Petrographic Insights into the Evolution of Nano-Scale Organic Matter Pores with Organic Matter Conversion
Abstract
:1. Introduction
2. Samples and Methods
2.1. Samples
2.2. Geochemical and Mineralogical Analyses
2.3. Low-Pressure N2 and CO2 Adsorption Analyses and FE–SEM Imaging
2.4. Petrographic Analysis
3. Results
3.1. Shale Mineralogical Composition
3.2. Pore Structure from N2 Adsorption and CO2 Adsorption
3.3. Petrographic Analysis for Organic Matter Conversion
4. Discussion
4.1. Effect of Clay Minerals on Pore Structure
4.2. Effect of Organic Matter Conversion on Pore Structure
5. Conclusions
- (1)
- Pore structure parameters SBET and Smic exhibit moderate positive correlations with illite content and I/S content, and moderate negative correlations with kaolinite content, indicating that different clay minerals have differential effects on pore structure
- (2)
- The correlations of pore parameters Smic and SBET with TOCL are higher than those of Smic and SBET with TOCo. This is attributed to the difference in the fractional conversion of organic matter to hydrocarbons, with more organic matter pores generating in type II organic matter compared with type III.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ertas, D.; Kelemen, S.R.; Halsey, T.C. Petroleum expulsion part 1. Theory of kerogen swelling in multicomponent solvents. Energy Fuels 2006, 20, 295–300. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Wei, L.; Mastalerz, M.; Schimmelmann, A.; Chen, Y.Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol. 2014, 132, 38–50. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Han, H.; Pang, P.; Li, Z.L.; Shi, P.T.; Guo, C.; Liu, Y.; Gao, Y. Controls of organic and inorganic compositions on pore structure of lacustrine shales of Chang 7 member from Triassic Yanchang Formation in the Ordos Basin, China. Mar. Petrol. Geol. 2019, 100, 270–284. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V.; Bahadur, J.; Sen, D. A novel approach to identify accessible and inaccessible pores in gas shales using combined low-pressure sorption and SAXS/SANS analysis. Int. J. Coal Geol. 2020, 228, 103556. [Google Scholar] [CrossRef]
- Sun, M.D.; Zhang, L.H.; Hu, Q.H.; Pan, J.; Yu, B.S.; Sun, L.W.; Bai, L.F.; Fu, Y.F.; Zhang, C.; Cheng, G. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM. Mar. Petrol. Geol. 2020, 112, 104101. [Google Scholar] [CrossRef]
- Tiwari, P.; Deo, M.; Lin, C.L.; Miller, J.D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel 2013, 107, 547–554. [Google Scholar] [CrossRef]
- Arif, M.; Mahmoud, M.; Zhang, Y.H.; Iglauer, S. X-ray tomography imaging of shale microstructures: A review in the context of multiscale correlative imaging. Int. J. Coal Geol. 2021, 233, 103641. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower cretaceous gas shales in Northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bull. Can. Pet. Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- Washburn, K.E.; Birdwell, J.E. Application of binomial-edited CPMG to shale characterization. J. Magn. Reson. 2014, 246, 72–78. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, Z.H. Fractal characterization of pores in shales using NMR: A case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. J. Nat. Gas Sci. Eng. 2016, 35, 860–872. