Neoproterozoic Mafic Magmatism in Nagercoil Block, Southern India and Its Implications on the Gondwana Collisional Orogeny
Abstract
:1. Introduction
2. Geology of the Study Area
3. Field Relation and Petrography
4. Major and Trace Element Geochemistry
5. Mineral Chemistry
6. Zircon U-Pb Ages, Trace Element, and Hf Isotopes
7. Discussion
7.1. Petrogenesis of Mafic Rocks in Nagercoil Block
7.2. Neoproterozoic Mafic Magmatism in Nagercoil Block and Its Tectonic Significance
7.3. Geodynamic Significance
7.4. Gabbros from Nagercoil Block: An Alternate Heat Source for Neoproterozoic Regional-Scale High-T Metamorphism
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talukdar, M.; Sarkar, T.; Sengupta, P.; Mukhopadhyay, D. The Southern Granulite Terrane, India: The Saga of over 2 Billion Years of Earth’s History. Earth Sci. Rev. 2022, 232, 104157. [Google Scholar] [CrossRef]
- Vijaya Kumar, T.; Bhaskar Rao, Y.J.; Plavsa, D.; Collins, A.S.; Tomson, J.K.; Vijaya Gopal, B.; Babu, E.V.S.S.K. Zircon U-Pb Ages and Hf Isotopic Systematics of Charnockite Gneisses from the Ediacaran-Cambrian High-Grade Metamorphic Terranes, Southern India: Constraints on Crust Formation, Recycling, and Gondwana Correlations. Bull. Geol. Soc. Am. 2017, 129, 625–648. [Google Scholar] [CrossRef]
- Clark, C.; Healy, D.; Johnson, T.; Collins, A.S.; Taylor, R.J.; Santosh, M.; Timms, N.E. Hot Orogens and Supercontinent Amalgamation: A Gondwanan Example from Southern India. Gondwana Res. 2015, 28, 1310–1328. [Google Scholar] [CrossRef][Green Version]
- Brandt, S.; Raith, M.M.; Schenk, V.; Sengupta, P.; Srikantappa, C.; Gerdes, A. Crustal Evolution of the Southern Granulite Terrane, South India: New Geochronological and Geochemical Data for Felsic Orthogneisses and Granites. Precambrian Res. 2014, 246, 91–122. [Google Scholar] [CrossRef]
- Collins, A.S.; Clark, C.; Plavsa, D. Peninsular India in Gondwana: The Tectonothermal Evolution of the Southern Granulite Terrain and Its Gondwanan Counterparts. Gondwana Res. 2014, 25, 190–203. [Google Scholar] [CrossRef]
- Santosh, M.; Maruyama, S.; Sato, K. Anatomy of a Cambrian Suture in Gondwana: Pacific-Type Orogeny in Southern India? Gondwana Res. 2009, 16, 321–341. [Google Scholar] [CrossRef]
- Bhaskar, R.Y.J.; Vijaya, K.T.; Dayal, A.M.; Janardhan, A.S. Sm-Nd Model Age Evidence for Temporally Distinct Precambrian Crustal Blocks across the Cauvery Shear Zone, Southern India. ISMAS Silver Jubil. Symp. Mass Spectrom. 2003, 34, 661–667. [Google Scholar]
- Raith, M.M.; Srikantappa, C.; Buhl, D.; Koehler, H. The Nilgiri Enderbites, South India: Nature and Age Constraints on Protolith Formation, High-Grade Metamorphism and Cooling History. Precambrian Res. 1999, 98, 129–150. [Google Scholar] [CrossRef]
- Ghosh, J.G.; de Wit, M.J.; Zartman, R.E. Age and Tectonic Evolution of Neoproterozoic Ductile Shear Zones in the Southern Granulite Terrain of India, with Implications for Gondwana Studies. Tectonics 2004, 23. [Google Scholar] [CrossRef]
- Collins, A.S.; Clark, C.; Sajeev, K.; Santosh, M.; Kelsey, D.E.; Hand, M. Passage through India: The Mozambique Ocean Suture, High-Pressure Granulites and the Palghat-Cauvery Shear Zone System. Terra Nova 2007, 19, 141–147. [Google Scholar] [CrossRef]
