Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits
Abstract
:1. Introduction
2. Geological Setting, Previous Geochronology, and Samples
2.1. Vishnyakovskoe Rare Metal Ore Deposit
2.2. Tonod Uplift Quartz-Vein Tin Deposits
2.3. Pitkäranta Mining District (PMD) Tin-Rare Metal-Base Metal Skarn Deposits
2.4. Mokhovoe Porphyry Tin Deposit
2.5. Valkumei Silicate-Sulfide Vein Tin Deposit
2.6. Merek Greisen Tin Ore Deposit
3. Methods
4. Results
4.1. Replicate Analyses of the SPG Matrix-Matched Reference Cassiterite
4.2. Vishnyakovskoe Deposit
4.3. Tonod Uplift Tin Deposits
4.4. Pitkäranta Mining District Skarn Deposits
4.5. Mokhovoe Deposit
4.6. Valkumei Deposit
4.7. Merek Deposit
5. Discussion
5.1. A Problem of Heterogeneous Isotopic Composition of Initial Pb in Cassiterite
5.2. Summary of Cassiterite LA-ICPMS U-Pb Ages
5.3. Relation of Tin Mineralization with Granitic Magmatism
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, S.; Peng, J.; Hao, S.; Li, H.; Geng, J.; Zhang, D. In situ LA-MC-ICP-MS and ID-TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, J.; Coulson, I.M.; Hou, L.; Li, S. Cassiterite U–Pb and muscovite40Ar–39Ar age constraints on the timing of mineralization in the Xuebaoding Sn–W–Be deposit, western China. Ore Geol. Rev. 2014, 62, 315–322. [Google Scholar] [CrossRef]
- Chen, X.-C.; Hu, R.-Z.; Bi, X.-W.; Li, H.-M.; Lan, J.-B.; Zhao, C.-H.; Zhu, J.-J. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China. Miner. Depos. 2014, 49, 843–860. [Google Scholar] [CrossRef]
- Du, S.; Wen, H.; Qin, C.; Yan, Y.; Yang, G.; Fan, H.; Zhang, W.; Zhang, L.; Wang, N.; Li, H.; et al. Caledonian ore-forming event in the Laojunshan mining district, SE Yunnan Province, China: In situ LA-MC-ICP-MS U-Pb dating on cassiterite. Geochem. J. 2015, 49, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.-Q.; Lu, J.-J.; Wang, R.-C.; Yang, P.; Zhu, J.-C.; Yao, Y.; Gao, J.-F.; Li, C.; Lei, Z.-H.; Zhang, W.-L.; et al. Constraints of in situ zircon and cassiterite U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar ages on multiple generations of granitic magmatism and related W–Sn mineralization in the Wangxianling area, Nanling Range, South China. Ore Geol. Rev. 2015, 65, 1021–1042. [Google Scholar] [CrossRef]
- Li, C.-Y.; Zhang, R.-Q.; Ding, X.; Ling, M.-X.; Fan, W.-M.; Sun, W.-D. Dating cassiterite using laser ablation ICP-MS. Ore Geol. Rev. 2016, 72, 313–322. [Google Scholar] [CrossRef]
- Cao, H.-W.; Zhang, Y.-H.; Pei, Q.; Zhang, R.-Q.; Tang, L.; Lin, B.; Cai, G.-J. U–Pb dating of zircon and cassiterite from the Early Cretaceous Jiaojiguan iron-tin polymetallic deposit, implications for magmatism and metallogeny of the Tengchong area, western Yunnan, China. Int. Geol. Rev. 2016, 59, 234–258. [Google Scholar] [CrossRef]
- Wang, F.; Bagas, L.; Jiang, S.; Liu, Y. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geol. Rev. 2017, 80, 1206–1229. [Google Scholar] [CrossRef]
- Yan, Q.-H.; Qiu, Z.-W.; Wang, H.; Wang, M.; Wei, X.-P.; Li, P.; Zhang, R.-Q.; Li, C.-Y.; Liu, J.-P. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite. Ore Geol. Rev. 2018, 100, 561–573. [Google Scholar] [CrossRef]
- Deng, X.-H.; Chen, Y.-J.; Bagas, L.; Zhou, H.-Y.; Zheng, Z.; Yue, S.-W.; Chen, H.-J.; Li, H.-M.; Tu, J.-R.; Cui, Y.-R. Cassiterite U-Pb geochronology of the Kekekaerde W-Sn deposit in the Baiganhu ore field, East Kunlun Orogen, NW China: Timing and tectonic setting of mineralization. Ore Geol. Rev. 2018, 100, 534–544. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, J.; Lehmann, B.; Li, C.; Li, G.; Zhang, L.; Guo, J.; Sun, W. Combined zircon and cassiterite U–Pb dating of the Piaotang granite-related tungsten–tin deposit, southern Jiangxi tungsten district, China. Ore Geol. Rev. 2017, 82, 268–284. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, W.; Li, C.; Lehmann, B.; Seltmann, R. Constraints on tin mineralization events by cassiterite LA-ICP-MS U–Pb dating. In Proceedings of the 14th SGA Biennial Meeting, Quebec City, QC, Canada, 20–23 August 2017; Volume 3, pp. 1009–1012. [Google Scholar]