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs. Fuel 2007, 86, 2696–2706. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.C.; Tang, X.; Ding, J.H.; Zhao, Q.R.; Dang, W.; Chen, H.Y.; Su, Y.; Li, B.W.; Lu, D.F. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int. J. Coal Geol. 2017, 171, 76–92. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.M. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Hu, H.Y.; Zhang, T.W.; Wiggins-Camacho, J.D.; Ellis, G.S.; Lewan, M.D.; Zhang, X.L. Experimental investigation of changes in methane adsorption of bitumen-free Woodford shale with thermal maturation induced by hydrous pyrolysis. Mar. Petro. Geol. 2015, 59, 114–128. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.C.; Jin, Z.J.; Xiong, J.Y.; Lin, L.M.; Yu, Y.X.; Han, S.B. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin. Mar. Petrol. Geol. 2015, 64, 165–172. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, F.J.; Hu, T.; Wang, Z.F.; Xu, Z.Y.; Peng, J.W.; Chen, D.; Li, L.L. Experimental investigation of the characteristics of organic matter pores in Chang 7 member lacustrine shale from the Ordos Basin due to organic matter evolution induced by hydrous pyrolysis. J. Nat. Gas Sci. Eng. 2016, 35, 412–424. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.F.; Rouzaud, J.N.; Bernard, S. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Org. Geochem. 2014, 71, 7–16. [Google Scholar] [CrossRef]
- Sun, L.N.; Tuo, J.C.; Zhang, M.F.; Wu, C.J.; Wang, Z.X.; Zheng, Y.W. Formation and development of the pore structure in Chang T member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel 2015, 158, 549–557. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zhang, B.M.; Zhao, C.Y.; Xu, T.H. Mesozoic source rocks and petroleum systems of the northeastern Qaidam basin, northwest China. AAPG Bull. 2004, 88, 115–125. [Google Scholar] [CrossRef]
- Jin, Q.; Zha, M.; Liu, Z.; Gao, X.Z.; Peng, D.H.; Lin, L.M. Geology and geochemistry of source rocks in the Qaidam basin, NW China. J. Petrol. Geol. 2002, 25, 219–238. [Google Scholar]
- Ritts, B.D.; Hanson, A.D.; Zinniker, D.; Moldowan, J.M. Lower–Middle Jurassic Nonmarine Source Rocks and Petroleum Systems of the Northern Qaidam Basin, Northwest China. AAPG Bull. 1999, 83, 1980–2005. [Google Scholar]
- Qian, T.; Wang, Z.X.; Liu, Y.Q.; Liu, S.F.; Gao, W.L.; Li, W.P.; Hu, J.J.; Li, L.L. Provenance analysis of the Jurassic northern Qaidam Basin: Stratigraphic succession and LA-ICP-MS geochronology. Sci. Sin. Terrae 2018, 48, 224–242. [Google Scholar]
- Tian, H.; Pan, L.; Xiao, X.M.; Wilkins, R.W.T.; Meng, Z.P.; Huang, C.J. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar. Petrol. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Hazra, B.; Varma, A.K.; Bandopadhyay, A.K.; Mendhe, V.A.; Singh, B.D.; Saxena, V.K.; Samad, S.K.; Mishra, D.K. Petrographic insights of organic matter conversion of Raniganj basin shales, India. Int. J. Coal Geol. 2015, 150, 193–209. [Google Scholar] [CrossRef]
- Shi, J.Y.; Jin, Z.J.; Liu, Q.Y.; Zhang, R.; Huang, Z.K. Cyclostratigraphy and astronomical tuning of the middle eocene terrestrial successions in the Bohai Bay Basin, Eastern China. Global Planet. Chang. 2019, 174, 115–126. [Google Scholar] [CrossRef]
