High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumentation
2.3. Summary of Flow Sheet
2.4. Continuous-Countercurrent-Extraction Process and Mixing–Clarification Extraction Tank
2.5. Sequential Solvent Extraction of Manganese and Cobalt
2.6. Complexation-Assisted Solvent Extraction of Cobalt
3. Results and Discussion
3.1. Disassembly and Composition Analysis of Spent LIBs
3.2. Removal of Aluminum and Leaching of Cathode Powder Materials
3.3. Continuous-Countercurrent-Extraction Process
3.4. Complexation-Assisted Solvent Extraction of Cobalt
3.4.1. Types of Diluent
3.4.2. Saponification Percentage of Extractant
3.4.3. Types of Complexing Reagent
3.4.4. Organic/Aqueous Ratio
3.4.5. Correlation of Extraction Equilibrium pH to Log Distribution Coefficient
3.5. Comparing Conventional Solvent Extraction to Complexation-Assisted Solvent Extraction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stan, A.I.; Świerczyński, M.; Stroe, D.I.; Teodorescu, R.; Andreasen, S.J. Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications—An overview. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Bran, Romania, 22–24 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 713–720. [Google Scholar]
- Pillot, C. The rechargeable battery market and main trends 2016–2025. In Proceedings of the 33rd Annual International Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 20 March 2017. [Google Scholar]
- King, S.; Boxall, N.J. Lithium battery recycling in Australia: Defining the status and identifying opportunities for the development of a new industry. J. Clean. Prod. 2019, 215, 1279–1287. [Google Scholar] [CrossRef]
- Boxall, N.J.; King, S.; Cheng, K.Y.; Gumulya, Y.; Bruckard, W.; Kaksonen, A.H. Urban mining of lithium-ion batteries in Australia: Current state and future trends. Min. Eng. 2018, 128, 45–55. [Google Scholar] [CrossRef]
- Pourret, O.; Faucon, M.P. Cobalt. In Encyclopedia of Geochemistry; White, W.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Zhang, X.; Xie, Y.; Lin, X.; Li, H.; Cao, H. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. J. Mater. Cycles Waste Manag. 2013, 15, 420–430. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Singh, N. Recycling of spent lithium ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1129–1165. [Google Scholar] [CrossRef]
- Ordonez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy. Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Martínez, O.; Valio, J.; Santasalo-Aarnio, A.; Reuter, M.; Serna-Guerrero, R. A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 2019, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Q.; Li, G.M.; He, W.Z.; Huang, J.W.; Zhu, H.C. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. Waste Manag. Res. 2019, 37, 1142–1152. [Google Scholar]
- Wang, S.G.; Tian, Y.; Zhang, X.F.; Yang, B.; Wang, F.; Xu, B.Q.; Liang, D.; Wang, L.P. A review of processes and technologies for the recycling of spent lithium-ion batteries. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 022025. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and status of hydrometallurgical and direct recycling of Li-Ion batteries and beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [Green Version]
- Demarco, J.d.O.; Cadore, J.S.; Oliveira, F.d.S.d.; Tanabe, E.H.; Bertuol, D.A. Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy 2019, 190, 105169. [Google Scholar] [CrossRef]
- He, L.; Sun, S.; Mu, Y.; Song, X.; Yu, J. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant. ACS Sustain. Chem. Eng. 2017, 5, 714–721. [Google Scholar] [CrossRef]