- Neymark, L.A.; Holm-Denoma, C.S.; Moscati, R.J. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chem. Geol. 2018, 483, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Moscati, R.J.; Neymark, L.A. U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: Direct dating of cassiterite by in situ LA-ICPMS. Miner. Depos. 2019, 55, 1–20. [Google Scholar] [CrossRef]
- Lehmann, B.; Zoheir, B.A.; Neymark, L.A.; Zeh, A.; Emam, A.; Radwan, A.M.; Zhang, R.; Moscati, R.J. Monazite and cassiterite U Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield. Gondwana Res. 2020, 84, 71–80. [Google Scholar] [CrossRef]
- Neymark, L.A.; Holm-Denoma, C.S.; Larin, A.M.; Moscati, R.J.; Plotkina, Y.V. LA-ICPMS U-Pb dating reveals cassiterite inheritance in the Yazov granite, Eastern Siberia: Implications for tin mineralization. Miner. Depos. 2021, 56, 1177–1194. [Google Scholar] [CrossRef]
- Gulson, B.L.; Jones, M.T. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology 1992, 20, 355–358. [Google Scholar] [CrossRef]
- Carr, P.A.; Zink, S.; Bennett, V.C.; Norman, M.D.; Amelin, Y.; Blevin, P.L. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, eastern Australia. Chem. Geol. 2020, 539, 119539. [Google Scholar] [CrossRef]
- Tapster, S.; Bright, J.W.G. High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: Implications for LA-ICP-MS and ore deposit geochronology. Geochronology 2020, 2, 425–441. [Google Scholar] [CrossRef]
- Rizvanova, N.G.; Kuznetsov, A.B. A New Approach to ID-TIMS U–Pb Dating of Cassiterite by the Example of the Pitkäranta Tin Deposit. Dokl. Earth Sci. 2020, 491, 146–149. [Google Scholar] [CrossRef]
- Anderson, C.S. Tin: U.S. Geological Survey Mineral Commodity Summaries 2017. pp. 174–175. Available online: https://minerals.usgs.gov/minerals/pubs/commodity/tin/mcs-2017-tin.pdf (accessed on 25 September 2021).
- Ivanov, O.P.; Yeremenko, L.Y.; Voronov, A.I.; Zorin, Y.M.; Kuzovenko, A.I.; Khar’Kevich, K.A.; Kanoatov, S.I. Mineralogy and Technology of New Economic Types of Tin Ores. Int. Geol. Rev. 1993, 35, 603–612. [Google Scholar] [CrossRef]
- Levine, R.M.; Bond, A.R. Tin Reserves and Production in the Russian Federation. Int. Geol. Rev. 1994, 36, 301–310. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Lobanov, K.V.; Volkov, A.V.; Galyamov, A.L.; Vikent’Ev, I.V.; Tarasov, N.N.; Distler, V.V.; Lalomov, A.V.; Aristov, V.; Murashov, K.Y.; et al. Strategic metal deposits of the Arctic Zone. Geol. Ore Depos. 2015, 57, 433–453. [Google Scholar] [CrossRef]
- Larin, A.M.; Amelin, Y.V.; Neymark, L.A. Age and genesis of complex skarn ores in the Pitkäranta Ore Province. Geol. Ore Depos. 1991, 33, 15–33. (In Russian) [Google Scholar]
- Ishihara, S.; Govenchuk, V.G.; Govenchuk, G.A.; Korostelev, P.G.; Saydayn, G.R.; Semeniak, B.I.; Ratkin, V.V. Mineralization age of granitoid-related ore deposits in the Southern, Russian Far East. Resour. Geol. 1997, 47, 255–261. [Google Scholar]
- Krymsky, R.S.; Gavrilenko, V.V.; Belyatsky, B.V.; Smolensky, V.V.; Levsky, L.K. The age and genesis of the W-Sn mineralization at the Verkhneurmiiskii ore field, Amur Area: Sm-Nd and Rb-Sr isotopic data. Petrology 1997, 5, 493–501. [Google Scholar]
