Insights and Lessons from 3D Geological and Geophysical Modeling of Mineralized Terranes in Tasmania
Abstract
:1. Introduction
2. Tectonic and Geological Setting
2.1. Western Tasmanian Terrane
2.2. Eastern Tasmanian Terrane
2.3. Younger Rock Sequences
2.4. Economic Geology
3. Inversion Methodology and Data
3.1. Reference Model Geophysical Validation
3.2. Cooperative Inversion and Sensitivity Modeling
3.3. Potential Field Data Preparation—Regional-Residual Separation
3.4. Data Sources
3.5. Rock Physical Properties
4. Statewide Model
4.1. Construction
4.2. Analysis
4.3. Impact
5. Western Tasmanian Terrane Models
5.1. Rosebery Region
5.1.1. Forward and Inverse Modeling
5.1.2. Magnetic Response
5.1.3. Gravity Response
5.2. Rosebery–Lyell
5.2.1. Magnetic Response
5.2.2. Gravity Response
5.2.3. Cooperative Potential Field Inversion
5.2.4. Outcomes
5.3. Rosebery–Pieman
5.3.1. Reference Model Magnetic and Gravity Modeling
5.3.2. Cooperative Potential Field Inversion
5.3.3. Tributary Creek Gravity Anomaly
5.3.4. Rosebery North
5.4. Northwest Tasmania
5.5. Heazlewood–Luina–Waratah
6. Eastern Tasmanian Terrane (ETT) 3D Models
6.1. Mineral Systems
6.2. Lebrina
6.2.1. Cooperative Geophysical Inversion
6.2.2. Second Phase Implicit Modeling
6.3. Alberton–Mathinna
6.4. Scamander
6.4.1. Model Construction
6.4.2. Geophysical Modeling
6.4.3. Cooperative Geophysical Inversion
6.4.4. Inversion Analysis—Great Pyramid Tin and Other Deposits
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wyborn, L.A.I.; Heinrich, C.A.; Jaques, A. Australian Proterozoic Mineral Systems: Essential Ingredients and Mappable Criteria; Publication Series of the Australasian Institute of Mining and Metallurgy: Parkville, Australia, 1994; Volume 5, pp. 109–115. [Google Scholar]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- Rowe, R. Unlocking Australia’s Hidden Potential, an Industry Roadmap; AMIRA International and UNCOVER: Melbourne, Australia, 2017; p. 147. [Google Scholar]
- Aug, C.; Chilès, J.-P.; Courrioux, G.; Lajaunie, C. 3D geological modelling and uncertainty: The potential field method. In Proceedings of the 7th International Geostatistics Congress, Banff, AB, Canada, 2004; Leuangthong, O., Deutsch, C.V., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 145–154. Available online: https://link.springer.com/chapter/10.1007/978-1-4020-3610-1_15 (accessed on 1 October 2021).
- Fullagar, P.K.; Pears, G.A. Towards geologically realistic inversion. In Proceedings of the Exploration 07, Fifth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 December 2007; pp. 444–460. [Google Scholar]
- Calcagno, P.; Chilès, J.P.; Courrioux, G.; Guillen, A. Geological modelling from field data and geological knowledge: Part, I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Guillen, A.; Calcagno, P.; Courrioux, G.; Joly, A.; Ledru, A. Geological modelling from field data and geological knowledge: Part II. Modelling validation using gravity and magnetic data inversion. Phys. Earth Planet. Inter. 2008, 171, 158–169. [Google Scholar] [CrossRef]
- Fedi, M.; Rapolla, A. 3-D inversion of gravity and magnetic data with depth resolution. Geophysics 1999, 64, 452–460. [Google Scholar] [CrossRef]
- Leaman, D.E. Criteria for evaluation of potential field interpretations. First Break 1994, 12, 181–191. [Google Scholar] [CrossRef]