- Nayaka, G.P.; Pai, K.V.; Manjanna, J.; Keny, S.J. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Waste Manag. 2016, 51, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Nayaka, G.P.; Pai, K.V.; Santhosh, G.; Manjanna, J. Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. J. Environ. Chem. Eng. 2016, 4, 2378–2383. [Google Scholar] [CrossRef]
- Nayaka, G.P.; Pai, K.V.; Santhosh, G.; Manjanna, J. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 2016, 161, 54–57. [Google Scholar] [CrossRef]
- Chen, X.; Luo, C.; Zhang, J.; Kong, J.; Zhou, T. Sustainable recovery of metals from spent lithium-ion batteries: A green process. ACS Sustain. Chem. Eng. 2015, 3, 3104–3113. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Shen, B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mater. 2015, 295, 112–118. [Google Scholar] [CrossRef]
- Li, L.; Qu, W.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 2015, 282, 544–551. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 2012, 32, 1575–1582. [Google Scholar] [CrossRef]
- Joulié, M.; Laucournet, R.; Billy, E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 2014, 247, 551–555. [Google Scholar] [CrossRef]
- Muzayanha, S.U.; Yudha, C.S.; Hasanah, L.M.; Gupita, L.T.; Widiyandari, H.; Purwanto, A. Comparative Study of Various Kinetic Models on Leaching of NCA Cathode Material. Indones. J. Chem. in press. [CrossRef]
- Shuva, M.A.H.; Kurny, A.S.W. Hydrometallurgical Recovery of Value Metals from Spent Lithium Ion Batteries. Am. J. Mater. Sci. Technol. 2013, 1, 8–12. [Google Scholar]
- Jha, M.K.; Kumari, A.; Jha, A.K.; Kumar, V.; Hait, J.; Pandey, B.D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag. 2013, 33, 1890–1897. [Google Scholar] [CrossRef]
- Liu, T.C.; Chen, J.; Li, H.L.; Li, K. An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials. Sep. Purif. Technol. 2020, 245, 116869. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, Y.L.; Chen, X.; Huang, Y.G.; Cui, H.Y.; Wang, M.; Wang, J. Synthesis of LiNi0.6Co0.2Mn0.2O2 from mixed cathode materials of spent lithium-ion batteries. J. Power Sources 2020, 449, 227567. [Google Scholar] [CrossRef]
- Chen, L.; Tang, X.; Zhang, Y.; Li, L.; Zeng, Z.; Zhang, Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 2011, 108, 80–86. [Google Scholar] [CrossRef]
- Zhao, J.J.; Zhang, B.L.; Xie, H.W.; Qu, J.K.; Qu, X.; Xing, P.F.; Yin, H.Y. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent. Environ. Res. 2020, 181, 108803. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chem. Eng. J. 2015, 281, 418–427. [Google Scholar] [CrossRef]
- Urbańska, W. Recovery of Co, Li, and Ni from spent Li-ion batteries by the inorganic and/or organic reducer assisted leaching method. Minerals 2020, 10, 555. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Deng, X.; Bohu, T.; Zea, L.; Khaleque, H.N.; Gumulya, Y.; Boxall, N.J.; Morris, C.; Cheng, K.Y. Prospective directions for biohydrometallurgy. Hydrometallurgy 2020, 195, 105376. [Google Scholar] [CrossRef]
- Boxall, N.J.; Cheng, K.Y.; Bruckard, W.; Kaksonen, A.H. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J. Hazard. Mater. 2018, 360, 504–511. [Google Scholar] [CrossRef]
- Calvert, G.; Kaksonen, A.H.; Cheng, K.Y.; Yken, J.V.; Chang, B.; Boxall, N.J. Recovery of metals from waste lithium ion battery leachates using biogenic hydrogen sulfide. Minerals 2019, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Y.; Yen, C.H.; Lin, J.L.; Xu, R.B. Recovery of high-purity metallic cobalt from lithium nickel manganese cobalt oxide (NMC)-type Li-ion battery. J. Mater. Cycles Waste Manag. 2019, 21, 300–307. [Google Scholar] [CrossRef]
- Valadares, A.; Valadares, C.F.; de Lemos, L.R.; Mageste, A.B.; Rodrigues, G.D. Separation of cobalt and nickel in leach solutions of spent nickel-metal hydride batteries using aqueous two-phase systems (ATPS). Hydrometallurgy 2018, 181, 180–188. [Google Scholar] [CrossRef]