- Sato, K.; Vrublevsky, A.A.; Rodionov, S.M.; Romanovsky, N.P.; Nedachi, M. Mid-Cretaceous episodic magmatism and tTin mineralization in Khingan-Okhotsk volcano-plutonic belt, Far East Russia. Resour. Geol. 2002, 52, 1–14. [Google Scholar] [CrossRef]
- Tikhomirov, P.; Kalinina, E.; Kobayashi, K.; Nakamura, E. Late Mesozoic silicic magmatism of the North Chukotka area (NE Russia): Age, magma sources, and geodynamic implications. Lithos 2008, 105, 329–346. [Google Scholar] [CrossRef]
- Miller, E.L.; Katkov, S.M.; Strickland, A.; Toro, J.; Akinin, V.V.; Dumitru, T.A. Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui-Chukotka fold belt, North East Arctic Russia. Stephan Mueller Spéc. Publ. Ser. 2009, 4, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Gonevchuk, V.G.; Gonevchuk, G.A.; Korostelev, P.G.; Semenyak, B.I.; Seltmann, R. Tin deposits of the Sikhote–Alin and adjacent areas (Russian Far East) and their magmatic association. Aust. J. Earth Sci. 2010, 57, 777–802. [Google Scholar] [CrossRef]
- Sakhno, V.G.; Polin, V.F.; Akinin, V.V.; Sergeev, S.A.; Alenicheva, A.A.; Tikhomirov, P.L.; Moll-Stalcup, E.J. The diachronous formation of the Enmyvaam and Amguema-Kanchalan volcanic fields in the Okhotsk-Chukotka volcanic belt (NE Russia): Evidence from isotopic data. Dokl. Earth Sci. 2010, 434, 1172–1178. [Google Scholar] [CrossRef]
- Chugaev, A.V.; Budyak, A.E.; Chernyshev, I.V.; Dubinina, E.O.; Gareev, B.; Shatagin, K.N.; Tarasova, Y.I.; Goryachev, N.A.; Skuzovatov, S.Y. Isotopic (Sm–Nd, Pb–Pb, and δ34S) and Geochemical Characteristics of the Metasedimentary Rocks of the Baikal–Patom Belt (Northern Transbaikalia) and Evolution of the Sedimentary Basin in the Neoproterozoic. Petrology 2018, 26, 213–245. [Google Scholar] [CrossRef]
- Prokopiev, A.; Borisenko, A.; Gamyanin, G.; Pavlova, G.; Fridovsky, V.; Kondrat’Eva, L.; Anisimova, G.; Trunilina, V.; Ivanov, A.; Travin, A.; et al. Age constraints and tectonic settings of metallogenic and magmatic events in the Verkhoyansk–Kolyma folded area. Russ. Geol. Geophys. 2018, 59, 1237–1253. [Google Scholar] [CrossRef]
- Alekseev, V.I.; Alekseev, I. Zircon as a Mineral Indicating the Stage of Granitoid Magmatism at Northern Chukotka, Russia. Geosciences 2020, 10, 194. [Google Scholar] [CrossRef]
- Volkov, A.V.; Prokofev, V.Y.; Vinokurova, S.F.; Andreevaa, O.V.; Kiseleva, G.D.; Galyamova, A.L.; Murashova, K.Y.; Sidorova, N.V. Valunistoe epithermal Au–Ag Deposit (East Chukotka, Russia): Geological structure, mineralogical–geochemical peculiarities and mineralization conditions. Geol. Ore Depos. 2020, 62, 97–121. [Google Scholar] [CrossRef]
- Tectonic Map of Russia. Scale 1:15,000,000. 2007. Available online: http://neotec.ginras.ru/neomaps/M150_Russia_2007_Tectonics_Tektonicheskaya-karta-rossii.html (accessed on 25 September 2021).
- Gorelov, V.A.; Larin, A.M. Chapter 4—Ladoga belt. In Precambrian Ore Deposits of the East European and Siberian Cratons; Developments in Economic Geology; Rundkvist, D.V., Gillen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 30, pp. 87–103. Available online: https://www.sciencedirect.com/bookseries/developments-in-economic-geology/vol/30 (accessed on 25 September 2021).
- Khiltova, V.A.; Pleskach, G.P. Chapter 13—The Pre-Sayan inlier. In Precambrian Ore Deposits of the East European and Siberian Cratons; Developments in Economic Geology; Rundkvist, D.V., Gillen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 30, pp. 249–270. Available online: https://www.sciencedirect.com/bookseries/developments-in-economic-geology/vol/30 (accessed on 25 September 2021).