- Shi, J.Y.; Jin, Z.J.; Liu, Q.Y.; Fan, T.L.; Gao, Z.Q. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China. Global Planet. Chang. 2021, 205, 103614. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Budaeva, A.D.; Zoltoev, E.V. Porous structure and sorption properties of nitrogen containing activated carbon. Fuel 2010, 89, 2623–2627. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Ramírez, J.P. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Micropor. Mesopor. Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Heister, K. The measurement of the specific surface area of soils by gas and polar liquid adsorption methods-limitations and potentials. Geoderma 2014, 216, 75–87. [Google Scholar] [CrossRef]
- Cao, Q.Y. Identification of microcomponents and types of kerogen under transmitted light. Pet. Explor. Dev. 1985, 5, 14–23. [Google Scholar]
- Cruz, M.D.R.; Reyes, E. Kaolinite and dickite formation during shale diagenesis: Isotopic data. Appl. Geochem. 1998, 13, 95–104. [Google Scholar] [CrossRef]
- Surdam, R.C.; Boese, S.W.; Crossey, L.J. The Chemistry of Secondary Porosity. AAPG. Memoir. 1984, 37, 127–149. [Google Scholar]
- Surdam, R.C.; Crossey, L.J.; Hagen, E.S. Organic-inorganic interactions and Sandstone diagenesis. AAPG Bull. 1989, 73, 1–23. [Google Scholar]
- Huang, S.J.; Huang, K.K.; Feng, W.L. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis- A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica 2009, 38, 498–506. [Google Scholar]
- Brady, P.V.; Cygan, R.T.; Nagy, K.L. Molecular Controls on Kaolinite Surface Charge. J. Colloid Interface Sci. 1996, 183, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Krinari, G.A.; Khramchenkov, M.G. Interstratified illite-smectite phases: Formation mechanisms and practical applications. Russ. Geol. Geophys. 2018, 59, 1120–1128. [Google Scholar] [CrossRef]
- Lynch, F.L.; Mack, L.E.; Land, L.S. Burial diagenesis of illite/smectite in shales and the origins of authigenic quartz and secondary porosity in sandstones. Geochim. Cosmochim. Acta 1997, 61, 1995–2006. [Google Scholar] [CrossRef]
- Perry, E.A.J.; Hower, J. Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner. 1970, 18, 165–177. [Google Scholar] [CrossRef]
Sample ID | XRD Analysis | N2 Adsorption | CO2 Adsorption | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Qtz (%) | K-f (%) | Plag (%) | Sid (%) | I/S (%) | I (%) | Kaol (%) |
S
BET (m2/g) |
V
p (ml/100 g) |
S
mic (m2/g) |
V
mic (ml/g) | |
DMG-01 | 43.5 | 43.5 | 1.7 | 6.1 | 5.2 | 14.36 | 11.31 | 17.83 | 6.63 | 1.85 | 21.27 | 0.008 |
DMG-02 | 50.7 | 39.6 | 1.8 | 5.1 | 2.8 | 10.64 | 9.13 | 30.93 | 6.42 | 1.78 | 15.99 | 0.006 |
DMG-03 | 55.3 | 37.9 | 2.6 | 4.2 | 8.3 | 9.95 | 37.05 | 4.59 | 1.48 | 13.41 | 0.005 | |
DMG-04 | 40.2 | 50 | 2 | 4.7 | 3.1 | 12.06 | 8.04 | 20.1 | 5.90 | 2.05 | 19.95 | 0.005 |
DMG-05 | 41.2 | 46.9 | 3.4 | 1.9 | 6.6 | 7 | 5.36 | 28.84 | 1.69 | 0.96 | 4.90 | 0.002 |
DMG-06 | 45.1 | 31.8 | 2.3 | 3.7 | 17.1 | 10.37 | 9.02 | 25.71 | 2.27 | 1.02 | 12.39 | 0.005 |
DMG-07 | 52.4 | 41.8 | 2.3 | 1.2 | 2.3 | 7.34 | 7.33 | 37.73 | 3.40 | 1.81 | 4.16 | 0.002 |
DMG-08 | 45.3 | 45.9 | 2.1 | 2.8 | 3.9 | 5.27 | 5.53 | 34.5 | 2.22 | 1.30 | 14.18 | 0.005 |