- Chadwick, B.; Vasudev, V.N.; Hegde, G.V. The Dharwar Craton, Southern India, Interpreted as the Result of Late Archaean Oblique Convergence. Precambrian Res. 2000, 99, 91–111. [Google Scholar] [CrossRef]
- Jayananda, M.; Moyen, J.-F.; Martin, H.; Peucat, J.-J.; Auvray, B.; Mahabaleswar, B. Late Archaean (2550-2520 Ma) Juvenile Magmatism in the Eastern Dharwar Craton, Southern India: Constraints from Geochronology, Nd-Sr Isotopes and Whole Rock Geochemistry. Precambrian Res. 2000, 99, 225–254. [Google Scholar] [CrossRef]
- Chetty, T.R.K.; Bhaskar Rao, Y.J. The Cauvery Shear Zone, Southern Granulite Terrain, India: A Crustal-Scale Flower Structure. Gondwana Res. 2006, 10, 77–85. [Google Scholar] [CrossRef]
- Clark, C.; Collins, A.S.; Timms, N.E.; Kinny, P.D.; Chetty, T.R.K.; Santosh, M. SHRIMP U-Pb Age Constraints on Magmatism and High-Grade Metamorphism in the Salem Block, Southern India. Gondwana Res. 2009, 16, 27–36. [Google Scholar] [CrossRef]
- Samuel, V.O.; Santosh, M.; Liu, S.; Wang, W.; Sajeev, K. Neoarchean Continental Growth through Arc Magmatism in the Nilgiri Block, Southern India. Precambrian Res. 2014, 245, 146–173. [Google Scholar] [CrossRef]
- Samuel, V.O.; Kwon, S.; Santosh, M.; Sajeev, K. Garnet Pyroxenite from Nilgiri Block, Southern India: Vestiges of a Neoarchean Volcanic Arc. Lithos 2018, 310–311, 120–135. [Google Scholar] [CrossRef]
- Tomson, J.K.; Bhaskar Rao, Y.J.; Vijaya Kumar, T.; Choudhary, A.K. Geochemistry and Neodymium Model Ages of Precambrian Charnockites, Southern Granulite Terrain, India: Constraints on Terrain Assembly. Precambrian Res. 2013, 227, 295–315. [Google Scholar] [CrossRef]
- Srinivasan, V.; Rajeshdurai, P. The Suruli Shear Zone and Regional Scale Folding Pattern in Madurai Block of Southern Granulite Terrain, South India. J. Earth Syst. Sci. 2010, 119, 147–160. [Google Scholar] [CrossRef]
- Brandt, S.; Schenk, V.; Raith, M.M.; Appel, P.; Gerdes, A.; Srikantappa, C. Late Neoproterozoic P-T Evolution of HP-UHT Granulites from the Palni Hills (South India): New Constraints from Phase Diagram Modelling, LA-ICP-MS Zircon Dating and in-Situ EMP Monazite Dating. J. Petrol. 2011, 52, 1813–1856. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Sarkar, T. P-T-t Evolution of Sapphirine-Bearing Semipelitic Granulites from Vadkampatti in Eastern Madurai Domain, Southern India: Insights from Petrography, Pseudosection Modelling and in-Situ Monazite Geochronology. Precambrian Res. 2020, 348, 105866. [Google Scholar] [CrossRef]
- Dev, J.A.; Tomson, J.K.; Sorcar, N.; Anto Francis, K. Timing of UHT Metamorphism and Cooling in South Indian Granulites: New P-T-t Results from a Sapphirine Granulite. Precambrian Res. 2022, 371, 106582. [Google Scholar] [CrossRef]
- Dev, J.A.; Tomson, J.K.; Sorcar, N.; Nandakumar, V. Combined U-Pb/Hf Isotopic Studies and Phase Equilibrium Modelling of HT-UHT Metapelites from Kambam Ultrahigh-Temperature Belt, South India: Constraints on Tectonothermal History of the Terrane. Lithos 2021, 406–407, 106531. [Google Scholar] [CrossRef]
- Dev, J.A.; Sorcar, N.; Mukherjee, S.; Tomson, J.K. Phase Equilibrium Modelling and Zircon-Monazite Geochronology of HT-UHT Granulites from Kambam Ultrahigh-Temperature Belt, South India. Int. Geol. Rev. 2022, 1–19. [Google Scholar] [CrossRef]