- Larin, A.M.; Salnikova, E.B.; Kotov, A.B.; Makarev, L.B.; Yakovleva, S.Z.; Kovach, V.P. Early Proterozoic syn-and postcollision granites in the northern part of the Baikal fold area. Strat. Geol. Correl. 2006, 14, 463–474. [Google Scholar] [CrossRef]
- Larin, A.M.; Kotov, A.B.; Kovach, V.P.; Sal’Nikova, E.B.; Gladkochub, D.P.; Savatenkov, V.M.; Velikoslavinskii, S.D.; Skovitina, T.M.; Rizvanova, N.G.; Sergeeva, N.A.; et al. Rapakivi Granites of the Kodar Complex (Aldan Shield): Age, Sources, and Tectonic Setting. Petrology 2021, 29, 277–299. [Google Scholar] [CrossRef]
- Larin, A.M.; Ritsk, Y.Y.; Sokolov, Y.M. Chapter 17—Baikal-Patom fold belt. In Precambrian Ore Deposits of the East European and Siberian Cratons; Developments in Economic Geology; Rundkvist, D.V., Gillen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 30, pp. 317–362. Available online: https://www.sciencedirect.com/bookseries/developments-in-economic-geology/vol/30 (accessed on 25 September 2021).
- Rytsk, E.Y.; Kovach, V.P.; Kovalenko, V.I.; Yarmolyuk, V.V. Structure and evolution of the continental crust in the Baikal Fold Region. Geotectonics 2007, 41, 440–464. [Google Scholar] [CrossRef]
- Khanchuk, A.I. (Ed.) Geodynamics, Magmatism, and Metallogeny of the Russian East; Dalnauka: Vladivostok, Russia, 2006; 981p, Available online: http://rodionov.fegi.ru/far_east.pdf (accessed on 25 September 2021). (In Russian)
- Gladkochub, D.; Pisarevsky, S.; Donskaya, T.; Natapov, L.; Mazukabzov, A.; Stanevich, A.; Sklyarov, A.E. The Siberian Craton and its evolution in terms of the Rodinia hypothesis. Episodes 2006, 29, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Makagon, V.M. Evolution of Nb,Ta-oxide mineralization in rare-metal pegmatites of the East Sayan belt, Siberia, Russia. In Proceedings of the Granitic Pegmatites: The State of the Art—International Symposium, Porto, Portugal, 6–12 May 2007; Available online: https://www.fc.up.pt/peg2007/files/makagon.pdf (accessed on 25 September 2021).
- Odintsova, I.V.; Syzhykh, A.I. Mineral raw material resources of rare and base metals in Eastern Siberia. In Geology and Mineral Deposits of Eastern Siberia; Irkutsk University Publishing: Irkutsk, Russia, 2007; pp. 95–101. (In Russian) [Google Scholar]
- Salnikova, E.B.; Larin, A.M.; Yakovleva, S.Z.; Kotov, A.B.; Glebovitskii, V.A.; Tkachev, A.V.; Anisimova, I.V.; Plotkina, Y.V.; Gorokhovskii, B.M. Age of the Vishnyakovskoe deposit of rare-metal pegmatites (East Sayan): U-Pb geochronological study of manganotantalite. Dokl. Earth Sci. 2011, 441, 1479–1483. [Google Scholar] [CrossRef]
- Levitsky, V.I.; Reznitsky, L.Z.; Kotov, A.B.; Sal’nikova, E.B.; Bibikova, E.V.; Kirnozova, T.I.; Kovach, V.P.; Kozakov, I.K.; Barash, I.G.; Abramivich, A.G.; et al. The age and geochemistry of post kinematic granitoids of the south Siberia. In Proceedings of the 2nd All-Russian Conference on Isotopic Geochronology, St. Peterburg, Russia, 25–27 November 2003; pp. 278–281. (In Russian). [Google Scholar]
- Makagon, V.M.; Lepin, V.S.; Brandt, S.B. Rubidium-strontium dating of rare-metal pegmatites of the Vishnyakovskoe deposit (East Sayan). Russ. Geol. Geophys. 2000, 41, 1783–1789. [Google Scholar]
- Larin, A.M.; Kotov, A.B.; Salnikova, E.B.; Sklyarov, E.V.; Kovach, V.P.; Plotkina, Y.V.; Anisimova, I.V.; Podolskaya, M.M. The Age, Sources, and Tectonic Setting of Tin-Bearing Granites of the Yazovka Complex of the Baikal–Patom Fold-Thrust Belt. Dokl. Earth Sci. 2020, 490, 55–59. [Google Scholar] [CrossRef]
- Khazov, R.A. Geological Peculiarities of Tin Mineralization in the North Ladoga Region; Nedra: Leningrad, Russia, 1973; 87p, Available online: http://elibrary.krc.karelia.ru/528/1/%D0%A2%D1%80%D1%83%D0%B4%D1%8B%20%D0%98%D0%93_15.pdf (accessed on 25 September 2021). (In Russian)
- Trüstedt, O. Die Erzlagerstätten von Pitkäranta am Ladoga-See. Helsingfors, Frenckellska tryckeriaktiebolaget. Bull. Commision Géol. Finl. 1907, 19, 333. [Google Scholar]
- Iossa, G. News of finding tin and copper in Pitkäranta, Finland. Gorn. Z. 1834, 4, 157–161. (In Russian) [Google Scholar]
- Amelin, Y.; Beljaev, A.; Larin, A.; Neymark, L.; Stepanov, K. Salmi Batholith and Pitkaranta ore Field in Soviet Karelia. In Rapakivi Granites and Related Rocks Symposium; Haapala, I., Ramo, O.T., Eds.; GSF: Salonsaari, Finland, 1991; p. 57. Available online: https://tupa.gtk.fi/julkaisu/opas/op_033.pdf (accessed on 25 September 2021).