- Bombardieri, D.; Duffett, M.; McNeill, A.; Vicary, M.; Paterson, R. 3D geophysical modeling of the Alberton-Mathinna section of the “Main Slide”, Northeast Tasmania. Interpretation 2020, 8, T525–T540. [Google Scholar] [CrossRef]
- Jessell, M.W.; Ailleres, L.; de Kemp, E.A. Towards an integrated inversion of geoscientific data: What price of geology? Tectonophysics 2010, 490, 294–306. [Google Scholar] [CrossRef]
- Lindsay, M.D.; Jessell, M.W.; Ailleres, L.; Perrouty, S.; de Kemp, E.A.; Betts, P.G. Geodiversity: Exploration of 3D geological model space. Tectonophysics 2013, 594, 27–37. [Google Scholar] [CrossRef]
- Lindsay, M.D.; Jessell, M.W.; Ailleres, L.; Perrouty, S.; de Kemp, E.A.; Betts, P.G. Making the link between geological and geophysical uncertainty: Geodiversity in the Ashanti greenstone belt. Geophys. J. Int. 2013, 195, 903–922. [Google Scholar] [CrossRef] [Green Version]
- Wellmann, J.F.; Finsterle, S.; Croucher, A. Integrating structural geological data into the inverse modelling framework of iTOUGH2. Comput. Geosci. 2013, 65, 95–109. [Google Scholar] [CrossRef]
- Eshaghi, E.; Reading, A.M.; Roach, M.; Duffett, M.; Bombardieri, D.; Cracknell, M.J.; Everard, J.L. Efficient regional scale 3D potential field geophysical modelling to redefine the geometry of granite bodies beneath prospective, geologically complex, northwest Tasmania. Ore Geol. Rev. 2020, 127, 103799. [Google Scholar] [CrossRef]
- Baillie, P.W. A Palaeozoic suture in eastern Gondwanaland. Tectonics 1985, 4, 653–660. [Google Scholar] [CrossRef]
- Seymour, D.; Calver, C.R. Explanatory Notes for the Time-Space Diagram and Stratotectonic Elements Map of Tasmania, TASGO NGMA Project, Sub-Project 1, Geological Synthesis. Mineral Resources Tasmania, Tasmanian Geological Survey Record: Hobart, Australia, 1995. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR1995_01/ (accessed on 10 June 2021).
- Mulder, J.A.; Everard, J.L.; Cumming, G.; Meffre, S.; Bottrill, R.S.; Merdith, A.S.; Halpin, J.A.; McNeill, A.W.; Cawood, P.A. Neoproterozoic opening of the Pacific Ocean recorded by multi-stage rifting in Tasmania. Australia. Earth Sci. 2020, 201, 103041. [Google Scholar] [CrossRef]
- Calver, C.R.; Baillie, P.W.; Banks, M.R.; Seymour, D.B. Ordovician-Lower Devonian successions. In Geological Evolution of Tasmania: Geological Society of Australia; Corbett, K.D., Quilty, P.G., Calver, C.R., Eds.; Geological Society of Australia Special Publication: Hobart, Australia, 2014; Volume 24, pp. 241–271. [Google Scholar]
- Halpin, J.A.; Jensen, T.; McGoldrick, P.; Meffre, S.; Berry, R.F.; Everard, J.L.; Calver, C.R.; Thompson, J.; Goemann, K.; Whittaker, J.M. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell supergroup, North America. Precambrian Res. 2014, 250, 50–67. [Google Scholar] [CrossRef]
- Berry, R.F.; Crawford, A.J. The tectonic significance of Cambrian allochthonous mafic ultramafic complexes in Tasmania. Aust. J. Earth Sci. 1988, 35, 523–533. [Google Scholar] [CrossRef]
- Crawford, A.J.; Berry, R.F. Tectonic implications of Late Proterozoic-Early Paleozoic igneous rock associations in western Tasmania. Tectonophysics 1992, 214, 37–56. [Google Scholar] [CrossRef]