- Drury, S.A.; Harris, N.B.W.; Holt, R.W.; Reeves-Smith, G.J.; Wightman, R.T. Precambrian Tectonics and Crustal Evolution in South India. J. Geol. 1984, 92, 3–20. [Google Scholar] [CrossRef]
- Rajesh, H.M.; Santosh, M.; Yoshida, M. Dextral Pan-African Shear Along the Southwestern Edge of the Achankovil Shear Belt, South India: Constraints on Gondwana Reconstructions: A Discussion. J. Geol. 1998, 106, 105–114. [Google Scholar] [CrossRef]
- Cenki, B.; Braun, I.; Bröcker, M. Evolution of the Continental Crust in the Kerala Khondalite Belt, Southernmost India: Evidence from Nd Isotope Mapping, U-Pb and Rb-Sr Geochronology. Precambrian Res. 2004, 134, 275–292. [Google Scholar] [CrossRef]
- Cenki, B.; Kriegsman, L.M.; Braun, I. Melt-Producing and Melt-Consuming Reactions in the Achankovil Cordierite Gneisses, South India. J. Metamorph. Geol. 2002, 20, 543–561. [Google Scholar] [CrossRef]
- Bartlett, J.M.; Dougherty-Page, J.S.; Harris, N.B.W.; Hawkesworth, C.J.; Santosh, M. The Application of Single Zircon Evaporation and Model Nd Ages to the Interpretation of Polymetamorphic Terrains: An Example from the Proterozoic Mobile Belt of South India. Contrib. Mineral. Petrol. 1988, 131, 181–195. [Google Scholar] [CrossRef]
- Collins, A.S.; Santosh, M.; Braun, I.; Clark, C. Age and Sedimentary Provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP Secondary Ion Mass Spectrometry. Precambrian Res. 2007, 155, 125–138. [Google Scholar] [CrossRef]
- Santosh, M.; Hu, C.N.; He, X.F.; Li, S.S.; Tsunogae, T.; Shaji, E.; Indu, G. Neoproterozoic Arc Magmatism in the Southern Madurai Block, India: Subduction, Relamination, Continental Outbuilding, and the Growth of Gondwana. Gondwana Res. 2017, 45, 1–42. [Google Scholar] [CrossRef]
- Braun, I.; Kriegsman, L.M. Proterozoic Crustal Evolution of Southernmost India and Sri Lanka. Geol. Soc. Spec. Publ. 2003, 206, 169–202. [Google Scholar] [CrossRef]
- Ravindra Kumar, G.R.; Sreejith, C. Petrology and Geochemistry of Charnockites (Felsic Ortho-Granulites) from the Kerala Khondalite Belt, Southern India: Evidence for Intra-Crustal Melting, Magmatic Differentiation and Episodic Crustal Growth. Lithos 2016, 262, 334–354. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Santosh, M.; Taylor, P.N.; Santosh, M.; Taylor, P.N. Crustal Evolution in South India: Constraints from Nd Isotopes Crustal Evolution in South India: Constraints from Nd Isotopes. J. Geol. 1994, 102, 139–150. [Google Scholar] [CrossRef]
- Kröner, A.; Santosh, M.; Hegner, E.; Shaji, E.; Geng, H.; Wong, J.; Xie, H.; Wan, Y.; Shang, C.K.; Liu, D.; et al. Palaeoproterozoic Ancestry of Pan-African High-Grade Granitoids in Southernmost India: Implications for Gondwana Reconstructions. Gondwana Res. 2015, 27, 1–37. [Google Scholar] [CrossRef]
- Johnson, T.E.; Clark, C.; Taylor, R.J.M.; Santosh, M.; Collins, A.S. Prograde and Retrograde Growth of Monazite in Migmatites: An Example from the Nagercoil Block, Southern India. Geosci. Front. 2015, 6, 373–387. [Google Scholar] [CrossRef][Green Version]
