Human Health Risk Distribution and Safety Threshold of Cadmium in Soil of Coal Chemical Industry Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Quality Control
2.4. Human Health Risk Assessment
2.4.1. Exposure Pathways
2.4.2. Risk Characterization and Contribution Rate
2.4.3. Risk Control Thresholds
2.5. Kriging Interpolation Method
3. Results and Discussion
3.1. The Descriptive Statistics of Cd
3.2. Variogram Model Fitting
3.2.1. Spatial Autocorrelation Test
3.2.2. Analysis of Spatial Structure Variation
3.3. Human Health Risk Assessment of Soil Cd in Coal Chemical Area
3.3.1. Carcinogenic Risk
3.3.2. Hazard Quotient
3.3.3. Contribution Ratios of Human Health Risk for Different Exposure Routes
3.4. Safety Threshold of Cd in the Coalification Zone Soil
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shi, J.X.; Han, Y.X.; Xu, C.Y.; Han, H.J. Biological coupling process for treatment of toxic and refractory compounds in coal gasification wastewater. Rev. Environ. Sci. Biotechnol. 2018, 17, 765–790. [Google Scholar] [CrossRef]
- Alam, J.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.; Tavker, N.; Choudhary, N.; Shukla, A.K.; Ali-Fekri, A.A.; Alhoshan, M.; Hamid, A.A. Recent advances in methods for the recovery of carbon nanominerals and polyaromatic hydrocarbons from coal fly ash and their emerging applications. Crystals 2021, 11, 88. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. R. 2021, 1–17. [Google Scholar] [CrossRef]
- Kamble, A.D.; Saxena, V.K.; Chavan, P.D.; Mendhe, V.A. Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context. Int. J. Min. Sci. Technol. 2018, 29, 171–186. [Google Scholar] [CrossRef]
- Shi, J.X.; Huang, W.P.; Han, H.J.; Xu, C.Y. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards. Renew. Sust. Energy Rev. 2021, 143, 110883. [Google Scholar] [CrossRef]
- Nwachukwu, M.A.; Feng, H.; Alinnor, J. Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int. J. Environ. Sci. Technol. 2010, 7, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection of the People’s Republic of China (MEP); Ministry of Land and Resources of China (MLR). National Soil Pollution Investigation Bulletin; MEP: Beijing, China, 2014. [Google Scholar]
- Huang, Y.; Wang, L.Y.; Wang, W.J.; Li, T.Q.; He, Z.L.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2019, 651, 3034–3042. [Google Scholar] [CrossRef]
- Luo, Z.Y. Pollution and health risk assessment of heavy metals in soil of industrial district, Guangdong. Chem. Ind. 2019, 46, 156–157. [Google Scholar]
- Tang, X.; Li, Q.; Wu, M.; Lin, L.; Scholz, M. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J. Environ. Manag. 2016, 181, 646–662. [Google Scholar] [CrossRef]
- Zenith, H.A.; Francisco, U.; Ivan, A.A.; Anne, E.N.; Ana, N.A.; Gervasio, A.L. Urinary metal levels after repeated edetate disodium infusions: Preliminary findings. Int. J. Environ. Res. Public Health. 2020, 17, 4684. [Google Scholar]
- Atlanta, G.A. Agency for toxic substances and disease registry. Asian Am. Pac. Isl. J. Health 1997, 5, 121. [Google Scholar]
- Syfullah, S.; Mohammad, M.R.; Ravi, N. Geographical variation of cadmium in commercial rice brands in Bangladesh: Human health risk assessment. Sci. Total Environ. 2020, 716, 137049. [Google Scholar]
- Mohammad, A.J.; Ahmad, J.Z.; Ahmad, K.D. Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: A comprehensive study. Environ. Earth Sci. 2020, 79, 227–238. [Google Scholar]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh, S.G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Samuel, K.F.; Samuel, S.K. Levels and human health risk assessment of heavy metals in surface soil of public parks in Southern Ghana. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar]
- Sun, M.X.; Wang, T.; Xu, X.B.; Zhang, L.X.; Li, J.; Shi, Y.J. Ecological risk assessment of soil cadmium in China’s coastal economic development zone: A meta-analysis. Ecosyst. Health Sustain. 2020, 6, 1733921. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, J.J.; Zhi, Y.Y.; Zeng, L.Z.; Tang, X.J.; Xu, J.M. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environ. Pollut. 2018, 239, 308–317. [Google Scholar]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Sáez, E.A. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Duan, X.; Feng, W.; He, J.; Cao, S.; Liu, S.; Shi, D.; Wang, H.; Wu, F. Health risks to metals in multimedia via ingestion pathway for children in a typical urban area of China. Chemosphere 2019, 226, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Cabral Pinto, M.M.S.; Marinho-Reis, A.P.; Almeida, A.; Freitas, S.; Simões, M.R.; Diniz, M.L.; Pinto, E.; Ramos, P.; Silva, E.F.; Moreira, P.I. Fingernail trace element content in environmentally exposed individuals and its influence on their cognitive status in ageing. Expos. Health 2019, 11, 181–194. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Ordens, C.M.; de Melo, M.T.C.; Inácio, M.; Almeida, A.; Pinto, E.; da Silva, E.A.F. An inter-disciplinary approach to evaluate human health risks due to long-term exposure to contaminated groundwater near a chemical complex. Expos. Health 2020, 12, 199–214. [Google Scholar] [CrossRef]