- Turner, N.J.; Black, L.P.; Kamperman, M. Dating of Neoproterozoic and Cambrian orogenies in Tasmania. Aust. J. Earth Sci. 1998, 5, 789–806. [Google Scholar] [CrossRef]
- Mulder, J.A.; Berry, R.F.; Halpin, J.A.; Meffre, S.; Everard, J.L. Depositional age and correlation of the Oonah Formation: Refining the timing of Neoproterozoic basin formation in Tasmania. Aust. J. Earth Sci. 2018, 65, 391–407. [Google Scholar] [CrossRef]
- Mulder, J.A.; Berry, R.F.; Meffre, S.; Halpin, J.A. The metamorphic sole of the western Tasmanian ophiolite: New insights into the Cambrian tectonic setting of the Gondwana Pacific margin. Gondwana Res. 2016, 38, 351–369. [Google Scholar] [CrossRef]
- Holm, O.H.; Berry, R.F. Structural history of the Arthur Lineament, northwest Tasmania: An analysis of critical outcrops, Australian. J. Earth Sci. 2002, 49, 167–185. [Google Scholar] [CrossRef] [Green Version]
- McPhie, J.; Allen, R.L. Facies architecture of mineralized submarine volcanic sequences: Cambrian Mount Read Volcanics, Western Tasmania. Econ. Geol. 1992, 87, 587–596. [Google Scholar] [CrossRef]
- Seymour, D.B.; Green, G.R.; Calver, C.R. The Geology and Mineral Deposits of Tasmania: A Summary. Geol. Surv. Bull. 2007, 72, 29. [Google Scholar]
- Berry, R.; Bull, S. The pre-Carboniferous geology of Tasmania. Episodes 2012, 35, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Corbett, K.D.; Berry, R.F.; Everard, J.L.; Calver, C.R.; Cracknell, M.J.; Vicary, M.J.; Bottrill, R.S. Geological Evolution of Tasmania: Geological Society of Australia Special Publication; University of Tasmania: Hobart, Australia, 2014; pp. 95–240. [Google Scholar]
- Black, L.P.; Everard, J.L.; McClenaghan, M.P.; Korsch, R.J.; Calver, C.R.; Fioretti, A.M.; Brown, A.V.; Foudoulis, C. Controls on Devonian–Carboniferous magmatism in Tasmania, based on inherited zircon age patterns, Sr, Nd and Pb isotopes, and major and trace element geochemistry. Aust. J. Earth Sci. 2010, 57, 933–968. [Google Scholar] [CrossRef]
- Seymour, D.B.; McClenaghan, M.P.; Green, G.R.; Everard, J.L.; Berry, R.F.; Callaghan, T.; Davidson, G.J.; Hills, P.B. Mid-Palaeozoic orogenesis, magmatism and mineralization. In Geological Evolution of Tasmania: Geological Society of Australia Special Publication; Corbett, K.D., Quilty, P.G., Calver, C.R., Eds.; Geological Society of Australia Inc.: Hobart, Australia, 2014; Volume 24, pp. 273–362. [Google Scholar]
- Roach, M.J. The Regional Geophysical Setting of Gold Mineralization in Northeast Tasmania. Ph.D. Thesis, The University of Tasmania, Hobart, Australia, 1994. [Google Scholar]
- Keele, R.A. Structure and Veining in the Devonian aged Mathinna–Alberton Gold Lineament, Northeast Tasmania: Report, 1994/06. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR1994_06/UR1994_06.pdf (accessed on 10 June 2021).
- Patison, N.L.; Berry, R.F.; Davidson, G.J.; Taylor, B.P.; Bottrill, R.S.; Manzi, B.; Ryba, J.; Shepherd, R.E. Regional metamorphism of the Mathinna Group, Northeast Tasmania. Aust. J. Earth Sci. 2001, 48, 281–292. [Google Scholar] [CrossRef]
- Reed, A.R. Gold mineralization and the regional Palaeozoic structure of the Mathinna Supergroup, eastern Tasmania: Report 2004/01. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR2004_01/ (accessed on 10 June 2021).