- Clark, C.; Collins, A.S.; Taylor, R.J.M.; Hand, M. Isotopic Systematics of Zircon Indicate an African Affinity for the Rocks of Southernmost India. Sci. Rep. 2020, 10, 5421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, P.; Santosh, M.; Yang, C.X.; Kwon, S.; Ramkumar, M. High Ba–Sr Adakitic Charnockite Suite from the Nagercoil Block, Southern India: Vestiges of Paleoproterozoic Arc and Implications for Columbia to Gondwana. Geosci. Front. 2021, 12, 101126. [Google Scholar] [CrossRef]
- Santosh, M.; Tagawa, M.; Yokoyama, K.; Collins, A.S. U-Pb Electron Probe Geochronology of the Nagercoil Granulites, Southern India: Implications for Gondwana Amalgamation. J. Asian Earth Sci. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Janoušek, V.; Farrow, C.M.; Erban, V. Interpretation of Whole-Rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 2006, 47, 1255–1259. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the Elements: Meteoritic and Solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Cox, K.G.; Bell, J.D.; Pankhurst, R.J. The Interpretation of Igneous Rocks; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Wedenbeck, M.; Alle, P.; Griffin, W.L.; Meer, M.; Oberli, F.; von Quadt, A.; Roddickt, J.C.; Spegel, W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Santos, M.M.; Lana, C.; Scholz, R.; Buick, I.; Schmitz, M.D.; Kamo, S.L.; Gerdes, A.; Corfu, F.; Tapster, S.; Lancaster, P.; et al. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostand. Geoanal. Res. 2017, 41, 335–358. [Google Scholar] [CrossRef][Green Version]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot Version 4.15: A Geochronological Toolkit for Microsoft Excel. In Berkeley Geochronology Center Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2011; Available online: https://www.bgc.org/isoplot (accessed on 21 November 2022).
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. J. Geostand. Geoanalysis 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Scherer, E.; Münker, C.; Mezger, K. Calibration of the Lutetium-Hafnium Clock. Science 2001, 293, 683–687. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarkde, F. EPSL The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Nowell, G.M.; Kempton, P.D.; Noble, S.R.; Fitton, J.G.; Saunders, A.D.; Mahoney, J.J.; Taylor, R.N. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chem. Geol. 1998, 149, 211–233. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’reilly, S.Y.; Shee, S.R. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Deevsalar, R.; Shinjo, R.; Ghaderi, M.; Murata, M.; Hoskin, P.W.O.; Oshiro, S.; Wang, K.L.; Lee, H.Y.; Neill, I. Mesozoic–Cenozoic Mafic Magmatism in Sanandaj–Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and Isotopic Inferences from Middle Jurassic and Late Eocene Gabbros. Lithos 2017, 284–285, 588–607. [Google Scholar] [CrossRef][Green Version]
- Yu, B.; Santosh, M.; Wang, M.X.; Yang, C.X. Paleoproterozoic Emplacement and Cambrian Ultrahigh-Temperature Metamorphism of a Layered Magmatic Intrusion from the Central Madurai Block, Southern India: From Columbia to Gondwana. Geosci. Front. 2022, 13, 101260. [Google Scholar] [CrossRef]
- Hollocher, K.; Robinson, P.; Walsh, E.; Roberts, D. Geochemistry of Amphibolite-Facies Volcanics and Gabbros of the Støren Nappe in Extensions West and Southwest of Trondheim, Western Gneiss Region, Norway: A Key to Correlations and Paleotectonic Settings. Am. J. Sci. 2012, 312, 357–416. [Google Scholar] [CrossRef]