- Neymark, L.A.; Amelin, V.Y.; Larin, A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite—Anorthosite batholith (Karelia, Russia). Miner. Pet. 1994, 50, 173–193. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Larin, A.M.; Tucker, R.D. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: Implications for magmatic evolution. Contrib. Miner. Pet. 1997, 127, 353–368. [Google Scholar] [CrossRef]
- Larin, A.M. Rapakivi Granites and Associated Rocks; Nauka: St. Petersburg, Russia, 2011; 402p. (In Russian) [Google Scholar]
- Slack, J.F.; Neymark, L.A.; Moscati, R.J.; Lowers, H.A.; Ransom, P.W.; Hauser, R.L.; Adams, D.T. Origin of Tin Mineralization in the Sullivan Pb-Zn-Ag Deposit, British Columbia: Constraints from Textures, Geochemistry, and LA-ICP-MS U-Pb Geochronology of Cassiterite. Econ. Geol. 2020, 115, 1699–1724. [Google Scholar] [CrossRef]
- Larin, A.M.; Rizvanova, N.G.; Salnikova, E.B.; Kotov, A.B.; Kovach, V.P.; Rytsk, E.Y. Age of ores of the tin deposit Mokhovoe and associated rock of the Zhanok-Bambukoj volcano-plutonic association (South-Muya Range, North Transbaikalia). In Rock, Mineral, and Ore-Formation: Progress and Prospective; IGEM RAN: Moscow, Russia, 2020; pp. 161–164. Available online: http://www.igem.ru/periodic/news/news_20/progress_90.pdf (accessed on 25 September 2021). (In Russian)
- Kozlov, S.A.; Novchenko, S.A.; Bogach, G.I.; Tombasov, I.A.; Pinaeva, T.A.; Potemkina, L.V.; Yadrishhenskaya, N.G.; Abdukarimova, S.F.; Kurilenko, A.V.; Raitina, N.I.; et al. Gosudarstvennaya Geologicheskaya Karta Rossijskoj Federatsii, Scale 1:1000,000; Aldan-Transbaikalia Series; Sheet N_50-Sretensk; Explonatory Note; VSEGEI Cartographic Factory: St. Petersburg, Russia, 2010; 377p, Available online: https://www.geokniga.org/sites/geokniga/files/mapcomments/n-50-sretensk-gosudarstvennaya-geologicheskaya-karta-rossiyskoy-federacii-tret.pdf (accessed on 25 September 2021). (In Russian)
- Nokleberg, W.J.; Bundtzen, T.K.; Grybeck, D.; Koch, R.D.; Eremin, R.A.; Rozenblum, I.S.; Sidorov, A.A.; Byalobzhesky, S.G.; Sosunov, G.M.; Shpikerman, V.I.; et al. Metallogenesis of Mainland Alaska and the Russian Northeast; U.S. Geological Survey Open-File Report 93-339; U.S. Geological Survey: Reston, VA, USA, 1993; 222p. Available online: https://pubs.usgs.gov/of/1993/0339/report.pdf (accessed on 25 September 2021).
- Lugov, S.F.; Makeev, B.V.; Potapova, T.M. Regularities of Formation and Distribution of Tin Deposits in the U.S.S.R. Northeast; Nedra: Moscow, Russia, 1972; 358p. (In Russian) [Google Scholar]
- Nokleberg, W.J. (Ed.) Metallogenesis and Tectonics of Northeast Asia; U.S. Geological Survey Professional Paper 1765; U.S. Geological Survey: Reston, VA, USA, 2010; 610p. Available online: https://pubs.er.usgs.gov/publication/pp1765 (accessed on 25 September 2021).
- Nokleberg, W.J.; Bundtzen, T.K.; Dawson, K.M.; Eremin, R.A.; Goryachev, N.A.; Koch, R.D.; Ratkin, V.V.; Rozenblum, I.S.; Shpikerman, V.I.; Frolov, Y.F.; et al. Significant Metalliferous and Selected Non-Metalliferous Lode Deposits and Placer Districts for the Russian Far East, Alaska, and the Canadian Cordillera; U.S. Geological Survey Open-File Report 96-513-A; U.S. Geological Survey: Reston, VA, USA, 1996; 385p. Available online: https://pubs.usgs.gov/of/1996/0513a/report.pdf (accessed on 25 September 2021).
