Assessment of the Potential for CO2 Storage and Utilization in the Fractured and Porous Reservoir of the Cambrian Sandstones in West Lithuania’s Baltic Basin
Abstract
:1. Introduction
2. Major CO2 Emission Sources in Lithuania
3. Cambrian Saline Aquifer of the Baltic Basin
4. Methods and Data Sources
5. Results
5.1. Syderiai Structure
5.2. Gargždai Elevation
6. Discussion
- Sulfates (e.g., gypsum and anhydrite);
- Carbonates (e.g., calcite and dolomite);
- SiO2 phases (e.g., chalcedony);
- Iron hydroxides (e.g., ferrous hydroxides).
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachu, S.; Gunter, W.D.; Perkins, E.H. Aquifer Disposal of CO2: Hydrodynamic and Mineral Trapping. Energy Convers. Manag. 1994, 35, 269–279. [Google Scholar] [CrossRef]
- Baklid, A.; Korbol, R.; Owren, G. Sleipner Vest CO2 Disposal, CO2 Injection into A Shallow Underground Aquifer. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 6–9 October 1996; SPE: Richardson, TX, USA, 1996; p. SPE-36600-MS. [Google Scholar]
- Shi, J.-Q.; Sinayuc, C.; Durucan, S.; Korre, A. Assessment of Carbon Dioxide Plume Behaviour within the Storage Reservoir and the Lower Caprock around the KB-502 Injection Well at In Salah. Int. J. Greenh. Gas Control 2012, 7, 115–126. [Google Scholar] [CrossRef]
- Gill, T.E. Ten Years of Handling CO2 for SACROC Unit. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 26–29 September 1982; SPE: Richardson, TX, USA, 1982; p. SPE-11162. [Google Scholar]
- Yuan, S.; Ma, D.; Li, J.; Zhou, T.; Ji, Z.; Han, H. Progress and Prospects of Carbon Dioxide Capture, EOR-Utilization and Storage Industrialization. Pet. Explor. Dev. 2022, 49, 955–962. [Google Scholar] [CrossRef]
- Halland, E.K.; Riis, F.; Magnus, C.; Johansen, W.T.; Tappel, I.M.; Gjeldvik, I.T.; Solbakk, T.; Pham, V.T.H. CO2 Storage Atlas of the Norwegian Part of the North Sea. Energy Procedia 2013, 37, 4919–4926. [Google Scholar] [CrossRef]
- Szabados, A.; Poulsen, S.R. The CCS Greensand Project: CO2 Pilot Injection and Monitoring. Balt. Carbon Forum 2023, 2, 11–12. [Google Scholar] [CrossRef]
- Shogenova, A.; Shogenov, K.; Sliaupa, S.; Sliaupienė, R. The Role of CCUS Clusters and Hubs in Reaching Carbon Neutrality: Case Study from the Baltic Sea Region. Chem. Eng. Trans. 2023, 105, 169–174. [Google Scholar] [CrossRef]
- Zevenhoven, R.; Teir, S.; Eloneva, S. Heat Optimisation of a Staged Gas–Solid Mineral Carbonation Process for Long-Term CO2 Storage. Energy 2008, 33, 362–370. [Google Scholar] [CrossRef]
- Romão, I.S.; Gando-Ferreira, L.M.; Zevenhoven, R. Combined Extraction of Metals and Production of Mg(OH)2 for CO2 Sequestration from Nickel Mine Ore and Overburden. Miner. Eng. 2013, 53, 167–170. [Google Scholar] [CrossRef]
- Stasiulaitiene, I.; Fagerlund, J.; Nduagu, E.; Denafas, G.; Zevenhoven, R. Carbonation of Serpentinite Rock from Lithuania and Finland. Energy Procedia 2011, 4, 2963–2970. [Google Scholar] [CrossRef]
- Shogenova, A.; Šliaupa, S.; Shogenov, K.; Šliaupiene, R.; Pomeranceva, R.; Vaher, R.; Uibu, M.; Kuusik, R. Possibilities for Geological Storage and Mineral Trapping of Industrial CO2 Emissions in the Baltic Region. Energy Procedia 2009, 1, 2753–2760. [Google Scholar] [CrossRef]