- Stacey, A.R.; Berry, R.F. The Structural History of Tasmania: A Review for Petroleum Explorers; PESA Eastern Australasian Basins Symposium II: Adelaide, Australia, 2004; pp. 151–162. [Google Scholar]
- Quilty, P.G.; Hill, P.J.; Exon, N.F.; Baillie, P.W.; Everard, J.L.; Forsyth, S.M.; Calver, C.R.; Bottrill, R.S.; Taheri, J.; Bayer, E.E.; et al. Cretaceous-Neogene evolution of Tasmania. Geol. Evol. Tasman. Geol. Soc. Aust. Spec. Publ. 2014, 24, 409–509. [Google Scholar]
- Duffett, M. Terrain Correction Tasmania—Results and Implications; ASEG Extended Abstracts: Sydney, Australia, 2018; pp. 1–6. [Google Scholar]
- Leaman, D.E. MANTLE-09, a New Crustal Gravity Model for Tasmania: Mineral Resources Tasmania; Geophysical Consultants Report; 2009. Available online: https://www.mrt.tas.gov.au/geoscience/geophysics/gpcr2009_01 (accessed on 10 June 2021).
- Leaman, D.E. An Interpretation of the Granitoid Rocks of Eastern Tasmania: Mineral Resources Tasmania; Geophysical Consultants Report; 2012. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/GPCR2012_01/GPCR2012_01.pdf (accessed on 1 October 2021).
- Leaman, D.E.; Webster, S.S. Quantitative Interpretation of Magnetic and Gravity Data for the Western Tasmanian Regional Minerals Program. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR2002_15/UR2002_15.pdf (accessed on 1 October 2021).
- Berry, R. Geophysical Data as a Control on Geological Sections. In Structure and Mineralization of Western Tasmania: AMIRA P.291A, Final Report; Centre for Ore Deposit and Exploration Studies, University of Tasmania: Hobart, Australia, 1997; pp. 173–185. [Google Scholar]
- Leaman, D.E. Mt. Read Volcanics Project Geophysical Report 3, Gravity Interpretation, West and North West Tasmania. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/MRVGP3/MRVGP3.pdf (accessed on 1 October 2021).
- Murphy, B.; Denwer, K.; Keele, R.; Stapleton, P.; Korsch, R.; Seymour, D.; Green, G. Tasmania Mineral Province Geoscientific database, 3D Geological Modeling: Mines and Mineral Prospectivity Project T3, 2004. Miner. Resour. Tasman. 2004, unpublished. [Google Scholar]
- Hornby, P.; Boschetti, F.; Horowitz, F.G. Analysis of potential field data in the wavelet domain. Geophys. J. Int. 1999, 137, 175–196. [Google Scholar] [CrossRef] [Green Version]
- Holden, D.J.; Archibald, N.J.; Boschetti, F.; Jessell, M.W. Inferring geological structures using wavelet-based multiscale edge analysis and forward models. Explor. Geophys. 2000, 31, 617–621. [Google Scholar] [CrossRef] [Green Version]
- Leaman, D.E.; Richardson, R.G. A Geophysical Model of the Major Tasmanian Granitoids, Mineral Resources Tasmania. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR2003_11/ur2003_11.pdf (accessed on 1 October 2021).
- Drummond, B.J.; Barton, T.J.; Korsch, R.J.; Rajaram, N.; Yeates, A.N.; Collins, C.D.N.; Brown, A.V. Evidence for crustal extension and inversion in eastern Tasmania, Australia, during the Neoproterozoic and Early Paleozoic. Tectonophysics 2000, 329, 1–21. [Google Scholar] [CrossRef]
- Berry, R.; Roach, M. Rosebery Section. In Structure and Mineralization of Western Tasmania: AMIRA P.291. Final Report 1–7; Centre for Ore Deposit and Exploration Studies, University of Tasmania: Hobart, Australia, 1993; unpublished. [Google Scholar]
- Fullagar, P.K.; Pears, G.A.; Hutton, D.; Thompson, A. 3D Gravity and Aeromagnetic Inversion for MVT Lead-Zinc Exploration at Pilbara, Western Australia. Explor. Geophys. 2004, 35, 142–146. [Google Scholar] [CrossRef]
- Fullagar, P.K.; Pears, G.A.; McMonnies, B. Constrained inversion of geological surfaces—Pushing the boundaries. Lead. Edge 2008, 27, 98–105. [Google Scholar] [CrossRef]
- Yu, J. A Geophysical Investigation of the Mt Lindsay-Lynch Hill Area, Western Tasmania. Honors Thesis, University of Tasmania, Hobart, Australia, 2014. [Google Scholar]
- Xie, J.; Veska, L. Exploration Licence 46/2010 Huskisson River, Tasmania Third Annual Progress Report for the Period 26 May 2013–25 May 2014. MRT Company Report 14_7027; 2014. Available online: https://www.mrt.tas.gov.au/mrtdoc/tasxplor/download/14_7027/ (accessed on 1 October 2021).