- Miller, E.L.; Verzhbitsky, V.E. Structural studies near Pevek, Russia: Implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean. Stephan Mueller Spec. Publ. Ser. 2009, 4, 223–241. [Google Scholar] [CrossRef]
- Rodionov, S.M. Mineral deposit research: Meeting the global challenge. In Proceedings of the Eighth Biennial SGA Meeting, Beijing, China, 18–21 August 2005; pp. 1175–1178. Available online: https://www.springer.com/gp/book/9783540279457 (accessed on 25 September 2021).
- Khanchuk, A.I. Ore Deposits of Continental Margins; Dalnauka: Vladivostok, Russia, 2000; pp. 5–34. (In Russian) [Google Scholar]
- Gonevchuk, V.G.; Gonevchuk, G.A. Granitoid magmatism and related mineralization in Sikhote Alin. Resour. Geol. 1995, 18, 135–141. [Google Scholar]
- Farmer, C.B.; Searl, A.; Halls, C. Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty Mine, Cornwall, England. Miner. Mag. 1991, 55, 447–458. [Google Scholar] [CrossRef]
- Lerouge, C.; Gloaguen, E.; Wille, G.; Bailly, L. Distribution of In and other rare metals in cassiterite and associated minerals in Sn ± W ore deposits of the western Variscan Belt. Eur. J. Miner. 2017, 29, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- National Institute of Standards, Certificate of Analysis Standard Reference Material 612. 1992. Available online: https://www-s.nist.gov/srmors/certificates/612.pdf (accessed on 25 September 2021).
- Jackson, S.E. Calibration strategies for elemental analysis by LA-ICP-MS. In Mineralogical Association of Canada Short Course 40; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Chapter 11; pp. 169–188. [Google Scholar]
- Sylvester, P.J. Matrix effects in laser ablation-ICP-MS. In Mineralogical Association of Canada Short Course 40; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Chapter 5; pp. 67–78. [Google Scholar]
- Jochum, K.P.; Stoll, B. Reference materials for elemental and isotopic analyses by LA–(MC)–ICP–MS: Successes and outstanding needs. In Mineralogical Association of Canada Short Course 40; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Chapter 10; pp. 147–168. [Google Scholar]
- Souders, A.K.; Sylvester, P.J. Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J. Anal. At. Spectrom. 2010, 25, 975–988. [Google Scholar] [CrossRef]
- Pietruszka, A.J.; Neymark, L.A. Evaluation of laser ablation double-focusing SC-ICPMS for “common” lead isotopic measurements in silicate glasses and minerals. J. Anal. At. Spectrom. 2017, 32, 1135–1154. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex Rev. 3.75—A Geochronological Toolkit for Microsoft Excel; Special Publication; Berkeley Geochronology Center: Berkeley, CA, USA, 2012; Volume 5, 75p. [Google Scholar]
- Tera, F.; Wasserburg, G. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Chew, D.; Petrus, J.; Kamber, B. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Rasbury, T.; Parrish, R.R.; Smith, C.J.; Horstwood, M.S.A.; Condon, D.J. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 2017, 18, 2807–2814. [Google Scholar] [CrossRef] [Green Version]
- Akinin, V.V.; Miller, E.L.; Gottlieb, E.; Polzunenkov, G. Geochronology and Geochemistry of Cretaceous Magmatic Rocks of Arctic Chukotka: An Update of GEOCHRON2.02012. Available online: https://ui.adsabs.harvard.edu/abs/2012EGUGA.14.3876A/abstract (accessed on 25 September 2021).