- Uibu, M.; Usta, M.C.; Tamm, K.; Žuravljova, A.; Kallas, J.; Kuusik, R.; Trikkel, A. Mineral Trapping of CO2 for Cement Industry De-Carbonization. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference Melbourne, Melbourne, Australia, 21–26 October 2018; pp. 21–26. [Google Scholar]
- Velts, O.; Uibu, M.; Kallas, J.; Kuusik, R. CO2 Mineral Trapping: Modeling of Calcium Carbonate Precipitation in a Semi-Batch Reactor. Energy Procedia 2011, 4, 771–778. [Google Scholar] [CrossRef]
- Shogenova, A.; Sliaupa, S.; Vaher, R.; Shogenov, K.; Pomeranceva, R. The Baltic Basin: Structure, Properties of Reservoir Rocks, and Capacity for Geological Storage of CO2. Est. J. Earth Sci. 2009, 58, 259. [Google Scholar] [CrossRef]
- Šliaupa, S.; Satkūnas, J.; Šliaupienė, R. Prospects of CO2 geological sequestration in Lithuania. Geologija 2005, 51, 19–28. [Google Scholar]
- LEGMC. Geological Structures for the Establishment of Underground Gas Storages; Geological Description for the Information Material “On the Possibilities of Use of the Latvian Geological Structures”; LEGMC: Riga, Latvia, 2007; pp. 1–16. [Google Scholar]
- Brangulis, A.; Kanev, S. Latvijas Tektonika [Tectonics of Latvia]; Valsts Geologijas Dienests: Riga, Latvia, 2002; 50p, (In Latvian, with English Summary). [Google Scholar]
- Tuuling, I. The Leba Ridge–Riga–Pskov Fault Zone—A Major East European Craton Interior Dislocation Zone and Its Role in the Early Palaeozoic Development of the Platform Cover. Est. J. Earth Sci. 2019, 68, 161. [Google Scholar] [CrossRef]
- Tuuling, I.; Põldsaar, K. The Role of the Leba Ridge–Riga–Pskov Fault Zone in the Tectonic Evolution of the Deep-Facies Livonian Tongue within the Baltic Ordovician–Silurian Sedimentary Basin: A Review. Est. J. Earth Sci. 2021, 70, 94. [Google Scholar] [CrossRef]
- Krūmiņš, J.; Kļaviņš, M.; Dēliņa, A.; Damkevics, R.; Segliņš, V. Potential of the Middle Cambrian Aquifer for Carbon Dioxide Storage in the Baltic States. Energies 2021, 14, 3681. [Google Scholar] [CrossRef]
- Šliaupa, S.; Hoth, P. Geological Evolution and Resources of the Baltic Sea Area from the Precambrian to the Quaternary. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Central and Eastern European Development Studies (CEEDES); Springer: Berlin/Heidelberg, Germany, 2011; pp. 13–51. ISBN 978-3-642-17219-9. [Google Scholar]
- Vernon, R.; O’Neil, N.; Pasquali, R.; Nieminen, M. Screening of Prospective Sites for Geological Storage of CO2 in the Southern Baltic Sea; VTT: Espoo, Finland, 2013. [Google Scholar]
- Sopher, D.; Juhlin, C.; Erlström, M. A Probabilistic Assessment of the Effective CO2 Storage Capacity within the Swedish Sector of the Baltic Basin. Int. J. Greenh. Gas Control 2014, 30, 148–170. [Google Scholar] [CrossRef]
- Mortensen, G.M.; Bergmo, P.E.S.; Emmel, B.U. Characterization and Estimation of CO2 Storage Capacity for the Most Prospective Aquifers in Sweden. Energy Procedia 2016, 86, 352–360. [Google Scholar] [CrossRef]
- Domźalski, J.; Górecki, W.; Mazurek, A.; Myśko, A.; Strzetelski, W.; Szamałek, K. The Prospects for Petroleum Exploration in the Eastern Sector of Southern Baltic as Revealed by Sea Bottom Geochemical Survey Correlated with Seismic Data. Przegląd Geologiczny 2004, 52, 792–799. [Google Scholar]
