# Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Research Significance

#### 2.2. Methodology

_{1}, ρ

_{2},—particle densities, [g/cm

^{3}]; ρ

_{o}—liquid density, [g/cm

^{3}].

- −
- feed should contain a minimum of equally settling particles i.e., differentiated in terms of densimetric and granulometric properties,
- −
- the material must be homogeneous in terms of density distribution,
- −
- the feed material should be proceeded into narrow granular classes.

_{0})/ρ—density of reduced particle, ρ—density of particle, ρ

_{0}—density of the liquid, d

_{p}—projection diameter of particle, k

_{1}—volumetric shape coefficient, k

_{2}—dynamic shape coefficient.

## 3. Experimental

#### 3.1. Characteristics of Testing Device

_{max}/2” principle, i.e., half of the maximum size of the particle fraction. For the reason that content of irregular particles is lower for coarser particle fractions and the screening efficiency for coarser particles is better, screening of irregular particles in coarser fractions will be easier and more efficient.

#### 3.2. Research Programme and Scope of Analyses

## 4. Results and Discussion

#### 4.1. Laboratory Scale Tests

^{2}= 0.935) and is statistically significant. Lower statistical significance shows model for irregular particles but it is also significant on the probability level 95%. In the case of absorbability (Figure 6b) the model is statistically significant only for irregular particles. However both models show the similar type of relationship. Tendency in density decreasing together with increasing the number of layer describes well a hyperbola, while absorbability can be characterized through exponential model, with the power at x less than one.