- Kotov, A.B.; Vladykin, N.V.; Yarmolyuk, V.V.; Salnikova, E.B.; Sotnikova, I.A.; Yakovleva, S.Z. Permian age of the Burpala alkaline pluton, Northern Transbaikalia: Geodynamic implications. Dokl. Earth Sci. 2013, 453, 1082–1085. [Google Scholar] [CrossRef]
- Ferguson, H.G.; Bateman, A.M. Geologic features of tin deposits. Econ. Geol. 1912, 7, 209–262. [Google Scholar] [CrossRef]
- Taylor, R. Some observations upon the tin deposits of Australia. Bull. Geol. Soc. Malays. 1979, 11, 181–207. [Google Scholar] [CrossRef]
- Kwak, T.A. Developments in Economic Geology: W-Sn Skarn Deposits and Related Metamorphic Skarns and Granitoids; Elsevier: Amsterdam, The Netherlands, 1987; 451p. [Google Scholar]
- Heinrich, C. The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ. Geol. 1990, 85, 457–481. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of tin. Lect. Notes Earth Sci. 1990, 32, 211. [Google Scholar]
- Lehmann, B. Formation of tin ore deposits: A reassessment. Lithos 2021, 402–403, 105756. [Google Scholar] [CrossRef]
- Štemprok, M. A comparison of the Krushne Horu-Erzgebirge (Check Republic-Germany) and Cornish (UK) granites and their related mineralization. Proc. Ussher Soc. 1995, 8, 347–356. [Google Scholar]
- Stussi, J.-M. Granitoid chemistry and associated mineralization in the French Variscan. Econ. Geol. 1989, 84, 1363–1381. [Google Scholar] [CrossRef]
- Breiter, K.; Forster, H.-J.; Seltmann, R. Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebir-ge-Slavkovsky les metallogenic province. Miner. Depos. 1999, 34, 505–521. [Google Scholar] [CrossRef]
- Bouchot, V.; Ledru, P.; Lerouge, C.; Lescuyer, J.-L.; Milesi, J.-P. 5: Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. Ore Geol. Rev. 2005, 27, 169–197. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Leichmann, J.; Gabašová, A. Textural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Plimer, I.R. Fundamental parameters for the formation of granite-related tin deposits. Geol. Rundsch. 1987, 76, 23–40. [Google Scholar] [CrossRef]
- Halter, W.E.; Williams-Jones, A.E.; Kontak, D.J. The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia. Econ. Geol. 1996, 91, 368–385. [Google Scholar] [CrossRef]
- Sinclair, W.D.; Gonevchuk, G.; Korostelev, P.G.; Semenyak, B.; Rodionov, S.M.; Seltmann, R.; Stemprok, M. World Tin and Tungsten Deposit Database; Open File 7688; Geological Survey of Canada: Ottawa, ON, Canada, 2014. [Google Scholar] [CrossRef]
- Jingwen, M.; Yanbo, C.; Maohong, C.; Pirajno, F. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Schwarz-Schampera, U.; Herzig, P.M. Model of Indium Ore Formation. In Indium; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Breiter, K.; Förster, H.-J.; Škoda, R. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 2006, 88, 15–34. [Google Scholar] [CrossRef]
- Breiter, K. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 2012, 151, 105–121. [Google Scholar] [CrossRef]
- Kempe, U.; Wolf, D. Anomalously high Sc contents in ore minerals from Sn–W deposits: Possible economic significance and genetic implications. Ore Geol. Rev. 2006, 28, 103–122. [Google Scholar] [CrossRef]
- Sinclair, W.; Kooiman, G.; Martin, D.; Kjarsgaard, I. Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol. Rev. 2006, 28, 123–145. [Google Scholar] [CrossRef]
- Ishihara, S.; Murakami, H.; Marquez-Zavalia, M.F. Inferred Indium Resources of the Bolivian Tin-Polymetallic Deposits. Resour. Geol. 2011, 61, 174–191. [Google Scholar] [CrossRef]
- Černý, P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Res. 1991, 51, 429–468. [Google Scholar] [CrossRef]
- Cerny, P.; Ercit, T.S. The Classification of Granitic Pegmatites Revisited. Can. Miner. 2005, 43, 2005–2026. [Google Scholar] [CrossRef] [Green Version]
- Kontak, D.J. Nature and origin of an lct-suite pegmatite with late-stage sodium enrichment, Brazil lake, Yarmouth county, Nova Scotia. I. Geological setting and petrology. Can. Miner. 2006, 44, 563–598. [Google Scholar] [CrossRef]
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic Pegmatites as Sources of Strategic Metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Moscati, R.J.; Neymark, L.A. Pb-Pb and U-Pb data of Proterozoic to Phanerozoic Cassiterite Deposits in Russia. U.S. Geological Survey Data Release. 2021. Available online: https://www.sciencebase.gov/catalog/item/612533d8d34e40dd9c03f29c (accessed on 25 September 2021).