- Ulmishek, G. Geologic Evolution and Petroleum Resources of the Baltic Basin: Chapter 31: Part II. Selected Analog Interior Cratonic Basins: Analog Basins; AAPG Special Volumes, M51: Interior Cratonic Basins; AAPG: Tulsa, OK, USA, 1990; Volume 134, pp. 603–632. [Google Scholar]
- Borowiec, K.; Anolik, P.; Zarębska, B.; Sowiński, A. B8 Crude Oil Field Development-Concept and Basic Design Assumptions. In Proceedings of the International Conference “Baltic-Petrol’2010”, Gdańsk, Poland, 28 September–1 October 2010. [Google Scholar]
- Pikulski, L.; Karnkowski, P.H.; Wolnowski, T. Petroleum Geology of the Polish Part of the Baltic Region-an Overview. Geol. Q. 2010, 54, 143–158. [Google Scholar]
- Kotarba, M.J. Origin of Hydrocarbon Gases Accumulated in the Middle Cambrian Reservoirs of the Polish Part of the Baltic Region. Geol. Q. 2010, 54, 197–204. [Google Scholar]
- Łętkowski, P.; Szott, W. Możliwość Wspomagania Wydobycia Ropy Naftowej Ze Złoża Nosówka Poprzez Zatłaczanie CO2. Biul. Państwowego Inst. Geol. 2012, 448, 107–116. [Google Scholar]
- Otmas, A.A.S.; Druzhinina, E.A.; Otmas, A.A. Prospects of Oil and Gas in the Kursh Gulf (Kaliningrad Region). All-Russia Petroleum Research Exploration Institute. NGTP 2017, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Laškovas, J. The Sedimentation Environments of the Ordovician Basin in the South-Western Margin of the East European Platform and Lithogenesis of Deposits; Institute of Geology: Vilnius, Lithuania, 2000; 314p. [Google Scholar]
- Shogenov, K.; Shogenova, A.; Vizika-Kavvadias, O.; Nauroy, J. Experimental Modeling of CO2-fluid-rock Interaction: The Evolution of the Composition and Properties of Host Rocks in the Baltic Region. Earth Space Sci. 2015, 2, 262–284. [Google Scholar] [CrossRef]
- Lapinskas, P. Structure and Petroliferosity of the Silurian in Lithuania; Institute of Geology: Vilnius, Lithuania, 2000; 203p. [Google Scholar]
- Jarzyna, J.A.; Bała, M.; Krakowska, P.I.; Puskarczyk, E.; Strzępowicz, A.; Wawrzyniak-Guz, K.; Więcław, D.; Ziętek, J. Shale Gas in Poland. In Advances in Natural Gas Emerging Technologies; Al-Megren, H.A., Altamimi, R.H., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-3433-6. [Google Scholar]
- Stirpeika, A. Tectonic Evolution of the Baltic Syneclise and Local Structures in the South Baltic Region with Respect to Their Petroleum Potential: Monography; Laškovas, J., Šliaupa, A., Eds.; Lietuvos Geologijos Tarnyba: Vilnius, Lithuania, 1999; p. 112. [Google Scholar]
- Grigelis, A. Research of the Bedrock Geology of the Central Baltic Sea. Baltica 2011, 24, 1–12. [Google Scholar]
- Šliaupienė, R.; Šliaupa, S. Prospects for CO2 Geological Storage in Deep Saline Aquifers of Lithuania and Adjacent Territories. Geologija 2011, 53, 121–133. [Google Scholar] [CrossRef]
- Paškevičius, J. The Geology of the Baltic States; Geological Survey of Lithuania: Vilnius, Lithuania, 1997. [Google Scholar]