- Djomani, Y.P.; Musgrave, R.; Hegarty, R. “Worming” in New South Wales. ASEG Ext. Abstr. 2007, 1, 1–3. [Google Scholar] [CrossRef]
- Gray, D.; Minerals Resources Tasmania, Hobart, Australia; Vicary, M.; Minerals Resources Tasmania, Hobart, Australia. Personal communication, 2014.
- Reading, A.M.; Cracknell, M.J.; Bombardieri, D.J.; Chalke, T. Combining machine learning and geophysical inversion for applied geophysics. In Proceedings of the 24th International Geophysical Conference and Exhibition, Perth, Australia, 13–16 September 2015. [Google Scholar]
- Leaman, D.E. Mt. Read Volcanics Project Geophysical Report 1, Interpretation and Evaluation Report, 1981 West Tasmania Aeromagnetic Survey: 1986. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/MRVGP1/MRVGP1.pdf (accessed on 1 October 2021).
- Large, R.R.; Doyle, M.G.; Raymond, O.L.; Cooke, D.R.; Jones, A.T.; Heasman, L. Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol. Rev. 1996, 10, 215–223. [Google Scholar] [CrossRef]
- Eshaghi, E. Geophysical investigations of Tasmania at Multiple Scales. Ph.D. Thesis, The University of Tasmania, Hobart, Australia, 2017. [Google Scholar]
- Le Clerc, M. The Geophysics of the Housetop Granite. Bachelor’s Thesis, The University of Tasmania, Hobart, Australia, 1996. [Google Scholar]
- Eshaghi, E.; Reading, A.M.; Roach, M.; Duffett, M.; Bombardieri, D.J.; Cracknell, M.J.; Everard, J.L.; Cumming, G.; Kuhn, S. Inverse modeling constrained by potential field data, petrophysics, and improved geologic mapping: A case study from prospective north-west Tasmania. Geophysics 2020, 85, K13–K26. [Google Scholar] [CrossRef]
- Chmielowski, R.M.; Berry, R.F. The Cambrian metamorphic his- tory of Tasmania: The metapelites. Aust. J. Earth Sci. 2012, 59, 1007–1019. [Google Scholar] [CrossRef]
- Radford, D.G. Geological Mapping from Radar Imagery with Machine Learning. Honors Thesis, The University of Tasmania, Hobart, Australia, 2016. [Google Scholar]
- Taheri, J. North East Goldfields: A summary of the Tower Hill, Mathinna and Dans Rivulet goldfields: Report, 1992/10. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR1992_10/UR1992_10.pdf (accessed on 1 October 2021).
- Groves, D.I. The zoned Mineral Deposits of the Scamander-St Helens District. Bulletin of the Geological Survey of Tasmania, Geological Survey Bulletin. 1972. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/GSB53/GSB53.pdf (accessed on 1 October 2021).
- Ruxton, P.; Plummer, G. Economic geology and fluid inclusion history of the Scamander Mineral Field and Great Pyramid tin deposit. NE Tasmania. In Mineral Exploration and Tectonic Processes in Tasmania; Baillie, P.W., Collins, P.L.F., Eds.; Geological Society of Australia, Tasmanian Division: Hobart, Australia, 1984. [Google Scholar]
- Duffett, M.L. Geophysics of the Scamander Mineral Field. Bachelor’s Thesis, The University of Tasmania, Hobart, Australia, 1992, unpublished. [Google Scholar]
- Worthing, M.A.; Woolward, I.R. Explanatory Report for the Dublin Town (5840), Brilliant (5841), Falmouth (6040) and Beaumaris (6041) Geological Map Sheets, 1:25000 Scale Digital Geological Map Series Explanatory Report. 2010. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/ER25_3/ER25_3.pdf (accessed on 1 October 2021).