Mining District/ Ore Deposit | Sample ID | Sample Coordinates | Median U, ppm | Median Th, ppm | Age Type | Age, Ma | ±2 SE, Ma | Reference |
---|---|---|---|---|---|---|---|---|
East Sayan RareMetal Pegmatites, | 2622 | 55°13′02″ N | 5.8 | 4.70 × 10−2 | T-W isochron lower intercept | 1833.5 | 31 | This work |
Vishnyakovskoe ore deposit | 97°43′00″ E | 208Pb/206Pb-207Pb/206Pb isochron | 1848 | 13 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1835 | 33 | This work | |||||
Tonod Uplift, Tuyukan ore district | L-304 | 59°14′03″ N | 4.8 | 6.1 × 10−1 | Combined four samples T-W isochron lower intercept | 1846 | 31 | Data from Neymark et al., 2021 [16] |
Ore occurence September | L-316 | 114°06′02″ E | 4.6 | 4.5 × 10−1 | ||||
Tonod Uplift, Tuyukan ore district, Ore occurrence Silvery | L-490 | 59°17′03″ N | 4.0 | 8.4 × 10−2 | Combined four samples 208Pb/206Pb-207Pb/206Pb isochron | 1861 | 12 | |
L-528 | 114°25′02″ E | 5.2 | 1.6 × 10−2 | |||||
Pitkäranta Mining district Old Mine Field | SPG-IV | 61°34′46″ N, 31°27′40″ E | 29 | 2.1 × 10−3 | 208Pb/206Pb-207Pb/206Pb isochron | 1543.2 | 11 | Data from Neymark et al., 2018 [13], n = 782 |
Pitkäranta Mining district | 31 | 61°34′46″ N | 9.1 | 4.8 × 10−4 | T-W isochron lower intercept | 1543 | 25 | This work |
Old Mine Field | 31°27′40″ E | 208Pb/206Pb-207Pb/206Pb isochron | 1543.4 | 11 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1536 | 25 | This work | |||||
Pitkäranta Mining district | VSH-5 | 61°34′46″ N | 28 | 1.7 × 10−2 | T-W isochron lower intercept | 1546 | 25 | This work |
Old Mine Field | 31°27′40″ E | 208Pb/206Pb-207Pb/206Pb isochron | 1544 | 10 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1537 | 25 | This work | |||||
Pitkäranta Mining district | LA-1 | 61°34′46″ N | 2.0 | 2.1 × 10−1 | T-W isochron lower intercept | 1551 | 28 | This work |
Old Mine Field | 31°27′40″ E | 208Pb/206Pb-207Pb/206Pb isochron | n.a. | n.a. | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1546 | 26 | This work | |||||
Pitkäranta Mining district | O-4-11 | 61°40′45″ N | 32 | 6.7 × 10−2 | T-W isochron lower intercept | 1544 | 25 | This work |
Deposit Kitelä | 31°26′30″ E | 208Pb/206Pb-207Pb/206Pb isochron | 1542 | 13 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1544 | 25 | This work | |||||
Pitkäranta Mining district | X-146 | 61°40′45″ N | 29 | 6.3 × 10−1 | T-W isochron lower intercept | 1542 | 25 | This work |
Deposit Kitelä | 31°26′30″ E | 208Pb/206Pb-207Pb/206Pb isochron | 1540 | 12 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 1538 | 25 | This work | |||||
Muya District | S-23-29 | 55°47′53″ N | 12 | 2.9 × 10−2 | T-W isochron lower intercept | 809 | 13 | This work |
Mokhovoe deposit | 114°49′41″ E | 208Pb/206Pb-207Pb/206Pb isochron | 813 | 13 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 811 | 17 | This work | |||||
Muya District | S-19-7 | 55°47′53″ N | 20 | 3.2 × 10−2 | T-W isochron lower intercept | 813 | 21 | This work |
Mokhovoe deposit | 114°49′41″ E | 208Pb/206Pb-207Pb/206Pb isochron | 821 | 27 | This work | |||
207Pb-corr wt. av. 206Pb-238U | 798 | 19 | This work | |||||
Russian North East | W-1 | 69°35′56″ N | 17 | 1.7 × 10−3 | T-W isochron lower intercept | 108.4 | 2.2 | Neymark et al., 2018 [13] |
Valkumei deposit | 170°09′56″ E | 207Pb-corr wt. av. 206Pb-238U | 108.3 | 2.2 | ||||
Russian Far East | MK-1 | 51°19′02″ N | 4.2 | 3.7 × 10−2 | T-W isochron lower intercept | 93.8 | 2.1 | This work |
Merek deposit | 134°43′05″ E | 207Pb-corr wt. av. 206Pb-238U | 92.6 | 1.9 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neymark, L.A.; Larin, A.M.; Moscati, R.J. Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits. Minerals 2021, 11, 1166. https://doi.org/10.3390/min11111166
Neymark LA, Larin AM, Moscati RJ. Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits. Minerals. 2021; 11(11):1166. https://doi.org/10.3390/min11111166
Chicago/Turabian StyleNeymark, Leonid A., Anatoly M. Larin, and Richard J. Moscati. 2021. "Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits" Minerals 11, no. 11: 1166. https://doi.org/10.3390/min11111166
APA StyleNeymark, L. A., Larin, A. M., & Moscati, R. J. (2021). Pb-Pb and U-Pb Dating of Cassiterite by In Situ LA-ICPMS: Examples Spanning ~1.85 Ga to ~100 Ma in Russia and Implications for Dating Proterozoic to Phanerozoic Tin Deposits. Minerals, 11(11), 1166. https://doi.org/10.3390/min11111166