#### 4.2. Semi-Plant Scale Tests

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Heyduk, A.; Pielot, J. Economical Efficiency Assessment of an Application of On-line Feed Particle Size Analysis to the Coal Cleaning System in Jigs. Inżynieria Miner. J. Pol. Miner. Eng. Soc.
**2014**, 2, 217–228. [Google Scholar] - Saramak, A.; Naziemiec, Z. Determination of dust emission level for various crushing devices. Min. Sci.
**2019**, 26, 45–54. [Google Scholar] [CrossRef] - Saramak, A.; Naziemiec, Z.; Saramak, D. Analysis of noise emission for selected crushing devices. Min. Sci.
**2016**, 23, 145–154. [Google Scholar] [CrossRef] - Ambróst, W. Jigging: A review of fundamentals and future directions. Minerals
**2020**, 10, 998. [Google Scholar] [CrossRef] - Falconer, A. Gravity separation: Old technique/new methods. Phys. Sep. Sci. Eng.
**2003**, 12, 31–48. [Google Scholar] [CrossRef][Green Version] - Biswajit Sarkar, B.; Sekhar, S.C.; Das, A. Advanced Gravity Separation; Singh, R., Das, A., Goswani, N.G., Eds.; NML: Jamshedpur, India, 2007; p. 831007. [Google Scholar]
- Boron, S.; Pielot, J.; Wojaczek, A. Coal cleaning in jig systems—Profitability assessment. Miner. Resour. Manag.
**2014**, 30, 67–82. [Google Scholar] - Cierpisz, S. A dynamic model of coal products discharge in a jig. Miner. Eng.
**2017**, 105, 1–6. [Google Scholar] [CrossRef] - Głowiak, S. Wpływ składu ziarnowego nadawy na skuteczność wzbogacania w osadzarce. In Proceedings of the XV APPK, Szczyrk, Poland, 2–4 June 2009; pp. 37–50. [Google Scholar]
- Gawenda, T. Zasady Doboru Kruszarek Oraz Układów Technologicznych w Produkcji Kruszyw Łamanych; Monography no. 304; AGH Publishing House: Cracow, Poland, 2015. [Google Scholar]
- Neumann, T.; Snoby, R.J.; Strangalies, W. The fractionized separation of impurities out of sand and small gravel with alljig-fine grain jigs. Aufbereit. Technik.
**1995**, 36, 562–567. [Google Scholar] - Mesters, K.; Kurkowski, H. Density separation of recycling building materials by means of jig technology. Aufbereit. Technik.
**1997**, 38, 536–542. [Google Scholar] - Phengsaart, T.; Ito, M.; Hamaya, N.; Tabelin, C.B.; Hiroyoshi, N. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and entanglement factor. Miner. Eng.
**2018**, 129, 54–62. [Google Scholar] [CrossRef] - Ito, M.; Saito, A.; Murase, N.; Phengsaart, T.; Kimura, S.; Tabelin, C.B.; Hiroyoshi, N. Development of suitable product recovery systems of continuous hybrid jig for plastic-plastic separation. Miner. Eng.
**2019**, 141, 105839. [Google Scholar] [CrossRef] - Cazacliu, B.; Sampaio, C.H.; Miltzarek, G.; Petter, C.; Le Guen, L.; Paranhos, R.; Huchet, F.; Kirchheim, A.P. The potential to using air jigging to sort recycled aggregates. J. Clean. Prod.
**2014**, 66, 46–53. [Google Scholar] [CrossRef][Green Version] - Sampaio, C.H.; Ambrós, W.M.; Miranda, L.R.; Gerson, L.; Miltzarek, G.M.; Kronbauer, M.A. Improve the quality of recycled aggregate concrete by sorting in air jig. In Proceedings of the III Progress of Recycling in the Built Environment, São Paulo, Brazil, 3–5 August 2015. [Google Scholar]
- Stempkowska, A.; Gawenda, T.; Naziemiec, Z.; Ostrowski, K.; Saramak, D.; Surowiak, A. Impact of the geometrical parameters of dolomite coarse aggregate on the thermal and mechanic properties of preplaced aggregate concrete. Materials
**2020**, 13, 4358. [Google Scholar] [CrossRef] [PubMed] - Surowiak, A.; Gawenda, T.; Stempkowska, A.; Niedoba, T.; Nad, A. The Influence of Selected Properties of Particles in the Jigging Process of Aggregates on an Example of Chalcedonite. Minerals
**2020**, 10, 600. [Google Scholar] [CrossRef] - Hori, K.; Tsunekawa, M.; Hiroyoshi, N.; Ito, M. Optimum water pulsation of jig separation for crushed plastic particles. Int. J. Miner. Process.
**2009**, 92, 103–108. [Google Scholar] [CrossRef] - Dos Santos, I.L.; Frantz, L.V.; Masuero, A.B. Influence of hydraulic jigging of construction and demolition waste recycled aggregate on hardened concrete properties. Rev. IBRACON Estruturas Mater.
**2021**, 14, 14314. [Google Scholar] [CrossRef] - Burt, R.O. Gravity Concentration Technology; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Ottley, D.J. Gravity Concentration In Modern Mineral Processing. In Mineral Processing at a Crossroads; Wills, B.A., Barley, R.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 117. [Google Scholar] [CrossRef]
- Naziemiec, Z.; Gawenda, T. Badanie procesu kruszenia z zamkniętym obiegiem. In Proceedings of the Kruszywa Mineralne 2007 Surowce—Rynek—Technologie—Jakość, Szklarska Poręba, Poland; 2007; pp. 107–116. [Google Scholar]
- Wills, B.A. Mineral Processing Technology, 6th ed.; Pergamo Press: Oxford, UK, 2006. [Google Scholar]
- Brożek, M.; Surowiak, A. Argument of separation at upgrading in the JIG. Arch. Min. Sci. Arch. Górnictwa
**2010**, 55, 21–40. [Google Scholar] - Gawenda, T.; Saramak, D.; Nad, A.; Surowiak, A.; Krawczykowska, A.; Foszcz, D. Badania procesu uszlachetniania kruszyw w innowacyjnym układzie technologicznym. In Proceedings of the XIX Conference Kruszywa Mineralne Surowce—Rynek—Technologie—Jakość, Kudowa-Zdrój, Poland, 25–28 September 2019; pp. 65–76. [Google Scholar]

**Figure 1.**Idea of the aggregate production circuit with a closed recirculation for selective screening and crushing operations (Patent PL233689).

**Figure 10.**Exemplary analysis of irregular (

**left**) and regular (

**right**) particle in 3D Keyence VHX-7000 microscope.

**Table 1.**Settling velocities for regular and irregular particles in individual layers (jig products).

Number of Layer (Product) in the Jig | Settling Velocity, [m/s] | ||
---|---|---|---|

For Regular Particles | For Irregular Particles | Difference | |

I | 0.21 | 0.18 | 0.03 |

II | 0.20 | 0.16 | 0.04 |

III | 0.19 | 0.14 | 0.05 |

IV | 0.22 | 0.16 | 0.06 |

Parameter | Unit | Value |
---|---|---|

Maximum throughput | [kg/h] | 2750 |

Maximum water flow | [dm^{3}/h] | 5500 |

Frequency of bellows pulsation | [1/s] | 0.8–1.2 |

Jump of bellows | [mm] | 50–140 |

Nominal power | [kW] | 4 |

Dimensions of sieves | [mm] | 150 × 2900 |

Test Number | Type of Material | Particle Size, [mm] | Regular Particles Content in Feed, [%] | Irregular Particles Content in Feed, [%] |
---|---|---|---|---|