- Miiller, D.; Rock, S.; Groves, D.I. Mineralogy Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks in Different Tectonic Settings: A Pilot Study. Mineral. Petrol. 1992, 46, 259–289. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Ganguly, S.; Shaji, E.; Dong, Y.; Nanda-Kumar, V. Extensional Collapse of the Gondwana Orogen: Evidence from Cambrian Mafic Magmatism in the Trivandrum Block, Southern India. Geosci. Front. 2019, 10, 263–284. [Google Scholar] [CrossRef]
- Smith, E.I.; Sánchez, A.; Walker, J.D.; Wang, K. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. J. Geol. 1999, 107, 433–448. [Google Scholar] [CrossRef][Green Version]
- Menzies, M.A.; Kyle, P.R.; Jones, M.; Ingram, G. Enriched and Depleted Source Components for Tholeiitic and Alkaline Lavas from Zuni-Bandera, New Mexico: Inferences about Intraplate Processes and Stratified Lithosphere. J. Geophys. Res. 1991, 96, 13645–13671. [Google Scholar] [CrossRef]
- Depaolo, D.J.; Daley, E.E.; Depaolo, D.J. Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning during Continental Extension. Chem. Geol. 2000, 169, 157–185. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Cui, X.; Sun, M.; Zhao, G.; Zhang, Y. Origin of Permian Mafic Intrusions in Southern Chinese Altai, Central Asian Orogenic Belt: A Post-Collisional Extension System Triggered by Slab Break-Off. Lithos 2021, 390–391, 106112. [Google Scholar] [CrossRef]
- Carlson, R.W.; Hart, W.K. Flood Basalt Volcanism in the Northwestern United States. In Petrology and Structural Geology; Springer: Berlin/Heidelberg, Germany, 1988; Volume 360, pp. 35–61. [Google Scholar]
- Gündüz, M.; Asan, K. PetroGram: An Excel-Based Petrology Program for Modeling of Magmatic Processes. Geosci. Front. 2021, 12, 81–92. [Google Scholar] [CrossRef]
- Mcdonough, W.F. Constraints on the Composition of the Continental Lithospheric Mantle. Earth Planet. Sci. Lett. 1990, 101, 1–18. [Google Scholar] [CrossRef]
- Frey, F.A. Rare Earth Element Abundances in Upper Mantle Rocks. Dev. Geochem. 1984, 2, 153–203. [Google Scholar]
- McKenzie, D.; Bickle, M.J. The Volume and Composition of Melt Generated by Extension of the Lithosphere. J. Petrol. 1988, 29, 625–679. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U Ratios in Magmatic Environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochim. Cosmochim. Acta 2003, 67, 2173–2187. [Google Scholar] [CrossRef]
- Fu, B.; Page, F.Z.; Cavosie, A.J.; Fournelle, J.; Kita, N.T.; Lackey, J.S.; Wilde, S.A.; Valley, J.W. Ti-in-Zircon Thermometry: Applications and Limitations. Contrib. Mineral. Petrol. 2008, 156, 197–215. [Google Scholar] [CrossRef]
- Kohn, M.J.; Engi, M.; Lanari, P. Petrochronology. Methods Appl. Mineral. Soc. Am. Rev. Mineral. Geochem. 2017, 83, 575. [Google Scholar]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Kröner, A.; Rojas-Agramonte, Y.; Kehelpannala, K.V.W.; Zack, T.; Hegner, E.; Geng, H.Y.; Wong, J.; Barth, M. Age, Nd-Hf Isotopes, and Geochemistry of the Vijayan Complex of Eastern and Southern Sri Lanka: A Grenville-Age Magmatic Arc of Unknown Derivation. Precambrian Res. 2013, 234, 288–321. [Google Scholar] [CrossRef]