- Chen, W.S.; Ho, H.J. Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods. Metal 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.S.; Kim, D.W.; Choi, H.L.; Ryu, S.S. Solvent extraction of Co, Ni and Mn from NCM sulfate leaching solution of Li(NCM)O2 secondary battery Scraps. Arch. Met. Mater. 2017, 62, 1011–1014. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Y.; Yen, C.H.; Hsu, J.K. Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction. Sep. Sci. Technol. 2019, 34, 1–8. [Google Scholar] [CrossRef]
- Onghena, B.; Valgaeren, S.; Vander Hoogerstraete, T.; Binnemans, K. Cobalt(II)/nickel(II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Adv. 2017, 57, 35992–35999. [Google Scholar] [CrossRef] [Green Version]
- Baba, Y.; Kubota, F.; Goto, M.; Cattrall, R.W.; Kolev, S.D. Separation of cobalt(II) from manganese(II) using a polymer inclusion membrane with N-[N,N-di(2-ethylhexyl)aminocarbonylmethyl]glycine (D2EHAG) as the extractant/carrier. J. Chem. Technol. Biot. 2016, 91, 1320–1326. [Google Scholar] [CrossRef]
- Swain, B.; Mishra, C.; Jeong, J.; Lee, J.C.; Hong, H.S.; Pandey, B.D. Separation of Co(II) and Li(I) with Cyanex 272 using hollow fiber supported liquid membrane: A comparison with flat sheet supported liquid membrane and dispersive solvent extraction process. Chem. Eng. J. 2015, 271, 61–70. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhang, C.C.; Zhang, F.S. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Manag. 2016, 51, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Zhang, C.C.; Zhang, F.S. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Manag. 2017, 67, 232–239. [Google Scholar] [CrossRef]
- Kislik, V. Competetive complexation/solvation theory of solvent extraction. II. solvent extraction of metals by acidic extractants. Sep. Sci. Technol. 2002, 37, 2623–2657. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction and Praciice, 2nd ed.; Marcel, D., Ed.; Inc.: New York, NY, USA, 2004; p. 1. [Google Scholar]
- Pagnanelli, F.; Moscardini, E.; Altimari, P.; Abo, A.T.; Toro, L. Cobalt products from real waste fractions of end of life lithium ion batteries. Waste Manag. 2016, 51, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Todd, D.B. Solvent Extraction. In Fermentation and Biochemical Engineering Handbook, 3rd ed.; Vogel, H.C., Todaro, C.M., Eds.; Elsevier: Waltham, MA, USA, 2014; p. 225. [Google Scholar]
- Li, D.; Li, H.; Danilov, D.L.; Gao, L.; Zhou, J.; Eichel, R.A.; Yanga, Y.; Notten, P.H.L. Temperature-dependent cycling performance and ageing mechanisms of C6/LiNi1/3Mn1/3Co1/3O2 batteries. J. Power Sources 2018, 396, 444–452. [Google Scholar] [CrossRef]
- Hu, J.P.; Sheng, H.; Deng, Q.; Ma, Q.; Liu, J.; Wu, X.W.; Liu, J.J.; Wu, Y.P. High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure. Energies 2020, 13, 1602. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Yang, Y.; Ma, J.T.; Zhang, K.H.; Song, J.; Wang, L.; Liu, B.; Zhang, J.; Lu, Z.M.; Tang, Y.P. Effects of purification on the properties and microstructures of natural flake and artificial graphite powders. Nucl. Eng. Des. 2020, 360, 110527. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Zhang, X.H.; Cao, H.B.; Xie, Y.B.; Ning, P.G.; An, H.J.; You, H.X.; Nawaz, F. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Sep. Purif. Technol. 2015, 150, 186–195. [Google Scholar] [CrossRef]
- Joo, S.H.; Shin, S.M.; Shin, D.; Oh, C.H.; Wang, J.P. Extractive separation studies of manganese from spent lithium battery leachate using mixture of PC88A and Versatic 10 acid in kerosene. Hydrometallurgy 2015, 156, 136–141. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Lee, J.C.; Jeong, J.; Kim, B.S.; Pandey, B.D. Selective recovery of cobalt, nickel and lithium from sulfate leachate of cathode scrap of Li-ion batteries using liquid-liquid extraction. Met. Mater. Int. 2014, 20, 357–365. [Google Scholar] [CrossRef]