I | gravel | 8–16 | 89 | 11 |

II | gravel | 8–16 | 100 | 0 |

III | gravel | 8–10 | 0 | 100 |

IV | gravel | 8–10 | 100 | 0 |

V | gravel | 6.3–8 | 0 | 100 |

VI | gravel | 6.3–8 | 100 | 0 |

Test Number | Density, [g/cm^{3}] | |||
---|---|---|---|---|

Number of Layer in the Jig | ||||

I | II | III | IV | |

I | 2.67 | 2.66 | 2.66 | 2.63 |

II | 2.66 | 2.67 | 2.69 | 2.68 |

III | 2.64 | 2.64 | 2.63 | 2.61 |

IV | 2.74 | 2.66 | 2.65 | 2.62 |

V | 2.64 | 2.62 | 2.60 | 2.60 |

VI | 2.73 | 2.66 | 2.66 | 2.61 |

Test Number | Absorbablity, [%] | |||
---|---|---|---|---|

Number of Layer in the Jig | ||||

I | II | III | IV | |

I | 1.03 | 1.52 | 1.54 | 2.08 |

II | 1.27 | 1.71 | 1.74 | 1.91 |

III | 2.95 | 4.09 | 4.46 | 4.75 |

IV | 2.55 | 3.34 | 3.54 | 3.96 |

V | 2.97 | 3.21 | 3.47 | 4.05 |

VI | 0.97 | 1.85 | 2.22 | 2.51 |

Test Number | Average Absorbability, [%] | Average Density, [g/cm^{3}] |
---|---|---|

I | 1.54 | 2.64 |

II | 1.65 | 2.68 |

III | 3.09 | 2.63 |

IV | 1.38 | 2.67 |

V | 3.38 | 2.61 |

VI | 1.80 | 2.67 |

Test Number | Layer of Product | Absorbability, [%] | Density, [g/cm^{3}] |
---|---|---|---|

I | lower upper | 1.32 1.71 | 2.66 2.63 |

II | lower upper | 1.49 1.83 | 2.69 2.68 |

III | lower upper | 3.58 4.51 | 2.64 2.61 |

IV | lower upper | 3.18 3.81 | 2.68 2.62 |

V VI | lower upper lower upper | 2.26 3.67 1.26 2.20 | 2.63 2.61 2.70 2.61 |

Test Number | Layer of Product | Absorbability, [%] | Density, [g/cm^{3}] |
---|---|---|---|

I | lower upper | 1.11 1.93 | 2.67 2.65 |

II | lower upper | 1.29 1.91 | 2.66 2.68 |

III | lower upper | 3.05 4.66 | 2.65 2.62 |

IV | lower upper | 2.49 3.88 | 2.75 2.66 |

V VI | lower upper lower upper | 2.89 3.49 0.68 2.12 | 2.66 2.60 2.73 2.65 |

**Table 9.**Results of Los Angeles and micro-Deval indices for a gravel aggregate in particle size fraction 10–14 mm at different stages of enrichment.

Gravel Aggregate 10–14 mm | Los Angeles Index, LA [%] | Micro-Devala Index, M_{DE} [%] |
---|---|---|

Raw material (typical) with 11% of irregular particles content | 36.7 category LA40 | 29.8 category M _{DE} 30 |

Raw material without irregular particles | 31.9 category LA35 | 17.6 category M _{DE} 20 |

Product enriched in SET device, without regular particles (low threshold) | 29.5 category LA30 | 9.8 category M _{DE} 10 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gawenda, T.; Saramak, D.; Stempkowska, A.; Naziemiec, Z.
Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig. *Minerals* **2021**, *11*, 777.
https://doi.org/10.3390/min11070777

**AMA Style**

Gawenda T, Saramak D, Stempkowska A, Naziemiec Z.
Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig. *Minerals*. 2021; 11(7):777.
https://doi.org/10.3390/min11070777

**Chicago/Turabian Style**

Gawenda, Tomasz, Daniel Saramak, Agata Stempkowska, and Zdzisław Naziemiec.
2021. "Assessment of Selected Characteristics of Enrichment Products for Regular and Irregular Aggregates Beneficiation in Pulsating Jig" *Minerals* 11, no. 7: 777.
https://doi.org/10.3390/min11070777