Specific Mixing Energy of Cemented Paste Backfill, Part I: Laboratory Determination and Influence on the Consistency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterization
2.2. Mixing Procedure and Parameters
2.3. Determination of Specific Mixing Energy (SME)
3. Results
3.1. Typical Energy E0 for an Empty Running Mixer
3.2. Typical Mixing Energy E for a Loaded Running Mixer
3.3. Influence of Mixing Parameters on the SME for CPB and Its Consistency
3.4. Prediction of the SME for CPB
- • For CPB prepared with tailings T1:
- • For CPB prared with tailings T2:
3.5. Effect of SME on CPB Consistency
4. Discussion
4.1. Effect of CPB Temperature Variation
4.2. Effect of CPB Ingredients, and Mixer Type
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Landriault, D. The present state of paste fill in Canadian underground mining. In Proceedings of the 97th Annual General Meeting of CIM Rock Mechanics and Strata Control, Halifax, NS, Canada, 14–18 March 1995; pp. 229–238. [Google Scholar]
- Benzaazoua, M.; Bois, D.; Belem, T.; Gauthier, P.; Ouellet, S.; Fall, M.; St-Onge, J.-F. Remblais souterrains, évolution des connaissances et de la pratique. In Proceedings of the 20th Colloque Contrôle de Terrains, Association Minière du Québec, Val d’Or, QC, Canada, 22–23 March 2005; p. 23. [Google Scholar]
- Zhang, L.; Wang, H.; Wang, J.; Zhang, J.; Sun, H. Flow characteristics of paste slurry under low atmospheric pressure in high altitude areas. In Proceedings of the 20th International Seminar on Paste and Thickened Tailings, Beijing, China, 15–18 June 2017; pp. 74–86. [Google Scholar]
- Belem, T.; Benzaazoua, M. Predictive models for prefeasibility cemented paste backfill mix design. In Proceedings of the 3rd International Conference on Post-Mining, Nancy, France, 6–8 February 2008; pp. 6–8. [Google Scholar]
- Hassani, F.; Archibald, J. Mine Backfill; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 1998. [Google Scholar]
- Barsotti, C. The evolution of fill mining at the Ontario Division of Inco Metals. In Proceedings of the 12th Canadian Rock Mechanics Symposium, Mining with Backfill, CIM Special, Sudbury, ON, Canada, 23–25 May 1978; pp. 37–41. [Google Scholar]
- Belem, T.; Bussière, B.; Benzaazoua, M. The effect of microstructural evolution on the physical properties of paste backfill. In Proceedings of the Eighth International Conference on Tailings and Mine Waste ’01, Fort Collins, CO, USA, 16–19 January 2001; Balkema: Rotterdam, The Netherlands; pp. 365–374. [Google Scholar]
- Li, L.; Aubertin, M.; Belem, T. Formulation of a three-dimensional analytical solution to evaluate stresses in backfilled vertical narrow openings. Can. Geotech. J. 2005, 42, 1705–1717. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M.; Bussière, B. Utilisation du remblai en pâte comme support de terrain. Partie I: De sa fabrication à sa mise en place sous terre. In Proceedings of the Symposium International Après-Mines, GISOS, Gisos Ed., Nancy, France, 5–7 February 2003; pp. 5–7. [Google Scholar]
- Belem, T.; El Aatar, O.; Bussière, B.; Benzaazoua, M. Gravity-driven 1-D consolidation of cemented paste backfill in 3-m-high columns. Innov. Infrastruct. Solut. 2016, 1, 37. [Google Scholar] [CrossRef] [Green Version]
- Landriault, D.; Verburg, R.; Cincilla, W.; Welch, D. Paste Technology for Underground Backfill and Surface Tailings Disposal Applications. Short Course Notes; Technical workshop; Canadian Institute of Mining and Metallurgy: Vancouver, BC, Canada, 1997; p. 120. [Google Scholar]
- Klein, K.; Simon, D. Effect of specimen composition on the strength development in cemented paste backfill. Can. Geotech. J. 2006, 43, 310–324. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions. Eng. Geol. 2015, 185, 52–62. [Google Scholar] [CrossRef]
- Fall, M.; Célestin, J.; Pokharel, M.; Touré, M. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Eng. Geol. 2010, 114, 397–413. [Google Scholar] [CrossRef]