- Plavsa, D.; Collins, A.S.; Foden, J.F.; Kropinski, L.; Santosh, M.; Chetty, T.R.K.; Clark, C. Delineating Crustal Domains in Peninsular India: Age and Chemistry of Orthopyroxene-Bearing Felsic Gneisses in the Madurai Block. Precambrian Res. 2012, 198–199, 77–93. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Santosh, M.; Zhang, Z.; Huang, H.; Banerjee, A.; George, P.M.; Sajeev, K. Imprints of Archean to Neoproterozoic Crustal Processes in the Madurai Block, Southern India. J. Asian Earth Sci. 2014, 88, 1–10. [Google Scholar] [CrossRef]
- George, P.M.; Santosh, M.; Chen, N.; Nandakumar, V.; Itaya, T.; Sonali, M.K.; Smruti, R.P.; Sajeev, K. Cryogenian Magmatism and Crustal Reworking in the Southern Granulite Terrane, India. Int. Geol. Rev. 2015, 57, 112–133. [Google Scholar] [CrossRef]
- Plavsa, D.; Collins, A.S.; Foden, J.D.; Clark, C. The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India. Tectonics. 2015, 34, 820–857. [Google Scholar] [CrossRef][Green Version]
- Kooijman, E.; Upadhyay, D.; Mezger, K.; Raith, M.M.; Berndt, J.; Srikantappa, C. Response of the U-Pb Chronometer and Trace Elements in Zircon to Ultrahigh-Temperature Metamorphism: The Kadavur Anorthosite Complex, Southern India. Chem. Geol. 2011, 290, 177–188. [Google Scholar] [CrossRef][Green Version]
- Santosh, M.; Tsunogae, T.; Malaviarachchi, S.P.K.; Zhang, Z.; Ding, H.; Tang, L.; Dharmapriya, P.L. Neoproterozoic Crustal Evolution in Sri Lanka: Insights from Petrologic, Geochemical and Zircon U-Pb and Lu-Hf Isotopic Data and Implications for Gondwana Assembly. Precambrian Res. 2014, 255, 1–29. [Google Scholar] [CrossRef]
- Tewari, S.; Prakash, D.; Yadav, M.K.; Yadav, R. Petrology and Isotopic Evolution of Granulites from Central Madurai Block (Southern India): Reference to Ediacaran Crustal Evolution. Int. Geol. Rev. 2018, 60, 1792–1815. [Google Scholar] [CrossRef]
- Shimizu, H.; Tsunogae, T.; Santosh, M. Spinel + Quartz Assemblage in Granulites from the Achankovil Shear Zone, Southern India: Implications for Ultrahigh-Temperature Metamorphism. J. Asian Earth Sci. 2009, 36, 209–222. [Google Scholar] [CrossRef]
- Harley, S.L.; Nandakumar, V. New Evidence for Palaeoproterozoic High Grade Metamorphism in the Trivandrum Block, Southern India. Precambrian Res. 2016, 280, 120–138. [Google Scholar] [CrossRef]
- Sorcar, N.; Joshi, K.B.; Oliveira, E.P.; Tomson, J.K.; Nandakumar, V. Characterization of Partial Melting Events in Garnet-Cordierite Gneiss from the Kerala Khondalite Belt, India. Geosci. Front. 2020, 11, 597–611. [Google Scholar] [CrossRef]
- Spreitzer, S.K.; Walters, J.B.; Cruz-Uribe, A.; Williams, M.L.; Yates, M.G.; Jercinovic, M.J.; Grew, E.S.; Carson, C.J. Monazite Petrochronology of Polymetamorphic Granulite-Facies Rocks of the Larsemann Hills, Prydz Bay, East Antarctica. J. Metamorph. Geol. 2021, 39, 1205–1228. [Google Scholar] [CrossRef]
- Dharmapriya, P.L.; Kriegsman, L.M.; Malaviarachchi, S.P.K. Spatial Distribution of Ultrahigh-Temperature Granulites of the Highland Complex of Sri Lanka: Lowermost Continental Crust above an Ultrahot Palaeo-Moho. Lithos 2021, 404–405, 106484. [Google Scholar] [CrossRef]