- Gay, J.R.; Korre, A. Accounting for pH heterogeneity and variability in modelling human health risks from cadmium in contaminated land. Sci. Total Environ. 2009, 407, 4231–4237. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, X.H.; Li, H.F.; Zhao, Z.H. Human health risk assessment and early warning of heavy metal pollution in soil of a coal chemical plant in Northwest China. Soil Sediment Contam. 2020, 29, 481–502. [Google Scholar] [CrossRef]
- El Khodrani, N.; Omrania, S.; Zouahri, A.; Douaik, A.; Iaaich, H.; Yahyaoui, A.; Fekhaoui, M. Spatial distribution and mapping of heavy metals in agricultural soils of the Sfafaa region(Gharb, Morocco). Mater. Today 2019, 13, 832–840. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the PRC. Technical Guidelines for Risk Assessment of Contaminated Sites; HJ 25.3-2014; CESP: Beijing, China, 2014. [Google Scholar]
- Zhang, K. Temperature. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_640.html (accessed on 26 April 2021).
- Karimian, S.; Shekoohiyan, S.; Moussavi, G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Adv. 2021, 11, 8080–8095. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.F.; Cao, Z.G.; Shi, Z.Y.; Liu, J. Human health risk assessment and risk source analysis of arsenic in soil from a coal chemical plant in Northwest China. J. Soils Sediments 2019, 19, 2785–2794. [Google Scholar] [CrossRef]
- Núñez, O.; Fernández, N.P.; Martín, M.I.; Bel-Lan, A.; Locutura, J.F.; López, A.G. Arsenic and chromium topsoil levels and cancer mortality in Spain. Environ. Sci. Pollut. Res. Int. 2016, 23, 17664–17675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, C.; Borer, F.; Bono, R.; Kayser, A.; Papritz, A. Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma 2013, 193, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Qiang, C.D.; Liu, J. Spatial distribution characteristics of heavy metals in the soil of coal chemical industrial area. J. Soils Sediments 2018, 18, 2044–2052. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environmrnt of the People’s Republic of China. Environmental Quality Standards for Soils (GB15618-2008); Ministry of Ecology and Environmrnt of the People’s Republic of China: Beijing, China, 2008. [Google Scholar]
- Chen, Y.G. New approaches for calculating moran’s index of spatial autocorrelation. PLoS ONE 2013, 8, e68336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.J.; Zhou, W.; Bai, Z.k.; Cao, Y.G.; Huang, Y.H.; Huang, H.Y. Soil nutrient variations among different land use types after reclamation in the Pingshuo opencast coal mine on the Loess Plateau, China. Catena 2020, 188, 104427. [Google Scholar] [CrossRef]
- Różański, S.; Jaworska, H.; Matuszczak, K.; Nowak, J.; Hardy, A. Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environ. Sci. Pollut. Res. 2017, 24, 12778–12786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temmerman, L.; Vanongeval, L.; Boon, W.; Hoenig, M. Heavy metal content of arable soil in northern Belgium. Water Air Soil Poll. 2003, 148, 61–76. [Google Scholar] [CrossRef]
- Pang, W.P.; Qin, F.X.; Lyu, Y.C.; Ju, L.Y.; Gang, L.; Li, L.Y. Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China. Chin. J. Appl. Ecol. 2016, 27, 1468–1478. [Google Scholar]
- Shi, Z.F.; Wan, L. Contents of soil heavy metals and evaluation on the potential pollution risk in shenmu mining area. J. Agro-Environ. Sci. 2013, 32, 1150–1158. [Google Scholar]
- Hamid, Y.; Tang, L.; Sohail, M.I.; Cao, X.R.; Hussain, B.; Aziz, M.Z.; Usman, M.; He, Z.L.; Yang, X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 2019, 660, 80–96. [Google Scholar] [CrossRef]
- Xu, Z.J.; Wang, X.Y.; Shi, Q.D.; Yuan, T.T.; Wang, X.; Zubaida, M.; Wang, W. Human health risk assessment and environmental sensitivity analysis of soil cadmium pollution in Zhundong Mine Region of East Junggar Basin in Xinjiang, China. Asian J. Ecotoxicol. 2018, 13, 159–170. [Google Scholar]
- National Environmental Protection Council (NEPC). National Environment Protection (Ambient Air Quality) Measure-Revised Impact Statement. National Environment Protection Council Service Corporation, Adelaide, Australia. 1998. Available online: http://www.ephc.gov.au/sites/default/files/AAQ_ImpStat__AAQ_NEPM_Revised_Impact_Statement_Final_199806.pdf. (accessed on 9 November 2018).