- Haiqiang, J.; Fall, M.; Cui, L. Yield stress of cemented paste backfill in sub-zero environments: Experimental results. Miner. Eng. 2016, 92, 141–150. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Belem, T.; Bussière, B.; Ouellet, S. Évolution des propriétés des remblais en pâte: Principaux paramètres d’influence. In AMQ 19th Colloque en Contrôle de Terrain; Association Minière du Québec: Val-d’Or, QC, Canada, 2002. [Google Scholar]
- Boger, D.; Scales, P.; Sofra, F. Rheological Concepts. Paste and Thickened Tailings-A Guide, 2nd ed.; Jewell, R., Fourie, A.B., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2006; pp. 25–37. [Google Scholar]
- Yin, S.; Wu, A.; Hu, K.; Wang, Y.; Zhang, Y. The effect of solid components on the rheological and mechanical properties of cemented paste backfills. Miner. Eng. 2012, 35, 61–66. [Google Scholar] [CrossRef]
- Ouattara, D.; Mbonimpa, M.; Belem, T. Rheological properties of thickened tailings and cemented paste tailings and the effects of mixture characteristics on shear behaviour. In Proceedings of the 63th Canadian Geotechnical Conference, Calgary, AB, Canada, 12–16 September 2010; pp. 118–1185. [Google Scholar]
- Ouattara, D.; Yahia, A.; Mbonimpa, M.; Belem, T. Effects of superplasticizer on rheological properties of cemented paste backfills. Int. J. Miner. Process. 2017, 161, 28–40. [Google Scholar] [CrossRef]
- Ouattara, D.; Mbonimpa, M.; Yahia, A.; Belem, T. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers. Constr. Build. Mater. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- ASTM-C143. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2015; C143. [Google Scholar]
- Creber, K.J.; McGuinness, M.; Kermani, M.F.; Hassani, F.P. Investigation into changes in pastefill properties during pipeline transport. Int. J. Miner. Process. 2017, 163, 35–44. [Google Scholar] [CrossRef]
- Belem, T.; Benzaazoua, M. Design and application of underground mine paste backfill technology. Geotech. Geol. Eng. 2008, 26, 147–174. [Google Scholar]
- Ouattara, D. Étude Expérimentale des Propriétés Rhéologiques et Mécaniques des Remblais Miniers en Pâte Cimentés Incorporant des Superplastifiants. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada, 2017. [Google Scholar]
- Belem, T.; El Aatar, O.; Bussière, B.; Benzaazoua, M.; Fall, M.; Yilmaz, E. Characterization of self-weight consolidated paste backfill. In Proceedings of the 9th International Seminar on Paste and Thickened Tailings—Paste, Limerick, Ireland, 3–7 April 2006; pp. 3–7. [Google Scholar]
- Wu, D.; Fall, M.; Cai, S. Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill. Miner. Eng. 2013, 42, 76–87. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Olsen, R.S.; Smith, J.D. Model studies on cemented tailings used in mine backfill. Can. Geotech. J. 1982, 19, 14–28. [Google Scholar] [CrossRef]
- Ouattara, D.; Belem, T.; Mbonimpa, M.; Yahia, A. Effect of superplasticizers on the consistency and unconfined compressive strength of cemented paste backfills. Constr. Build. Mater. 2018, 190, 294–307. [Google Scholar] [CrossRef]
- El Aatar, O.; Belem, T.; Bussière, B.; Benzaazoua, M.; Yilmaz, E. Microstructural properties of column consolidated paste backfill. In Proceedings of the 60th Canadian Geotechnical Conference and the 8th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 21–25 October 2007; pp. 21–24. [Google Scholar]
- Wu, D.; Yang, B.; Liu, Y. Transportability and pressure drop of fresh cemented coal gangue-fly ash backfill (CGFB) slurry in pipe loop. Powder Technol. 2015, 284, 218–224. [Google Scholar] [CrossRef]
- Orban, J.; Parcevaux, P.; Guillot, D. Specific mixing energy: A key factor for cement slurry quality. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 5–8 October 1986. [Google Scholar]
- Wallevik, J.E.; Wallevik, O.H. Analysis of shear rate inside a concrete truck mixer. Cem. Concr. Res. 2017, 95, 9–17. [Google Scholar] [CrossRef]