- Raith, M.M.; Rakotondrazafy, R.; Sengupta, P. Petrology of Corundum-Spinel-Sapphirine-Anorthite Rocks (Sakenites) from the Type Locality in Southern Madagascar. J. Metamorph. Geol. 2008, 26, 647–667. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Hand, M. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geosci. Front. 2015, 6, 311–356. [Google Scholar] [CrossRef][Green Version]
- Nandakumar, V.; Harley, S.L. A Reappraisal of the Pressure-Temperature Path of Granulites from the Kerala Khondalite Belt, Southern India. J. Geol. 2000, 108, 687–703. [Google Scholar] [CrossRef]
- Nandakumar, V.; Harley, S.L. Geochemical Signatures of Mid-Crustal Melting Processes and Heat Production in a Hot Orogen: The Kerala Khondalite Belt, Southern India. Lithos 2019, 324–325, 479–500. [Google Scholar] [CrossRef][Green Version]
- Klaver, M.; de Roever, E.W.F.; Thijssen, A.C.D.; Bleeker, W.; Söderlund, U.; Chamberlain, K.; Ernst, R.; Berndt, J.; Zeh, A. Mafic Magmatism in the Bakhuis Granulite Belt (Western Suriname): Relationship with Charnockite Magmatism and UHT Metamorphism. GFF 2016, 138, 203–218. [Google Scholar] [CrossRef]
- Guo, J.H.; Peng, P.; Chen, Y.; Jiao, S.J.; Windley, B.F. UHT Sapphirine Granulite Metamorphism at 1.93-1.92Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Res. 2012, 222–223, 124–142. [Google Scholar] [CrossRef]
- Wang, B.; Wei, C.-J.; Tian, W.; Fu, B.; Wei, C. UHT Metamorphism Peaking above 1100 °C with Slow Cooling: Insights from Pelitic Granulites in the Jining Complex, North China Craton. J. Petrol. 2020, 61, egaa070. [Google Scholar] [CrossRef]
- Della Giustina, M.E.S.; Pimentel, M.M.; Ferreira Filho, C.F.; de Hollanda, M.H.B.M. Dating Coeval Mafic Magmatism and Ultrahigh Temperature Metamorphism in the Anápolis-Itauçu Complex, Central Brazil. Lithos 2011, 124, 82–102. [Google Scholar] [CrossRef]
- Takamura, Y.; Tsunogae, T.; Santosh, M.; Malaviarachchi, S.P.K.; Tsutsumi, Y. Petrology and Zircon U-Pb Geochronology of Metagabbro from the Highland Complex, Sri Lanka: Implications for the Correlation of Gondwana Suture Zones. J. Asian Earth Sci. 2015, 113, 826–841. [Google Scholar] [CrossRef]
- Takamura, Y.; Tsunogae, T.; Tsutsumi, Y. U–Pb Geochronology and REE Geochemistry of Zircons in Mafic Granulites from the Lützow-Holm Complex, East Antarctica: Implications for the Timing and P–T Path of Post-Peak Exhumation and Antarctica–Sri Lanka Correlation. Precambrian Res. 2020, 348, 105850. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajna, S.; Tomson, J.K.; Dev, J.A.; Sorcar, N.; Kumar, T.V. Neoproterozoic Mafic Magmatism in Nagercoil Block, Southern India and Its Implications on the Gondwana Collisional Orogeny. Minerals 2022, 12, 1509. https://doi.org/10.3390/min12121509
Sajna S, Tomson JK, Dev JA, Sorcar N, Kumar TV. Neoproterozoic Mafic Magmatism in Nagercoil Block, Southern India and Its Implications on the Gondwana Collisional Orogeny. Minerals. 2022; 12(12):1509. https://doi.org/10.3390/min12121509
Chicago/Turabian StyleSajna, S., J. K. Tomson, J. Amal Dev, Nilanjana Sorcar, and T. Vijaya Kumar. 2022. "Neoproterozoic Mafic Magmatism in Nagercoil Block, Southern India and Its Implications on the Gondwana Collisional Orogeny" Minerals 12, no. 12: 1509. https://doi.org/10.3390/min12121509