Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on Mantle versus Crustal Signature of Syenitic Magma
Abstract
1. Introduction
2. Soarinho Intrusive Complex
Tanguá and Rio Bonito Massifs
3. Analytical Methods
4. Soarinho Rocks Petrography
4.1. Quartz Syenite
4.2. Monzonite
4.3. Alkali-Feldspar Syenite
4.4. Alkali-Feldspar Trachyte
5. Geochemistry
6. Zircon U-Pb Geochronology
7. Zircon Lu-Hf Isotopes
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asmus, H.E. Geologia da margem continental brasileira. In Geologia do Brasil; Schobbenhaus, C., Campos, D.A., Derze, G.R., Asmus, H.E., Eds.; MME/DNPM: Brasília, Brazil, 1984; pp. 443–472. [Google Scholar]
- Mizusaki, A.M.P.; Thomaz-Filho, A.; Milani, E.J.; Césero, P. Mesozoic and Cenozoic igneous activity and its tectonic control in northeastern Brazil. J. S. Am. Earth Sci. 2002, 15, 183–198. [Google Scholar] [CrossRef]
- Riccomini, C.; Sant’Anna, L.G.; Ferrari, A.L. Evolução geológica do rift continental do Sudeste do Brasil. In Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida; Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R., Brito-Neves, B.B., Eds.; Editora Beca: São Paulo, Brazil, 2004; pp. 385–405. [Google Scholar]
- Ulbrich, H.; Gomes, C. Alkaline rocks from continental Brazil. Earth Sci. Rev. 1981, 17, 135–154. [Google Scholar] [CrossRef]
- Morbidelli, L.; Gomes, C.B.; Beccaluva Brotzu, P.; Conte, A.M.; Ruberti, E.; Traversa, G. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil. Earth Sci. Rev. 1995, 39, 135–168. [Google Scholar] [CrossRef]
- Thompson, R.N.; Gibson, S.A.; Mitchell, J.G.; Dickin, A.P.; Leonardos, O.H.; Brod, J.A.; Greenwood, J.C. Migrating Cretaceous-Eocene magmatism in the Serra do Mar Alkaline Province, SE Brazil: Melts from the deflected Trinidade mantle plume? J. Petrol. 1998, 39, 1493–1526. [Google Scholar] [CrossRef]
- Heilbron, M.; Pedrosa-Soares, A.C.; Campos Neto, M.C.; Silva, L.C.; Truow, R.A.J.; Janasi, V.A. Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Flávio Marques de Almeida; Província Mantiqueira, V., Mantesso-Neto, A., Bartoreli, C.D.R., Carneiro, B.B., Eds.; Brito-Neves: Beca, Brazil, 2004; pp. 203–234. [Google Scholar]
- Heilbron, M.; Eirado, L.G.; Almeida, J. Mapa Geológico e de Recursos Minerais do Estado do Rio de Janeiro. Escala 1:400.000 Programa Geologia do Brasil (PGB), Mapas Geológicos Estaduais. CPRM-Serviço Geológico do Brasil, Superintendência Regional de Belo Horizonte. 2016. Available online: https://www.researchgate.net/publication/312412824_Mapa_Geologico_e_de_Recursos_Minerais_do_Estado_do_Rio_de_Janeiro_Escala_1400000_Geological_Map_of_Rio_de_Janeiro_State_Brazil_1400000_scale (accessed on 20 March 2020).