- Cazacliu, B.; Dauvergne, M. Malaxage de Bétons Autoplaçants. Influence du Temps de Malaxage et du Type de Malaxeur; Rapport de contrat pour le projet national BAP; Laboratoire Centrale des Ponts et Chaussées: Paris, France, 2002; p. 23. [Google Scholar]
- Kırca, Ö.; Turanlı, L.; Erdoğan, T.Y. Effects of retempering on consistency and compressive strength of concrete subjected to prolonged mixing. Cem. Concr. Res. 2002, 32, 441–445. [Google Scholar] [CrossRef]
- Yang, M.; Jennings, H. Influences of mixing methods on the microstructure and rheological behavior of cement paste. Adv. Cem. Based Mater. 1995, 2, 70–78. [Google Scholar] [CrossRef]
- Dikonda, R.K.; Mbonimpa, M.; Belem, T. Influence de la procédure de malaxage sur les propriétés rhéologiques et mécaniques du remblai en pâte cimenté. In Proceedings of the 71st Canadian Geotechnical Conference: GeoEdmonton 2018, Edmonton, AB, Canada, 23–26 September 2018. [Google Scholar]
- Dikonda, R.K. Influence de L’énergie Spécifique de Malaxage sur les Propriétés Rhéologiques et Mécaniques des Remblais en Pâte Cimentés; Mémoire de maîtrise; École Polytechnique de Montréal: Montréal, QC, Canada, 2018. [Google Scholar]
- Wilson, K.C.; Addie, G.R.; Sellgren, A.; Clift, R. Slurry Transport Using Centrifugal Pumps; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Paterson, A. High density slurry and paste tailings, transport systems. In Proceedings of the International Platinum Conference ‘Platinum Adding Value, Sun City, South Africa, 3–7 October 2004; pp. 159–166. [Google Scholar]
- Belem, T.; Benzaazoua, M.; Bussière, B.; Dagenais, A. Effects of settlement and drainage on strength development within mine paste backfill. In Tailings and Mine Waste; Balkema: Rotterdam, The Netherlands, 2002; pp. 139–148. [Google Scholar]
- Bussiere, B. Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can. Geotech. J. 2007, 44, 1019–1052. [Google Scholar] [CrossRef]
- ASTM-D5550. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Rietveld, H.M. The Rietveld Method; Young, R.A., Ed.; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Malusis, M.A.; Evans, J.C.; McLane, M.H.; Woodward, N.R. A miniature cone for measuring the slump of soil-bentonite cutoff wall backfill. Geotech. Test. J. 2008, 31, 373–380. [Google Scholar]
- Kalonji, K.; Mbonimpa, M.; Belem, T.; Benzaazoua, M.; Beya, F.K.; Ouellet, S. Calage d’un modèle numérique de prédiction de l’évolution de la température pendant le transport du remblai en pâte cimenté. In Proceedings of the 69th Canadian Geotechnical Conference: GeoVancouver 2016, Vancouver, BC, Canada, 2–5 October 2016. [Google Scholar]
- Kalonji, K. Étude des Propriétés Rhéologiques et du Transport du Remblai Cimenté en Pâte en Conditions Nordiques; Université du Québec en Abitibi-Témiscamingue: Rouyn-Noranda, QC, Canada, 2016. [Google Scholar]
- Ferraris, C.F. Concrete mixing methods and concrete mixers: State of the art. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 391. [Google Scholar] [CrossRef]
- Varma, M. Effect of Change in Mixing Time of Mixer on Wet Density, Dry Density, Workability and Compressive Strength of M-20 Grade Concrete. Int. J. Eng. Res. Technol. 2016, 5, 71–78. [Google Scholar]
- Cazacliu, B. In-mixer measurements for describing mixture evolution during concrete mixing. Chem. Eng. Res. Des. 2008, 86, 1423–1433. [Google Scholar] [CrossRef]
- Wallevik, J.; Rheocenter, I.; Iceland, I.C. Particle flow interaction theory-thixotropic behavior and structural breakdown. In Proceedings of the 36th Conference on Our World of Concrete and Structures, Singapore, 14–16 August 2011; pp. 14–16. [Google Scholar]
- Gaudin, M.; Sajot, A. Niveaux d’énergie dans un puits de potentiel déformé à bords abrupts. J. Phys. 1969, 30, 857–875. [Google Scholar] [CrossRef]
- Vandanjon, P.-O.; de Larrard, F.; Dehousse, B.; Villain, G.; Maillot, R.; Laplante, P. Homogénéisation des bétons en centrale de fabrication discontinue. Influence du temps de malaxage et du mode d’introduction des additions minérales. Bull.-Lab. Ponts Chaussées 2000, 228, 35–46. [Google Scholar]