- Taylor, M.P.; Mackay, A.K.; Hudson-Edwards, K.A.; Holz, E. Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Appl. Geochem. 2010, 25, 841–855. [Google Scholar] [CrossRef]
- Choppala, G.; Saifullah, B.N.; Bibi, S.; Iqbal, M.; Rengel, Z.; Kunhikrishnan, A.; Ashwath, N.; Ok, Y.S. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit. Rev. Plant Sci. 2014, 33, 374–391. [Google Scholar] [CrossRef]
- Tuan, A.T.; Popova, L.P. Functions and toxicity of cadmium in plants: Recent advances and future prospects. Turk. J. Bot. 2013, 37, 1–13. [Google Scholar]
- Gorospe, J. Growing Greens and Soiled Soil: Trends in Heavy Metal Contamination in Vegetable Gardens of San Francisco; San José State University: San Jose, CA, USA, 2012. [Google Scholar]
- Nogawa, K.; Suwazono, Y.; Nishijo, M.; Sakurai, M.; Ishizaki, M.; Morikawa, Y.; Watanabe, Y.; Kido, T.; Nakagawa, H. Increase of lifetime cadmium intake dose-dependently increased all cause of mortality in female inhabitants of the cadmium-polluted Jinzu River basin, Toyama, Japan. Environ. Res. 2018, 164, 379–384. [Google Scholar] [CrossRef]
- Gleick, P.H. Health and safety effects of coal transportation-reassessing the risks. Energy 1981, 6, 611–619. [Google Scholar] [CrossRef]
- Grujic, M.M.; Grujic, M.M.; Ivkovic, M.D. The impact of multi-element external coal transportation on reliability of the system and on environment. In Mine Planning and Equipment Selection 2000; Routledge: London, UK, 2000; pp. 569–572. [Google Scholar]
- Yang, Z.P.; Zhao, J.J.; Cao, M.Z.; Lu, W.X. Assessment on human health risk of potentially toxic heavy metals in urban soil of Changchun City. Chin. J. Soil Sci. 2015, 46, 502–508. [Google Scholar]
- Caspah, K.; Manny, M.; Morgan, M. Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar]
- Jia, J.; Li, X.; Yang, L.; Hu, L.; Yao, L. Human health risk and safety threshold of arsenic in soil of a coal chemical industry area in Northwest China. Earth Sci. Front. 2016, 23, 124–132. [Google Scholar]
Exposure Routes | Explanation | Formula Expression of Exposure |
---|---|---|
Mouth intake | Carcinogenic | |
Noncarcinogenic | ||
Skin contact | Carcinogenic | |
Noncarcinogenic | ||
Inhalation of soil particles | Carcinogenic | |
Noncarcinogenic |
Parameter | Definition | Value | Units |
---|---|---|---|
OSIRa | Daily soil intake of adults | 100 | mg day−1 |
EDa | Adult exposure period | 25 | a |
EFa | Adult exposure frequency | 250 | day a−1 |
BWa | Adult weight | 56.8 | kg |
ABS0 | Absorption efficiency factor of mouth-intake soil | 1 | - |
ATca | Average time of carcinogenesis | 26,280 | day |
ATnc | Average time of noncarcinogenesis | 9125 | day |
SAEa | Surface area of adults’ exposed skin | 2854.63 | cm2 |
SSARa | Soil sticking coefficient of adults’ skin surface | 0.2 | mg cm2 |
ABSd | Skin-contact soil absorption efficiency factor | 0.001 | - |
Ev | Skin daily contact event frequency | 1 | times day−1 |
PM10 | Content of inhalable suspended particulate matter in air | 0.15 | m3 day−1 |
DAIRa | Adults’ daily intake of air | 14.5 | m3 day−1 |
PIAF | The retention ratio of soil particles in body after inhalation | 0.75 | - |
fspi | The proportion of soil particles in indoor air | 0.8 | - |
fspo | The proportion of soil particles in outdoor air | 0.5 | - |
EFIa | Indoor exposure frequency of adults | 187.5 | day a−1 |
EFOa | Outdoor exposure frequency of adults | 62.5 | day a−1 |
Csur | Pollutants’ concentration in the surface soil | Table 1 | mg kg−1 |
SF0 | Carcinogenic slope factor of mouth-intake soil | 6.1 | mg−1 kg day |
SFd | Carcinogenic slope factor of skin-contact soil | 1.5 | mg−1 kg day |