- Amaral, G.; Bushee, J.; Cordani, U.G.; Kawashita, K.; Reynolds, J.H. Potassium-argon ages of alkaline rocks from Southern Brasil. Geochim. Cosmochim. Acta 1967, 31, 117–142. [Google Scholar] [CrossRef]
- Sonoki, I.K.; Garda, G.M. Idades K Ar de rochas alcalinas do Brasil Meridional e Paráguai Oriental: Compilação e adaptação às novas constantes de decaimento. Bol. IG USP Série Científica 1988, 19, 63–85. [Google Scholar] [CrossRef]
- Thomaz Filho, A.; Rodrigues, A.L. O alinhamento de rochas alcalinas Poços de Caldas Cabo Frio (RJ) e sua continuidade na cadeia Vitória Trindade. Braz. J. Geol. 1999, 29, 275–280. [Google Scholar] [CrossRef]
- Montes-Lauar, C.R.; Pacca, I.G.; Melfi, A.J.; Kawashita, K. Late Cretaceous Alkaline Complexes, Southeastern Brazil: Paleomagnetism and Geochronology. Earth Planet. Sci. Lett. 1995, 134, 425–440. [Google Scholar] [CrossRef]
- Silva, D.A.; Geraldes, M.C.; Vargas, T.; Jourdan, F.; Nogueira, C.C. 40Ar/39Ar age, lithogeochemistry and petrographic studies of the Cretaceous Alkaline Marapicu Intrusion, Rio de Janeiro, Brazil. Bol. Do Mus. Para. Emílio Goeldi Ciências Nat. 2015, 10, 399–422. [Google Scholar] [CrossRef]
- Da Silva, D.A.; Motoki, A.; Dos Santos, A.C.; Mendes, J.; Jourdan, F.; Geraldes, M.C.; Lana, C.D.C. Multiple processes of geochemical evolution for the alkaline rocks of Rio Bonito intrusive complex, State of Rio de Janeiro, Brazil: 40Ar/39Ar and U-Pb ages and Lu-Hf isotopes on zircon and constraints on crustal signature. Geol. USP. Série Científica 2020, 20, 213–234. [Google Scholar] [CrossRef]
- Herz, N. Timing of Spreading in the South Atlantic: Information from Brazilian Alkali Rocks. Geol. Soc. Am. Bull. 1977, 88, 101–112. [Google Scholar] [CrossRef]
- Gibson, S.A.; Thompson, R.N.; Leonardos, O.H.; Dickin, A.P.; Mitchel, J.G. The late cretaceous impact of the Trindade Mantle Plume: Evidence from large-volume, mafic, potassic magmatism in SE Brazil. J. Petrol. 1995, 36, 189–229. [Google Scholar] [CrossRef]
- Almeida, F.F.M. The system of continental rifts bordering the Santos basin, Brazil. An. Acad. Bras. Ciências 1976, 48 (Suppl.), 15–26. [Google Scholar]
- Almeida, F.F.M.; Neves, B.B.B.; Carneiro, C.D.R. The origin and evolution of the South American Platform. Earth Sci. Rev. 2000, 50, 77–111. [Google Scholar] [CrossRef]
- Oreiro, S.G.; Cupertino, J.A.; Szatmari, P.; Thomaz Filho, A. Influence of pre salt alignments in post Aptian magmatism in the Cabo Frio High and its surroundings, Santos and Campos basins, SE Brazil: An example of non plume related magmatism. J. S. Am. Earth Sci. 2008, 25, 116–131. [Google Scholar] [CrossRef]
- Fainstein, R.; Summerhayes, C.P. Structure and origin of marginal banks off Eastern Brazil. Mar. Geol. 1982, 46, 199–215. [Google Scholar] [CrossRef]