DMG-09 | 52 | 29.5 | 3.1 | 15.4 | 11.44 | 8.32 | 32.24 | 1.25 | 0.59 | 8.47 | 0.003 | |
DMG-10 | 48.9 | 40.3 | 4.9 | 3.4 | 2.5 | 10.75 | 7.34 | 30.81 | 4.44 | 1.83 | 9.85 | 0.004 |
Sample ID | TOC (%) | Ro (%) | S1 (mg/g) | S2 (mg/g) | Tmax °C | HI (mg/g) | PI | HIo (mg/g) | TRHI | TOCo (%) | TOCL (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
DMG-01 | 6.35 | 0.82 | 0.71 | 5.60 | 440 | 88 | 0.11 | 483 | 0.88 | 10.44 | 4.09 |
DMG-02 | 5.26 | 0.83 | 0.32 | 4.79 | 436 | 91 | 0.06 | 406 | 0.84 | 7.50 | 2.24 |
DMG-03 | 4.44 | 0.83 | 0.73 | 3.71 | 435 | 84 | 0.16 | 445 | 0.87 | 6.58 | 2.14 |
DMG-04 | 5.00 | 0.83 | 0.28 | 3.97 | 435 | 79 | 0.07 | 439 | 0.88 | 7.43 | 2.43 |
DMG-05 | 2.74 | 0.83 | 0.22 | 4.69 | 434 | 171 | 0.04 | 296 | 0.49 | 3.36 | 0.62 |
DMG-06 | 3.79 | 0.83 | 0.09 | 5.13 | 438 | 135 | 0.02 | 289 | 0.60 | 4.89 | 1.10 |
DMG-07 | 2.86 | 0.83 | 0.15 | 4.25 | 438 | 149 | 0.03 | 370 | 0.68 | 3.52 | 0.66 |
DMG-08 | 6.62 | 0.83 | 0.21 | 3.65 | 436 | 55 | 0.05 | 145 | 0.65 | 8.61 | 1.99 |
DMG-09 | 5.08 | 0.82 | 0.85 | 4.04 | 436 | 80 | 0.17 | 136 | 0.45 | 6.18 | 1.10 |
DMG-10 | 5.68 | 0.82 | 0.59 | 6.39 | 438 | 113 | 0.08 | 154 | 0.30 | 6.90 | 1.22 |
Sample ID | V | I | L | A | TI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Te | CoD | Co | Vd | Vp/% | Sem | Ind | Ip/% | Spo | Cut | Re | Lip | Lp/% | Alg | Ap/% | ||
DMG-01 | 1.8 | 2.1 | 2.3 | 30.85 | 0.8 | 0.7 | 7.46 | 0.6 | 0.9 | 7.46 | 10.9 | 55.23 | 27 | |||
DMG-02 | 1.4 | 2.2 | 1.6 | 24.53 | 0.8 | 0.3 | 5.19 | 7.2 | 0.2 | 0.7 | 2.8 | 51.42 | 4 | 18.87 | 21 | |
DMG-03 | 1.3 | 1.6 | 20.14 | 0.4 | 0.2 | 4.17 | 3.4 | 0.6 | 0.4 | 2.8 | 50.00 | 3.7 | 25.69 | 31 | ||
DMG-04 | 1.6 | 2.1 | 24.18 | 0.4 | 0.1 | 3.27 | 5.4 | 0.4 | 1.2 | 45.75 | 4.1 | 26.80 | 28 | |||
DMG-05 | 0.8 | 1.2 | 51.28 | 0.2 | 0.2 | 10.26 | 0.8 | 20.51 | 0.7 | 17.95 | −21 | |||||
DMG-06 | 3.2 | 0.4 | 51.43 | 0.3 | 0.2 | 7.14 | 1.2 | 0.5 | 0.4 | 30.00 | 0.8 | 11.43 | −19 | |||
DMG-07 | 1.5 | 1.4 | 36.25 | 0.6 | 7.50 | 1.9 | 0.8 | 33.75 | 1.8 | 22.50 | 5 | |||||
DMG-08 | 3.4 | 28.8 | 3.6 | 93.96 | 0.6 | 1.7 | 6.04 | −67 | ||||||||
DMG-09 | 18.5 | 8.9 | 1.6 | 4.8 | 68.84 | 8.5 | 2.6 | 22.61 | 1.8 | 0.8 | 1.6 | 8.55 | −70 | |||
DMG-10 | 10.2 | 6.5 | 3.6 | 84.94 | 0.7 | 0.5 | 5.02 | 1.6 | 0.3 | 0.5 | 10.04 | −64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Feng, X.; Zhang, L.; Wu, L.; Zhang, R. Petrographic Insights into the Evolution of Nano-Scale Organic Matter Pores with Organic Matter Conversion. Minerals 2024, 14, 182. https://doi.org/10.3390/min14020182
Zhou L, Feng X, Zhang L, Wu L, Zhang R. Petrographic Insights into the Evolution of Nano-Scale Organic Matter Pores with Organic Matter Conversion. Minerals. 2024; 14(2):182. https://doi.org/10.3390/min14020182
Chicago/Turabian StyleZhou, Lei, Xingqiang Feng, Linyan Zhang, Lin Wu, and Rui Zhang. 2024. "Petrographic Insights into the Evolution of Nano-Scale Organic Matter Pores with Organic Matter Conversion" Minerals 14, no. 2: 182. https://doi.org/10.3390/min14020182
APA StyleZhou, L., Feng, X., Zhang, L., Wu, L., & Zhang, R. (2024). Petrographic Insights into the Evolution of Nano-Scale Organic Matter Pores with Organic Matter Conversion. Minerals, 14(2), 182. https://doi.org/10.3390/min14020182