- Mineral Resources Tasmania. Mineral Deposit Models Prepared for Minerals Prospectivity Assessment: Proposed Reserve Areas for Independent Verification Group. In Tasmanian Geological Survey Record 2012/03 (UR2012_03); Mineral Resources Tasmania, Department of Infrastructure, Energy and Resources: Rosny Park, Australia. Available online: https://www.mrt.tas.gov.au/mrtdoc/dominfo/download/UR2012_03/UR2012_03.pdf (accessed on 1 October 2021).
- Grose, L.; Ailleres, L.; Laurent, G.; Armit, R.; Jessell, M. Inversion of geological knowledge for fold geometry. J. Struct. Geol. 2019, 119, 1–14. [Google Scholar] [CrossRef] [Green Version]
Lithology | Existing 1 | Output 2 | 1 σ |
---|---|---|---|
Jurassic Dolerite | >2.77 | 2.84 | 0.043 |
Crimson Creek Formation 3 | 2.77–3.50 | 2.97 | 0.060 |
Devonian Carboniferous granites | 2.60–2.62 | 2.60 | 0.006 |
Eldon Group Sediments | 2.67–2.69 | 2.69 | 0.018 |
Gordon Group | 2.67–2.72 | 2.72 | 0.013 |
Owen Group Sediments | 2.67–2.72 | 2.72 | 0.020 |
Tyndall Group | 2.68–2.74 | 2.69 | 0.015 |
Western Volcano—Sedimentary Sequence. | 2.68–2.74 | 2.69 | 0.011 |
Farrell Slates | 2.67–2.74 | 2.71 | 0.001 |
Que Hellyer Volcanics | 2.72–2.79 | 2.79 | 0.010 |
Cambrian Granites | 2.64–2.75 | 2.67 | 0.010 |
Andesites | 2.71–2.82 | 2.75 | 0.020 |
Quartz Feldspar Porphyry | 2.64–2.72 | 2.66 | 0.015 |
Central Volcanic Complex | 2.71–2.75 | 2.71 | 0.006 |
Eastern Quartz Phyric Seq. | 2.67–2.68 | 2.64 | 0.017 |
Sticht Range Beds | 2.65–2.68 | 2.64 | 0.013 |
Mafic-Ultramafic Complexes 4 | 2.75–2.97 | 2.81 | 0.047 |
Mafic-Ultramafic Complexes 5 | 2.65–2.75 | 2.68 | 0.041 |
Mafic-Ultramafic Complexes 6 | 2.55–2.65 | 2.62 | 0.048 |
Luina Group | 2.78–2.82 | 2.79 | 0.018 |
Crimson Creek Formation | 2.72–2.77 | 2.77 | 0.016 |
Success Creek Group | >2.74 | 2.73 | 0.013 |
Oonah Formation | 2.67–2.72 | 2.69 | 0.005 |
Proterozoic Basement | 2.67–2.72 | 2.69 | 0.011 |
Proterozoic Basement Magnetic 7 | 2.75–2.80 | 2.77 | 0.013 |
Lithology | Existing 1 | Output 2 | 1 σ |
---|---|---|---|
Jurassic Dolerite | >10 | 20 | 0.001 |
Crimson Creek Formation 3 | 150 | 100 | 0.147 |
Devonian Carboniferous Granites | 0 | 0 | 0.003 |
Eldon Group Sediments | 0 | 0 | 0.000 |
Gordon Group | 0 | 0 | 0.000 |
Owen Group Sediments | 0 | 0 | 0.000 |
Tyndall Group | 13 | 6 | 0.003 |
Western Volcano—Sedimentary Sequence | 2 | 1 | 0.001 |
Farrell Slates | 1 | 1 | 0.001 |
Que Hellyer Volcanics | 4 | 1 | 0.002 |
Cambrian Granites | 35 | 37 | 0.001 |
Andesites | 4 | 4 | 0.001 |
Quartz Feldspar Porphyry | 2 | 2 | 0.001 |
Central Volcanic Complex | 2 | 2 | 0.002 |
Eastern Quartz Phyric Seq. | 13 | 13 | 0.002 |
Sticht Range Beds | 0 | 0 | 0.002 |