- Mota, C.E.M.; Geraldes, M.C.; Almeida, J.C.H.; Vargas, T.; Souza, D.M.; Loureiro, R.O.; Silva, A.P. Características Isotópicas (Nd e Sr), Geoquímicas e Petrográficas da Intrusão Alcalina do Morro de São João: Implicações Geodinâmicas e Sobre a Composição do Manto Sublitosférico. Geol. USP Série Científica 2009, 9, 85–100. [Google Scholar] [CrossRef]
- Brotzu, P.; Beccaluva, L.; Conte, A.; Fonseca, M.; Garbarino, C.; Gomes, C.B.; Leong, R.; Macciotta, G.; Mansur, R.L.; Melluso, L.; et al. Petrological and geochemical studies of alkaline rocks from continental Brazil. 8. The syenitic intrusion of Morro Redondo, RJ. Geochim. Bras. 1989, 3, 63–80. [Google Scholar]
- Brotzu, P.; Barbieri, M.; Beccaluva, L.; Garbarino, C.; Gomes, C.B.; Macciotta, G.; Melluso, L.; Morbidelli, L.; Ruberti, E.; Sigolo, J.B.; et al. Petrology and geochemistry of the Passa Quatro alkaline complex, southeastern Brazil. J. S. Am. Earth Sci. 1992, 6, 237–252. [Google Scholar] [CrossRef]
- Motoki, A.; Sichel, S.E.; Vargas, T.; Aires, J.R.; Iwanuch, W.; Mello, S.L.M.; Motoki, K.F.; Silva, S.; Balmant, A.; Gonçalves, J. Geochemical evolution of the felsic alkaline rocks of Tanguá, Rio Bonito, and Itaúna intrusive bodies, State of Rio de Janeiro, Brazil. Geociências 2010, 29, 291–310. [Google Scholar]
- Motoki, A.; Araújo, A.L.; Sichel, S.E.; Geraldes, M.C.; Jourdan, F.; Motoki, K.F.; Silva, S. Nepheline syenite Magma Differentiation with Continental Crustal Assimilation for the Cabo Frio Island Intrusive Complex, State of Rio de Janeiro, Brazil. Geociências 2013, 32, 195–218. [Google Scholar]
- Shea, M.E. Isotopic geochemical characterization of selected nepheline syenites and phonolites from the Poços de Caldas alkaline complex, Minas Gerais, Brazil. J. Geochem. Explor. 1992, 45, 173–214. [Google Scholar] [CrossRef]
- Ulbrich, H.H.; Vlach, S.R.F.; Demaiffe, D.; Ulbrich, M.N.C. Structure and origin of the Poços de Caldas Alkaline Massif. In Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform; Comin-Chiaramonti, P., Gomes, C.B., Eds.; Edusp/Fapesp: São Paulo, Brazil, 2005; pp. 367–418. [Google Scholar]
- Grohmann, C.H.; Riccomini, C.; Alves, F.M. SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Comput. Geosci. 2007, 33, 10–19. [Google Scholar] [CrossRef]
- Takenaka, L.B.; Lana, C.; Scholz, R.; Nalini, H.A., Jr.; Abreu, A.T. Optimization of the in-situ U–Pb age dating method via LA-Quadrupole-ICP-MS with applications to the timing of U–Zr–Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil. J. S. Am. Earth Sci. 2015, 62, 70–79. [Google Scholar] [CrossRef]
