | − | 26.0 * | Thermal stability |
| Qingshi stone | − | 137.0° (SCA) | − | − | 53.1 * | ||
| Hedishi stone | − | 133.6°(SCA) | − | − | 55.5 * | ||
| [83] | Albamiel Mediterranean Calcarenite stone | − | 101°–105° (WCA) | 2.11 | − | − | Biocidal efficiency, Thermomechanical properties |
| [87] | Jiaoshan Stone | − | 85.77° (WCA) | − | − | − | Freeze–thaw aging resistance |
| [88] | Glass | − | >160° (WCA) | − | − | − | UV durability |
| [89] | Leece stone | − | 94.6° (SCA)-MM2 | 2.40 | 15,840 g/m2 | − | Drying behavior, Stress–strain |
| Carrara marble | − | 75.0°–94.6° (SCA) | 2.40 | 1160 g/m2 | − | ||
| [90] | Leece stone | − | 142° (WCA) | 1.39 | − | − | Anti-Graffiti action |
| Trani stone | − | 139° (WCA) | 0.54 | − | − | ||
| [92] | Natural Portuguese stones | − | >100° (WCA) | 11.0 | NDV | − | UV-Daylight Weathering, Washout Test (Seawater Resistance) |
| [93] | Carrara marble | − | 79.8° (WCA) | 2.50 | − | − | UV durability |
| [94] | Zhouqiao stone | 10 | − | 8.80 | 17.83 * | − | Salt resistance, air permeability, UV durability |
| 7 | 2.74 | 19.44 * | − | ||||
| 2 | 3.64 | 19.87 * | − | ||||
| [95] | Sperone stone | − | 150.70° (WCA) | 3.07 | NDV | − | Hyperspectral imaging |
| [96] | Glass | − | 105° (WCA) | − | − | − | Thermomechanical property |
| [97] | Glass | − | − | − | − | − | Antifouling property |
| [98] | White Noto | − | 90° (WCA) | 7.00 | NDV | − | Capillary efficiency |
| Comiso | − | 88° (WCA) | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucero, R., Jr.; Salisid, K.B.; Oros, R.; Bongabong, A.; Alguno, A.; Villacorte-Tabelin, M.; Silwamba, M.; Phengsaart, T.; Tabelin, C.B. Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Conservation: An Overview. Minerals 2025, 15, 1134. https://doi.org/10.3390/min15111134
Lucero R Jr., Salisid KB, Oros R, Bongabong A, Alguno A, Villacorte-Tabelin M, Silwamba M, Phengsaart T, Tabelin CB. Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Conservation: An Overview. Minerals. 2025; 15(11):1134. https://doi.org/10.3390/min15111134
Chicago/Turabian StyleLucero, Raul, Jr., Kent Benedict Salisid, Reymarvelos Oros, Ariel Bongabong, Arnold Alguno, Mylah Villacorte-Tabelin, Marthias Silwamba, Theerayut Phengsaart, and Carlito Baltazar Tabelin. 2025. "Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Conservation: An Overview" Minerals 15, no. 11: 1134. https://doi.org/10.3390/min15111134
APA StyleLucero, R., Jr., Salisid, K. B., Oros, R., Bongabong, A., Alguno, A., Villacorte-Tabelin, M., Silwamba, M., Phengsaart, T., & Tabelin, C. B. (2025). Nanosilica-Based Hybrid Hydrophobic Coatings for Stone Heritage Conservation: An Overview. Minerals, 15(11), 1134. https://doi.org/10.3390/min15111134