- Motuza, G. The Precambrian Geology of Lithuania: An Integratory Study of the Platform Basement Structure and Evolution; Regional Geology Reviews; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-96854-0. [Google Scholar]
- Poprawa, P.; Šliaupa, S.; Stephenson, R.; Lazauskien, J. Late Vendian–Early Palaeozoic Tectonic Evolution of the Baltic Basin: Regional Tectonic Implications from Subsidence Analysis. Tectonophysics 1999, 314, 219–239. [Google Scholar] [CrossRef]
- Šliaupa, S.; Fokin, P.; Lazauskiene, J.; Stephenson, R.A. The Vendian-Early Palaeozoic Sedimentary Basins of the East European Craton. Memoirs 2006, 32, 449–462. [Google Scholar] [CrossRef]
- Zaba, J.; Poprawa, P. Deformation History of the Koszalin-Chojnice Zone (Pomeranian Segment of TESZ, NW Poland) Constraints from Structural Analysis of Palaeozoic and Mesozoic Successions in Polskie Łaki PIG 1 and Toruń 1 Boreholes. Prace-Panstw. Inst. Geol. 1997, 186, 225–252. [Google Scholar]
- Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.A.; Cloetingh, S.A.P.L.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Bolotov, S.N.; Korotaev, M.V.; Alekseev, A.S.; et al. Late Precambrian to Triassic History of the East European Craton: Dynamics of Sedimentary Basin Evolution. Tectonophysics 1996, 268, 23–63. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Enikeev, B.N.; Kazurov, A.B. Russian Integrated Approach to Gas-Bearing Shaly Sandstones Log Interpretation. In Proceedings of the 2nd SPWLA Symposium. Innovations in Petrophysical evaluation of Unconventional Reservoirs, Mumbai, India, 19–20 November 2009. [Google Scholar]
- Dobrynin, V.M.; Wendelstein, B.Y.; Kozhevnikov, D.A. Petrophysics; Nedra: Moskow, Russia, 1991. [Google Scholar]
- Jing, J.; Yang, Y.; Cheng, J.; Jing, X.; Ding, Z. Effects of Injection Temperature and Pressure on CO2 Storage Capacity and Safety in a Sloping Formation. Energy Fuels 2024, 38, 11891–11908. [Google Scholar] [CrossRef]
- Bachu, S.; Adams, J.J. Sequestration of CO2 in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO2 in Solution. Energy Convers. Manag. 2003, 44, 3151–3175. [Google Scholar] [CrossRef]
- Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Van Der Meer, B.; Le Gallo, Y.; Bossie-Codreanu, D.; Wojcicki, A.; Le Nindre, Y.-M.; et al. Assessing European Capacity for Geological Storage of Carbon Dioxide–the EU GeoCapacity Project. Energy Procedia 2009, 1, 2663–2670. [Google Scholar] [CrossRef]
- Nielsen, A.T.; Schovsbo, N. Cambrian to Basal Ordovician Lithostratigraphy in Southern Scandinavia. Bull. Geol. Soc. Den. 2006, 53, 47–92. [Google Scholar] [CrossRef]
- Kadūnienė, E. Organic Matter in Oil Source Rocks. In Petroleum geology of Lithuania and Southeastern Baltic; Institute of Geology: Vilnius, Lithuania, 2001; Volume 96, p. 119. [Google Scholar]
- Wang, E.; Liu, G.; Pang, X.; Li, C.; Wu, Z. Diagenetic Evolution and Formation Mechanisms of Middle to Deep Clastic Reservoirs in the Nanpu Sag, Bohai Bay Basin, East China. Pet. Explor. Dev. 2020, 47, 343–356. [Google Scholar] [CrossRef]
- Molenaar, N.; Cyziene, J.; Sliaupa, S. Quartz Cementation Mechanisms and Porosity Variation in Baltic Cambrian Sandstones. Sediment. Geol. 2007, 195, 135–159. [Google Scholar] [CrossRef]