- Brotzu, P.; Gomes, C.B.; Melluso, L.; Morbidelli, L.; Morra, V.; Ruberti, E. Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: The alkaline complex of Itatiaia, Southeastern Brazil. Lithos 1997, 40, 133–156. [Google Scholar] [CrossRef]
- Rosa, P.A.S.; Ruberti, E. Nepheline syenite to syenites and granitic rocks of the Itatiaia Alkaline Massif, Southeastern Brazil: New geological insights into a migratory ring Complex. Braz. J. Geol. 2018, 48, 347–372. [Google Scholar] [CrossRef]
- Valença, J.G. Geology, Petrography and Petrogenesis of Some Alkaline Igneous Complexes of Rio de Janeiro State, Brazil. Ph.D. Thesis, West Ontario University, London, ON, Canada, 1980; 247p. [Google Scholar]
- Silva, D.A.; Geraldes, M.C.; Rodrigues, S.W.O.; Mcmaster, M.; Evans, N.; Nummer, A.R.; Vargas, T. (U Th)/He Ages from the Fluorite Mineralization of the Tanguá Alkaline Intrusion. Anuário Inst. Geociências UFRJ 2018, 41, 14–21. [Google Scholar] [CrossRef]
- Janousek, V.; Farrow, C.M.; Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). J. Petrol. 2006, 47, 1255–1259. [Google Scholar] [CrossRef]
- Ludwig, K.R. Using Isoplot/Ex, Version 3.00, a Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, p. 74. [Google Scholar]
- Tera, F.; Wasserburg, G.J. U-Th-Pb systematic in three Apolo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Chauvel, C.; Lewin, E.; Carpentier, M.; Arndt, N.T.; Marini, J.C. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat. Geosci. 2008, 1, 64–67. [Google Scholar] [CrossRef]
- Blichert-Toft, J. The Hf isotopic composition of zircon reference material 91500. Chem. Geol. 2008, 253, 252–257. [Google Scholar] [CrossRef]
- Dhuime, B.; Hawkesworth, C.; Cawood, P. When Continents Formed. Science 2011, 331, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Frost, B.R.; Frost, C.D. A Geochemical Classification for Feldspatic Igneous Rocks. J. Petrol. 2008, 49, 1955–1969. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. The basalt clan. Earth Sci. Rev. 1975, 11, 337–364. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare-earth elements: Meteorite studies. In Rare-Earth Elements Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Blackwell Scientific: Boston, MA, USA, 1989; pp. 313–345. [Google Scholar]
- Powell, R. Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites. J. Geol. Soc. Lond. 1984, 141, 447–552. [Google Scholar] [CrossRef]
Soa 01A | Soa 01B | Soa 01D | Soa 01I | Soa 03 | Soa 05 | Soa 06A | Soa 06B | Soa 02A | Soa 02B | Soa 04B | Soa 09A | Soa 09B | Soa 11 | Soa 01F | Soa 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qs | sy | mo | tq | |||||||||||||
SiO2 | 63.53 | 63.53 | 62.06 | 63.23 | 63.14 | 64.91 | 63.74 | 63.78 | 53.63 | 54.17 | 63.42 | 61.87 | 61.73 | 60.75 | 62.92 | 61.3 |