SFi | Carcinogenic slope factor of inhalation | 7.051 | mg−1 kg day |
SAF | Reference dose distribution coefficient exposed to soil | 0.2 | - |
RfD0 | Reference dose of mouth-intake soil | 1.00 × 10−3 | mg kg−1 day−1 |
RfDd | Reference dose of skin-contact soil | 2.50 × 10−5 | mg kg−1 day−1 |
RfDi | Reference dose of inhalation | 2.553 × 10−6 | mg kg−1 day−1 |
Exposure Route | Formula Description | Formula Expression |
---|---|---|
Oral intake | Carcinogenic risk | |
Hazard quotient | ||
Skin contact | Carcinogenic risk | |
Hazard quotient | ||
Inhalation of soil particles | Carcinogenic risk | |
Hazard quotient |
Exposure Route | Formula Description | Safety Threshold Calculating Formulas |
---|---|---|
Mouth-intake soil | Carcinogenic risk | |
Hazard quotient | ||
Skin-contact soil | Carcinogenic risk | |
Hazard quotient | ||
Inhalation of soil particles | Carcinogenic risk | |
Hazard quotient |
Concentration (mg/kg) | Ningxia Background Value a (mg/kg) | Percentage Exceeded Based on Ningxia | National Background Value a (mg/kg) | Percentage Exceeded Based on China | Average (mg/kg) | Standard Deviation | Variation Coefficient % |
---|---|---|---|---|---|---|---|
0.400~0.690 | 0.112 | 100% | 0.097 | 100% | 0.540 | 0.060 | 11.043 |
Element | Moran’s I | z Value | p Value |
---|---|---|---|
Cd | 0.814 | 12.072 | 0.001 |
Evaluation Approach of Cd | Model | Nugget Constant C0 | Sill Value | (C0/Sill)/% | Variable Course/m | Standard Error of the Mean | Root Mean Squared Error | K–S Test p Value | Coefficient of Determination/R2 |
---|---|---|---|---|---|---|---|---|---|
Total carcinogenesis | Gauss | 0.002 | 0.006 | 33.330% | 103.856 | −0.004 | 1.007 | 0.137 | 0.967 |
Total noncarcinogenesis | Gauss | 2.322 | 6.703 | 34.640% | 103.856 | −0.004 | 1.007 | 0.158 | 0.885 |
Cd | Types | Oral Intake Soil | Skin Contact Soil | Inhalation of Soil Particle | Total Carcinogenic Risk | Total Hazard Quotient | |||
---|---|---|---|---|---|---|---|---|---|
Carcinogenic Risk | Hazard Quotient | Carcinogenic Risk | Hazard Quotient | Carcinogenic Risk | Hazard Quotient | ||||
Overall N = 153 | Min | 1.022 × 10−6 | 0.0024 | 2.333 × 10−7 | 0.0006 | 1.397 × 10−8 | 0.0156 | 1.269 × 10−6 | 0.014 |
Max | 1.762 × 10−6 | 0.0042 | 4.025 × 10−7 | 0.0010 | 2.409 × 10−8 | 0.0193 | 2.189 × 10−6 | 0.024 | |
Average | 1.410 × 10−6 | 0.003 | 3.230 × 10−7 | 0.0010 | 1.930 × 10−8 | 0.0150 | 1.754 × 10−6 | 0.020 |
Exposure Routes | Risk Types | Risk Control Value (mg/kg) |
---|---|---|
Oral-intake soil | carcinogenic | 0.392 |
Skin-contact soil | carcinogenic | 1.714 |
Inhalation of soil particles | carcinogenic | 28.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Li, X.; Song, Z.; Yan, J.; Chen, M.; Yin, J. Human Health Risk Distribution and Safety Threshold of Cadmium in Soil of Coal Chemical Industry Area. Minerals 2021, 11, 678. https://doi.org/10.3390/min11070678
Zhang K, Li X, Song Z, Yan J, Chen M, Yin J. Human Health Risk Distribution and Safety Threshold of Cadmium in Soil of Coal Chemical Industry Area. Minerals. 2021; 11(7):678. https://doi.org/10.3390/min11070678
Chicago/Turabian StyleZhang, Kai, XiaoNan Li, ZhenYu Song, JiaYu Yan, MengYue Chen, and JunCheng Yin. 2021. "Human Health Risk Distribution and Safety Threshold of Cadmium in Soil of Coal Chemical Industry Area" Minerals 11, no. 7: 678. https://doi.org/10.3390/min11070678
APA StyleZhang, K., Li, X., Song, Z., Yan, J., Chen, M., & Yin, J. (2021). Human Health Risk Distribution and Safety Threshold of Cadmium in Soil of Coal Chemical Industry Area. Minerals, 11(7), 678. https://doi.org/10.3390/min11070678