- Mokrik, R. The Paleohydrogeology of the Baltic Basin: Vendian and Cambrian; Tartu University Press: Tartu, Estonia, 1997. [Google Scholar]
- Grendaitė, M.; Michelevičius, D.; Radzevičius, S. Insights into the Structural Geology and Sedimentary Succession of the Baltic Basin, Western Lithuania. Mar. Pet. Geol. 2023, 147, 106009. [Google Scholar] [CrossRef]
- Molenaar, N.; Cyziene, J.; Sliaupa, S.; Craven, J. Lack of Inhibiting Effect of Oil Emplacement on Quartz Cementation: Evidence from Cambrian Reservoir Sandstones, Paleozoic Baltic Basin. Geol. Soc. Am. Bull. 2008, 120, 1280–1295. [Google Scholar] [CrossRef]
- Berg, R.R. Method for Determining Permeability from Reservoir Rock Properties. Gulf Coast Assoc. Geol. Soc. Trans. 1970, 20, 303–317. [Google Scholar]
- Bernabé, Y.; Mok, U.; Evans, B. Permeability-Porosity Relationships in Rocks Subjected to Various Evolution Processes. Pure Appl. Geophys. 2003, 160, 937–960. [Google Scholar] [CrossRef]
- Ma, S.; Morrow, N.R. Relationships between Porosity and Permeability for Porous Rocks. In Proceedings of the International Symposium of the Society of Core Analysts, Montpelier, France, 8–10 September 1996; pp. 8–10. [Google Scholar]
- Kilda, L.; Friis, H. The Key Factors Controlling Reservoir Quality of the Middle CambrianDeimena Group Sandstone in West Lithuania. Bull. Geol. Soc. Den. 2002, 49, 25–39. [Google Scholar] [CrossRef]
- Krumbein, W.C.; Monk, G.D. Permeability as a Function of the Size Parameters of Unconsolidated Sand. Trans. AIME 1943, 151, 153–163. [Google Scholar] [CrossRef]
- Aliyev, E.; Saidian, M.; Prasad, M.; Russell, B. Rock Typing of Tight Gas Sands: A Case Study in Lance and Mesaverde Formations from Jonah Field. J. Nat. Gas Sci. Eng. 2016, 33, 1260–1270. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Čyžienė, J.; Molenaar, N.; Šliaupa, S. Clay-Induced Pressure Solution as a Si Source for Quartz Cement in Sandstones of the Cambrian Deimena Group. Geologija 2006, 53, 8–21. [Google Scholar]
- Freeman, B.; Yielding, G.; Needham, D.T.; Badley, M.E. Fault Seal Prediction: The Gouge Ratio Method. Geol. Soc. Lond. Spec. Publ. 1998, 127, 19–25. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault Zone Architecture and Permeability Structure. Geology 1996, 24, 1025. [Google Scholar] [CrossRef]
- Aydin, A. Fractures, Faults, and Hydrocarbon Entrapment, Migration and Flow. Mar. Pet. Geol. 2000, 17, 797–814. [Google Scholar] [CrossRef]
- Antonellini, M.; Cilona, A.; Tondi, E.; Zambrano, M.; Agosta, F. Fluid Flow Numerical Experiments of Faulted Porous Carbonates, Northwest Sicily (Italy). Mar. Pet. Geol. 2014, 55, 186–201. [Google Scholar] [CrossRef]
- Ouyang, L.-B. New Correlations for Predicting the Density and Viscosity of Supercritical Carbon Dioxide Under Conditions Expected in Carbon Capture and Sequestration Operations. Open Pet. Eng. J. 2011, 5, 13–21. [Google Scholar] [CrossRef]
- The Engineering ToolBox. Carbon Dioxide-Density and Specific Weight vs. Temperature and Pressure. Available online: https://www.engineeringtoolbox.com/carbon-dioxide-density-specific-weight-temperature-pressure-d_2018.html (accessed on 3 October 2024).