Al2O3 | 17.29 | 17.4 | 17.89 | 17.57 | 18.03 | 17.02 | 18.34 | 18.58 | 18.82 | 18.38 | 18.3 | 18.61 | 17.94 | 17.97 | 18.18 | 17.89 |
Fe2O3 | 3.9 | 3.89 | 4.05 | 3.81 | 4.01 | 2.55 | 2.19 | 2.11 | 7.77 | 7.93 | 3.54 | 3.78 | 4.24 | 5.45 | 4.18 | 4.12 |
MnO | 0.13 | 0.14 | 0.15 | 0.15 | 0.2 | 0.13 | 0.08 | 0.9 | 0.13 | 0.14 | 0.07 | 0.22 | 0.24 | 0.53 | 0.21 | 0.4 |
MgO | 0.5 | 0.52 | 0.59 | 0.46 | 0.56 | 0.28 | 0.13 | 0.13 | 2.67 | 2.72 | 0.36 | 0.42 | 0.35 | 0.3 | 0.46 | 0.32 |
CaO | 1.5 | 1.56 | 1.83 | 1.12 | 0.41 | 1.23 | 0.32 | 0.32 | 5.71 | 5.6 | 0.15 | 0.15 | 0.13 | 0.42 | 0.82 | 0.63 |
Na2O | 4.84 | 5 | 4.92 | 4.97 | 5.64 | 6.57 | 6.24 | 6.04 | 4.01 | 3.85 | 4.99 | 5.58 | 6.25 | 5.81 | 6.77 | 6.35 |
K2O | 6.03 | 6.25 | 5.83 | 6.45 | 6.78 | 6.09 | 6.15 | 6.25 | 4.17 | 4.25 | 7.98 | 6.45 | 5.88 | 6.45 | 5.84 | 6.03 |
TiO2 | 0.56 | 0.52 | 0.56 | 0.48 | 0.6 | 0.15 | 0.49 | 0.49 | 1.96 | 1.9 | 0.48 | 0.6 | 0.49 | 0.49 | 0.45 | 0.54 |
P2O5 | 0.18 | 0.16 | 0.18 | 0.15 | 0.16 | 0.01 | 0.07 | 0.06 | 0.66 | 0.67 | 0.05 | 0.05 | 0.08 | 0.15 | 0.11 | 0.09 |
LOI | 1.01 | 0.71 | 0.64 | 0.58 | 0.86 | 1.21 | 1.97 | 1.96 | 0.49 | 0.44 | 0.8 | 1.38 | 1.37 | 2.31 | 0.71 | 1.16 |
Total | 99.46 | 99.66 | 98.7 | 98.96 | 100.4 | 100.2 | 99.7 | 99.79 | 100 | 100 | 100.1 | 99.1 | 98.72 | 100.6 | 99.65 | 98.83 |
Sc | 3 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 10 | 10 |
Be | 4 | 4 | 4 | 5 | 4 | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 2 | 2 | 2 |
V | 13 | 15 | 14 | 13 | 9 | <5 | 10 | 8 | 6 | 8 | 6 | 7 | <5 | <5 | 145 | 139 |
Ba | 694 | 731 | 963 | 654 | 162 | 29 | 208 | 198 | 183 | 70 | 53 | 80 | 145 | 37 | 1636 | 1466 |
Sr | 456 | 480 | 671 | 435 | 88 | 84 | 136 | 152 | 129 | 52 | 33 | 64 | 99 | 56 | 1175 | 1104 |
Zr | 637 | 532 | 593 | 654 | 685 | 449 | 359 | 358 | 513 | 490 | 722 | 257 | 839 | 624 | 291 | 318 |
Cr | <20 | <20 | 20 | <20 | <20 | <20 | <20 | <20 | <20 | 20 | <20 | <20 | <20 | <20 | 30 | 30 |
Co | 3 | 2 | 3 | 2 | 1 | <1 | 3 | 3 | 1 | <1 | <1 | 1 | 1 | <1 | 17 | 17 |
Ni | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | <20 | 20 | <20 |
Cu | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | 10 | <10 | 10 |
Zn | 100 | 90 | 90 | 90 | 190 | 80 | 220 | 180 | 60 | 130 | 150 | 200 | 150 | 150 | 100 | 100 |
Ga | 23 | 24 | 22 | 24 | 24 | 27 | 23 | 23 | 22 | 23 | 27 | 21 | 23 | 25 | 23 | 23 |
Ge | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | <1 | 1 | 1 | 1 | 1 |
As | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
Rb | 165 | 161 | 145 | 179 | 213 | 157 | 129 | 132 | 203 | 201 | 188 | 131 | 158 | 160 | 87 | 86 |
Nb | 129 | 133 | 119 | 147 | 147 | 131 | 164 | 162 | 131 | 139 | 209 | 111 | 143 | 173 | 84 | 77 |