- Chopin, D. Malaxage des Bétons à Hautes Performances et des Bétons Auto-Plaçants: Optimisation du Temps de Fabrication; Thèse de Doctorat en Genie Civil; École Centrale de Nantes et Université de Nantes: Nantes, France, 2003. [Google Scholar]
- Han, D.; Ferron, R.D. Influence of high mixing intensity on rheology, hydration, and microstructure of fresh state cement paste. Cem. Concr. Res. 2016, 84, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Dils, J.; De Schutter, G.; Boel, V. Influence of mixing procedure and mixer type on fresh and hardened properties of concrete: A review. Mater. Struct. 2012, 45, 1673–1683. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Li, H.; Zhou, X. Effect of high mixing intensity on rheological properties of cemented paste backfill. Minerals 2019, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Ramlochan, T.; Grabinsky, M.; Hooton, R. Microstructural and chemical investigations of cemented paste backfills. In Proceedings of the Eleventh Tailings and Mine Waste Conference. Fort Collins, CO, USA, 10–13 October 2004; A.A. Balkema: Leiden, The Netherlands; pp. 293–304. [Google Scholar]
- Fall, M.; Benzaazoua, M.; Ouellet, S. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Miner. Eng. 2005, 18, 41–44. [Google Scholar] [CrossRef]
- Neubauer, C.M.; Yang, M.; Jennings, H.M. Interparticle potential and sedimentation behavior of cement suspensions: Effects of admixtures. Adv. Cem. Based Mater. 1998, 8, 17–27. [Google Scholar] [CrossRef]
- Flatt, R.J.; Martys, N.; Bergström, L. The rheology of cementitious materials. MRS Bull. 2004, 29, 314–318. [Google Scholar] [CrossRef]
- Nehdi, M.; Al Martini, S. Estimating time and temperature dependent yield stress of cement paste using oscillatory rheology and genetic algorithms. Cem. Concr. Res. 2009, 39, 1007–1016. [Google Scholar] [CrossRef]
- Lemelin, M. Généralisation de la Méthode de Séparation des Variables pour les Équations non Linéaires de Klein-Gordon; Mémoire de Maîtrise en Physique; Université du Québec à Trois-Rivières: Trois-Rivières, QC, Canada, 1993. [Google Scholar]
- Chevrette, A. Généralisation de la Méthode de Séparation des Variables pour les Équations non Linéaires de Diffusion Unidimensionnelle; Mémoire de Maîtrise en Mathématiques et Informatique; Université du Québec à Trois-Rivières: Trois-Rivières, QC, Canada, 2000. [Google Scholar]
- Silva, W.P.; Silva, C.M.D.P.S. LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.50. Available online: http://www.labfit.net/ (accessed on 1 June 2021).
- Wang, H.; Yang, L.; Li, H.; Zhou, X.; Wang, X. Using Coupled Rheometer-FBRM to Study Rheological Properties and Microstructure of Cemented Paste Backfill. Adv. Mater. Sci. Eng. 2019, 2019, 6813929. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.J. Foundations of Colloid Science; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Takahashi, K.; Bier, T. Mechanisms of Degradation in Rheological Properties Due to Pumping and Mixing. Adv. Civ. Eng. Mater. 2014, 3, 25–39. [Google Scholar] [CrossRef]
- Raucci, J.; Cecel, R.; Romano, R.; Pileggi, R.; John, V. Effect of mixing method on the mini-slump spread of Portland cement pastes. Rev. IBRACON Estrut. Mater. 2018, 11, 410–431. [Google Scholar] [CrossRef]
- Kalonji, K.; Mbonimpa, M.; Belem, T.; Benzaazoua, M.; Beya, F.K.; Ouellet, S. Preliminary investigation of the effect of temperature and salinity on the rheological properties of fresh cemented paste backfills. In Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference, Geoquebec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Azouz, K.B.; Bekkour, K.; Dupuis, D. Influence of the temperature on the rheological properties of bentonite suspensions in aqueous polymer solutions. Appl. Clay Sci. 2016, 123, 92–98. [Google Scholar] [CrossRef]
- Dikonda, R.K.; Mamert, M.; Tikou, B. Specific mixing energy of cemented paste backfill (Part II): Influence on the rheological and mechanical properties and practical applications. Minerals. under review.