- Zdanavičiūtė, O.; Sakalauskas, K. Petroleum Geology of Lithuania and Southeastern Baltic; GI Publications: Vilnius, Lithuania, 2001; ISBN 9986-615-23-2. [Google Scholar]
- Duan, Z.; Sun, R.; Zhu, C.; Chou, I.-M. An Improved Model for the Calculation of CO2 Solubility in Aqueous Solutions Containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−. Mar. Chem. 2006, 98, 131–139. [Google Scholar] [CrossRef]
- User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; US Geological Survey: Reston, VA, USA, 1999.
Well | TDS * | pH | Cl | SO4 | HCO3 | Na | K | Ca | Mg | Fe | Si |
---|---|---|---|---|---|---|---|---|---|---|---|
Syderiai | 122.4 | 5.75 | 76,452 | 67 | 64 | 29,027 | 383 | 12,726 | 3128 | 31 | 8.4 |
Vlkyč-5 | 166.5 | 5.10 | 103,468 | 225 | 18 | 34,094 | 90 | 24,187 | 2702 | 60 | 31.1 |
Index | Porosity % | Maximum Permeability mD | Anisotropy Permeability mD | Density kg/m3 |
---|---|---|---|---|
Giruliai Fm. | 4.74 | 9.33 | 0.74 | 2530 |
Ablinga Fm. | 6.10 | 6.88 | 0.88 | 2490 |
Pajūris Fm. (I) | 5.33 | 12.33 | 1.00 | 2480 |
Pajūris Fm. (11) | 6.35 | 10.30 | 1.00 | 2470 |
Vargalė RSt. | 12.20 | 0.30 | no data | 2400 |
Volume | Syderiai | Gargždai |
---|---|---|
Closure, m | −1385 | −2015 |
Structure amplitude, m | 75 | 90 |
Thickness, m | 50 | 75 |
Area, km2 | 62 | 233 |
Volume, mln·m3 | 1900 | 6980 |
Net-to-gross ratio | 0.80 | 0.30 |
Porosity, % | 0.16 | 0.07 |
CO2 density, kg/m3 | 710 | 610 |
Storage efficiency (fraction) | 0.35 | 0.35 |
CO2 storage capacity, Mt | 56.7 | 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šliaupa, S.; Michelevičius, D.; Šliaupienė, R.; Liugas, J. Assessment of the Potential for CO2 Storage and Utilization in the Fractured and Porous Reservoir of the Cambrian Sandstones in West Lithuania’s Baltic Basin. Minerals 2024, 14, 1112. https://doi.org/10.3390/min14111112
Šliaupa S, Michelevičius D, Šliaupienė R, Liugas J. Assessment of the Potential for CO2 Storage and Utilization in the Fractured and Porous Reservoir of the Cambrian Sandstones in West Lithuania’s Baltic Basin. Minerals. 2024; 14(11):1112. https://doi.org/10.3390/min14111112
Chicago/Turabian StyleŠliaupa, Saulius, Dainius Michelevičius, Rasa Šliaupienė, and Jonas Liugas. 2024. "Assessment of the Potential for CO2 Storage and Utilization in the Fractured and Porous Reservoir of the Cambrian Sandstones in West Lithuania’s Baltic Basin" Minerals 14, no. 11: 1112. https://doi.org/10.3390/min14111112
APA StyleŠliaupa, S., Michelevičius, D., Šliaupienė, R., & Liugas, J. (2024). Assessment of the Potential for CO2 Storage and Utilization in the Fractured and Porous Reservoir of the Cambrian Sandstones in West Lithuania’s Baltic Basin. Minerals, 14(11), 1112. https://doi.org/10.3390/min14111112