Mo | 5 | 5 | 4 | 6 | 2 | 8 | 8 | 9 | 2 | <2 | <2 | 3 | 3 | 7 | 3 | 4 |
Ag | 1.7 | 1.3 | 1.3 | 1.4 | 1.7 | 1.7 | 0.8 | 0.8 | 1.3 | 2.2 | 1.8 | 0.9 | 3 | 1.5 | 0.7 | 0.8 |
In | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Sn | 4 | 3 | 4 | 5 | 7 | 3 | 4 | 4 | 4 | 3 | 4 | 2 | 4 | 4 | 2 | 2 |
Sb | 0.5 | <0.5 | 0.6 | 0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | 0.5 | 0.6 |
Cs | 1.1 | 0.9 | 0.9 | 1.9 | 2.3 | 0.8 | 0.6 | 0.6 | 2.1 | 1.8 | 1.7 | <0.5 | 1.1 | 1 | 0.9 | 1 |
Hf | 13.6 | 11.6 | 11.9 | 13.9 | 13 | 12.2 | 8 | 8.1 | 10.1 | 11.9 | 14.8 | 6.9 | 17.5 | 12.1 | 6 | 6.5 |
Ta | 9.2 | 9.1 | 8.3 | 10.5 | 9.7 | 11.6 | 11.1 | 11.7 | 8.7 | 7.3 | 13.7 | 10.3 | 13 | 11.5 | 5.7 | 5.1 |
W | 3 | 2 | 2 | 2 | 3 | <1 | 2 | 2 | 1 | <1 | 1 | <1 | <1 | 2 | 2 | 2 |
Tl | 0.4 | 0.4 | 0.4 | 0.6 | 1 | 0.8 | 1.1 | 1.3 | 1 | 0.7 | 0.7 | 0.2 | 0.9 | 0.8 | 0.2 | 0.2 |
Pb | 17 | 17 | 30 | 27 | 21 | 30 | 20 | 77 | 37 | 21 | 35 | 14 | 41 | 25 | 12 | 13 |
Bi | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | 0.8 | <0.4 | <0.4 | 0.8 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 |
Th | 19.4 | 18.9 | 19.1 | 22.7 | 16.2 | 20.6 | 13.7 | 15 | 15.1 | 14.5 | 20.7 | 11.3 | 17.7 | 17.1 | 9.1 | 11.6 |
U | 3.9 | 3.6 | 3.3 | 4.9 | 2.9 | 3.8 | 3.1 | 3.4 | 3.3 | 4 | 4.6 | 1 | 3.7 | 3.6 | 1.8 | 2.2 |
Soa 01A | Soa 01B | Soa 01D | Soa 01I | Soa 03 | Soa 05 | Soa 06A | Soa 06B | Soa 02A | Soa 02B | Soa 04B | Soa 09A | Soa 09B | Soa 11 | Soa 01F | Soa 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qs | sy | mo | tq | |||||||||||||
La | 135 | 139 | 149 | 143 | 117 | 120 | 147 | 156 | 87.1 | 87 | 159 | 131 | 185 | 184 | 87.1 | 87 |
Ce | 251 | 255 | 265 | 261 | 283 | 228 | 289 | 310 | 162 | 162 | 380 | 237 | 276 | 303 | 162 | 162 |
Pr | 25.3 | 25.6 | 26.2 | 26.3 | 25.4 | 23.2 | 30.7 | 32.6 | 17.2 | 17.1 | 29.8 | 24.8 | 32.6 | 35.5 | 17.2 | 17.1 |
Nd | 82.3 | 83.8 | 84.5 | 83.8 | 85.1 | 76.8 | 101 | 110 | 60.6 | 60.7 | 94.5 | 83.4 | 108 | 114 | 60.6 | 60.7 |
Sm | 12.4 | 12.6 | 11.9 | 12.9 | 13.3 | 11.7 | 15.9 | 17 | 9.5 | 9.7 | 13.4 | 12.4 | 15.4 | 17.3 | 9.5 | 9.7 |
Eu | 2.02 | 2.03 | 2.43 | 1.98 | 1.56 | 0.28 | 1.59 | 1.76 | 3.57 | 3.33 | 1.14 | 2.27 | 1.73 | 1.72 | 3.57 | 3.33 |
Gd | 9.2 | 8.8 | 8.2 | 9.1 | 8.8 | 7.9 | 11 | 11.8 | 7.6 | 7.2 | 8.7 | 8.5 | 11.1 | 12 | 7.6 | 7.2 |
Tb | 1.3 | 1.3 | 1.2 | 1.4 | 1.3 | 1.2 | 1.6 | 1.7 | 1 | 1 | 1.3 | 1.3 | 1.6 | 1.8 | 1 | 1 |
Dy | 7.6 | 7.1 | 6.7 | 7.8 | 7.2 | 7.2 | 8.8 | 9.4 | 5.4 | 5.3 | 7.8 | 6.8 | 8.9 | 9.8 | 5.4 | 5.3 |
Ho | 1.4 | 1.3 | 1.3 | 1.5 | 1.3 | 1.4 | 1.6 | 1.7 | 0.9 | 0.9 | 1.5 | 1.3 | 1.7 | 1.8 | 0.9 | 0.9 |
Er | 4 | 3.8 | 3.6 | 4.3 | 3.6 | 4 | 4.2 | 4.6 | 2.5 | 2.4 | 4.6 | 3.6 | 4.6 | 4.8 | 2.5 | 2.4 |