Physical Characteristics | T1 | T2 |
---|---|---|
D10 (µm) | 4.9 | 4.4 |
D30 (µm) | 15.5 | 11.2 |
D50 (µm) | 31.9 | 20.9 |
D60 (µm) | 43.4 | 28.0 |
D80 (µm) | 80.7 | 53.7 |
D90 (µm) | 119.8 | 87.9 |
CU = D60/D10 | 8.9 | 6.4 |
Cc = (D30)2/(D60 × D10) | 1.1 | 1.0 |
P20µm (%) | 36.4 | 48.5 |
P80µm (%) | 79.7 | 88.4 |
Gs (-) | 3.14 | 2.97 |
SS (m2/g) | 2.6 | 2.7 |
Element | Al | Ba | Ca | Fe | K | Li | Mg | Mn | Na | S | Ti | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 (%) | 12 | 0.07 | 3.24 | 38.78 | 2.44 | 0.03 | 0.71 | 0.23 | 1.23 | 40.64 | 0.42 | 0.24 |
T2 (%) | 27.46 | 0.24 | 5.43 | 27.58 | 8.99 | 0.04 | 3.72 | 0.28 | 1.93 | 22.73 | 1.35 | 0.26 |
Mineral | T1 (%) | T2 (%) |
---|---|---|
Albite NaAlSi3O8 | 12 | 12 |
Chlorite (Mg,Al)6(Si,Al)4O10(OH)8 | 4 | 9 |
Corundum Al2O3 | - | 2 |
Gypsum CaSO4·2H2O | 3 | 7 |
Muscovite K(Al3Si3O10)(OH)2 | 4 | 10 |
Pyrite FeS2 | 18 | 11 |
Quartz SiO2 | 59 | 49 |
Composition | Al2O3 | CaO | Fe2O | K2O | MgO | MnO | P4O6 | S | SiO2 | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
Binder (%) | 6.52 | 55.5 | 0.93 | 1.33 | 4.36 | 0.38 | 0.39 | 3.45 | 26.07 | 0.37 |
Mixtures | Load Mass (kg) | Mixing Speed (rpm) | Mixing Time (min) | ||
---|---|---|---|---|---|
CPB-T1 | CPB-T2 | T1 | T2 | ||
Series I: Mixing Time | |||||
M01 | M13 | 4.7 | 4.2 | 166 | 5 |
M02 | M14 | 4.7 | 4.2 | 166 | 7 |
M03 | M15 | 4.7 | 4.2 | 166 | 10 |
M04 | M16 | 4.7 | 4.2 | 166 | 15 |
M05 | M17 | 4.7 | 4.2 | 166 | 30 |
Series II: Mixing Speed | |||||
M06 | M18 | 4.7 | 4.2 | 91 | 5 |
M07 | M19 | 4.7 | 4.2 | 166 | 5 |
M08 | M20 | 4.7 | 4.2 | 282 | 5 |
Series III: Load Mass | |||||
M09 | M21 | 4.7 | 3.0 | 166 | 5 |
M10 | M22 | 6.3 | 4.7 | 166 | 5 |
M11 | M23 | 9.5 | 6.3 | 166 | 5 |
M12 | M24 | 12.6 | 8.9 | 166 | 5 |
- | M25 | - | 11.9 | 166 | 5 |
- | M26 | - | 15.6 | 166 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikonda, R.K.; Mbonimpa, M.; Belem, T. Specific Mixing Energy of Cemented Paste Backfill, Part I: Laboratory Determination and Influence on the Consistency. Minerals 2021, 11, 1165. https://doi.org/10.3390/min11111165
Dikonda RK, Mbonimpa M, Belem T. Specific Mixing Energy of Cemented Paste Backfill, Part I: Laboratory Determination and Influence on the Consistency. Minerals. 2021; 11(11):1165. https://doi.org/10.3390/min11111165
Chicago/Turabian StyleDikonda, Reagan Kabanga, Mamert Mbonimpa, and Tikou Belem. 2021. "Specific Mixing Energy of Cemented Paste Backfill, Part I: Laboratory Determination and Influence on the Consistency" Minerals 11, no. 11: 1165. https://doi.org/10.3390/min11111165
APA StyleDikonda, R. K., Mbonimpa, M., & Belem, T. (2021). Specific Mixing Energy of Cemented Paste Backfill, Part I: Laboratory Determination and Influence on the Consistency. Minerals, 11(11), 1165. https://doi.org/10.3390/min11111165