Mafic-Ultramafic Complexes 4 | 0–50 | 24 | 0.038 |
Mafic-Ultramafic Complexes 5 | 50–200 | 150 | 0.028 |
Mafic-Ultramafic Complexes 6 | 200–400 | 194 | 0.035 |
Luina Group | 12 | 10 | 0.054 |
Crimson Creek Formation | >65 | 11 | 0.011 |
Success Creek Group | 0–3 | 0 | 0.001 |
Oonah Formation | 0–6 | 1 | 0.002 |
Proterozoic Basement | 0–2 | 0 | 0.001 |
Proterozoic Basement Magnetic 7 | 30–35 | 40 | 0.030 |
Lithology | Existing 1 | Output 2 | 1 σ |
---|---|---|---|
Cenozic Basalt | 2.85–2.90 | 2.84 | 0.100 |
Jurassic Dolerite | 2.80–2.90 | 2.79 | 0.020 |
Parmeener Supergroup | 2.40–2.55 | 2.53 | 0.004 |
Devonian Carboniferous Granites | 2.60–2.62 | 2.62 | 0.010 |
Granodiorites | 2.70–2.75 | 2.70 | 0.001 |
Magnetic Granodiorites | 2.71 | 2.74 | 0.010 |
Mathinna Supergroup 3 | 2.73–2.76 | 2.75 | 0.010 |
Scamander Formation 4 | 2.73 | 0.010 | |
Lone Star Siltstone 5 | 2.74 | 0.010 | |
Cambrian Sediments | 2.65–2.79 | 2.74 | 0.010 |
Mafic–Ultramafic Complexes | 2.55–2.97 | 2.65 | 0.010 |
Proterozoic Basement | 2.67–2.72 | 2.69 | 0.010 |
Lithology | Existing 1 | Output 2 | 1 σ |
---|---|---|---|
Cenozic Basalt | >10 | 24.67 | 0.014 |
Jurassic Dolerite | >20 | 26.17 | 0.007 |
Parmeener Supergroup | 0.05 | 0.10 | 0.000 |
Devonian Carboniferous Granites | 0.2–0.25 | 0.10 | 0.000 |
Granodiorites | 0 | 0.30 | 0.000 |
Magnetic Granodiorites | 6–8 | 7.51 | 0.002 |
Mathinna Supergroup 3 | 0.15–30 | 0.20 | 0.000 |
Scamander Formation 4 | 0.10 | 0.006 | |
Lone Star Siltstone 5 | 1.70 | 0.010 | |
Cambrian Sediments | 0.2–2.5 | 0.73 | 0.010 |
Mafic–Ultramafic Complexes | 0–400 | 105.00 | 0.059 |
Proterozoic Basement | 0–2 | 0.3 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bombardieri, D.; Duffett, M.; McNeill, A.; Cracknell, M.; Reading, A. Insights and Lessons from 3D Geological and Geophysical Modeling of Mineralized Terranes in Tasmania. Minerals 2021, 11, 1195. https://doi.org/10.3390/min11111195
Bombardieri D, Duffett M, McNeill A, Cracknell M, Reading A. Insights and Lessons from 3D Geological and Geophysical Modeling of Mineralized Terranes in Tasmania. Minerals. 2021; 11(11):1195. https://doi.org/10.3390/min11111195
Chicago/Turabian StyleBombardieri, Daniel, Mark Duffett, Andrew McNeill, Matthew Cracknell, and Anya Reading. 2021. "Insights and Lessons from 3D Geological and Geophysical Modeling of Mineralized Terranes in Tasmania" Minerals 11, no. 11: 1195. https://doi.org/10.3390/min11111195
APA StyleBombardieri, D., Duffett, M., McNeill, A., Cracknell, M., & Reading, A. (2021). Insights and Lessons from 3D Geological and Geophysical Modeling of Mineralized Terranes in Tasmania. Minerals, 11(11), 1195. https://doi.org/10.3390/min11111195