Tm | 0.61 | 0.55 | 0.53 | 0.66 | 0.54 | 0.58 | 0.62 | 0.65 | 0.34 | 0.33 | 0.68 | 0.52 | 0.65 | 0.71 | 0.34 | 0.33 |
Yb | 4 | 3.7 | 3.6 | 4.3 | 3.5 | 3.8 | 3.7 | 4 | 2.2 | 2.1 | 4.6 | 3.4 | 4.3 | 4.5 | 2.2 | 2.1 |
Lu | 0.64 | 0.54 | 0.58 | 0.67 | 0.53 | 0.54 | 0.53 | 0.58 | 0.33 | 0.33 | 0.68 | 0.51 | 0.66 | 0.65 | 0.33 | 0.33 |
Y | 38 | 36 | 36 | 41 | 34 | 34 | 44 | 44 | 26 | 25 | 40 | 36 | 47 | 50 | 26 | 25 |
Measure Summary | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
QS | Max | 63.53 | 17.89 | 4.05 | 0.15 | 0.59 | 1.83 | 5.00 | 6.45 | 0.56 | 0.18 |
Min | 62.06 | 17.29 | 3.81 | 0.13 | 0.52 | 1.12 | 4.84 | 5.83 | 0.48 | 0.15 | |
Mean | 63.09 | 17.53 | 3.91 | 0.14 | 0.54 | 1.50 | 4.93 | 6.14 | 0.53 | 0.17 | |
std | 0.70 | 0.26 | 0.10 | 0.01 | 0.05 | 0.29 | 0.07 | 0.27 | 0.04 | 0.02 | |
SY | Max | 64.91 | 18.58 | 4.01 | 0.90 | 0.56 | 1.23 | 6.57 | 6.78 | 0.60 | 0.16 |
Min | 63.14 | 17.02 | 2.11 | 0.08 | 0.13 | 0.32 | 5.64 | 6.09 | 0.15 | 0.01 | |
Mean | 63.89 | 17.99 | 2.72 | 0.33 | 0.28 | 0.57 | 6.12 | 6.32 | 0.43 | 0.08 | |
std | 0.74 | 0.69 | 0.88 | 0.38 | 0.20 | 0.44 | 0.39 | 0.32 | 0.20 | 0.06 | |
TQ | Max | 63.42 | 18.61 | 5.45 | 0.53 | 0.46 | 0.82 | 6.77 | 7.98 | 0.60 | 0.15 |
Min | 60.75 | 17.89 | 3.54 | 0.07 | 0.30 | 0.13 | 4.99 | 5.84 | 0.45 | 0.05 | |
Mean | 61.99 | 18.15 | 4.22 | 0.28 | 0.37 | 0.38 | 5.96 | 6.43 | 0.51 | 0.09 | |
std | 1.00 | 0.28 | 0.66 | 0.16 | 0.06 | 0.29 | 0.63 | 0.80 | 0.05 | 0.04 |
Sample | U-Pb Age (Ma) | TDM (Ga) | ƐHf (t) |
---|---|---|---|
Quartz syenite | 58 ± 2 | 1.2 to 1.4 | −10.32 to −7.01 |
Monzonite | 60 ± 2 | 1.2 to 1.3 | −10.21 to −6.32 |
Alkali-feldspar syenite | 58 ± 2 | 1.1 to 1.8 | −17.88 to −5.29 |
Nepheline syenite | 65 ± 1 | 1.1 to 2.8 | −32 to −6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, D.A.; Potratz, G.L.; Geraldes, M.C. Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on Mantle versus Crustal Signature of Syenitic Magma. Minerals 2023, 13, 904. https://doi.org/10.3390/min13070904
da Silva DA, Potratz GL, Geraldes MC. Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on Mantle versus Crustal Signature of Syenitic Magma. Minerals. 2023; 13(7):904. https://doi.org/10.3390/min13070904
Chicago/Turabian Styleda Silva, Daniel Adelino, Guilherme Loriato Potratz, and Mauro Cesar Geraldes. 2023. "Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on Mantle versus Crustal Signature of Syenitic Magma" Minerals 13, no. 7: 904. https://doi.org/10.3390/min13070904
APA Styleda Silva, D. A., Potratz, G. L., & Geraldes, M. C. (2023). Geochemistry and Geochronology (U-Pb and Lu-Hf) of the Soarinho Alkaline Massif (Brazil): Implications on Mantle versus Crustal Signature of Syenitic Magma. Minerals, 13(7), 904. https://doi.org/10.3390/min13070904