- Ghebghoub, F.; Barkat, D. The effect of diluents on extraction of copper(II) with di(2-ethylhexyl)phosphoric acid. J. Coord. Chem. 2009, 62, 1449–1456. [Google Scholar] [CrossRef]
Organic Acid/Reducing Agent Used | Cathode Materials | Temperature (°C) | Leaching Time (min) | Co Leaching Percentage (%) | Li Leaching Percentage (%) | Reference |
---|---|---|---|---|---|---|
2-M DL-malic acid 6 vol% H2O2 | LiCoO2 LiMn2O4 | 95 | 60 | 90 | 90 | [15] |
2-M L-tartaric acid 4 vol% H2O2 | LiCoO2 LiNi0.5Co0.2Mn0.3O2 | 70 | 30 | 98.6 | 99.1 | [16] |
1-M iminodiacetic acid 0.02-M ascorbic acid | LiCoO2 | 80 | 120 | 99.0 | 90.0 | [17] |
1-M maleic acid 0.02-M ascorbic acid | LiCoO2 | 80 | 120 | 99.0 | 96.0 | [17] |
0.5-M glycine 0.02-M ascorbic acid | LiCoO2 | 80 | 120 | 91.0 | - | [18] |
0.4-M tartaric acid 0.02-M ascorbic acid | LiCoO2 | 80 | 60 | 93.0 | 95.0 | [19] |
2-M citric acid 0.6 g/g H2O2 (H2O2/LIBs) | LiCoO2 | 70 | 80 | 96.0 | 98.0 | [20] |
1-M oxalic acid | LiCoO2 | 95 | 150 | 97.0 | 98.0 | [21] |
1.5-M succinic acid 4 vol% H2O2 | LiCoO2 | 70 | 40 | 100.0 | 96.0 | [22] |
1-M oxalic acid 5 vol% H2O2 | LiCoO2 | 80 | 120 | 96.7 | - | [23] |
Inorganic Acid/Reducing Agent Used | Cathode Materials | Temperature (°C) | Leaching Time (min) | Co Leaching Percentage (%) | Li Leaching Percentage (%) | Reference |
---|---|---|---|---|---|---|
4-M HCl | NCA (LiNi0.8Co0.15Al0.05O2) | 90 | 1080 | 100 | 100 | [24] |
4-M HCl | NCA scrap | 80 | 60 | >99 | >96 | [25] |
3-M HCl 3.5 vol% H2O2 | Mobile phones batteries LiCoO2 | 80 | 60 | 89 | 89 | [26] |
2-M H2SO4 5 vol% H2O2 | Mobile phones batteries LiCoO2 | 75 | 60 | 70 | 99.1 | [27] |
2-M H2SO4 3 vol% H2O2 | Cathode materials LiNi0.5Co0.2Mn0.3O2 | 60 | 60 | >99 | >99 | [28] |
2.5-M H2SO4 3.3 vol% H2O2 | Mixture of LiCoO2, LiMn2O4, LiNiO2, LiNixCoyMnzO2 | 90 | 120 | >99 | >99 | [29] |
4-M H2SO4 10 vol% H2O2 | Mobile phones batteries mainly LiCoO2 | 85 | 120 | 95 | 96 | [30] |
6-M H2SO4 5 vol% C2H5OH | spent cell phones batteries LiCoO2 | 90 | 160 | >99 | >99 | [31] |
1-M H2SO4 0.075-M NaHSO3 | PCs/laptops batteries LiCoO2, Li2CoMn3O8, (Li0.85Ni0.05)(NiO2) | 95 | 240 | 91.6 | 96.7 | [32] |
1.5-M H2SO4 5 vol% H2O2/5 g C5H8O4 | Laptops batteries mainly LiCoO2 | 90 | 120 | 88 | 100 | [33] |
Technologies | Characteristic | Conclusion | Reference |
---|---|---|---|
Aqueous two-phase systems | Separation of cobalt and nickel in leach solutions | The best separation conditions were achieved using 2-N as extracting agent, pH 5.00, sodium sulfate, L64 copolymer, TP:BP ratio 1:1 and a 35- dilution factor of the liquor. Under these conditions, 99.19% cobalt and 10.81% nickel extraction were obtained. | [38] |
Solvent extraction | Recovery metals from LIBs NMC cathode materials | The optimal parameters obtained in leaching were 2.0 mol/L of H2SO4, 30 mL/g, 70 °C and 90 min. The results showed that 0.1-M Na-Cyanex 272 should first be used as the extractant to separate cobalt and nickel under the optimal condition of pH 6. Then, cobalt and manganese should be separated by using 0.2-M Na-D2EHPA at equilibrium pH 2.95. Nickel and lithium can be separated by using DMG at pH 9. | [39,40] |
Microemulsion extraction | Selective recovery of cobalt from NMC type LIBs | With the assistance of probe type ultrasonication, manganese could be simultaneously separated by precipitation. Next, water-in-oil microemulsion extraction was applied for direct extraction of cobalt from the other metals. The cobalt extraction yield was 98% and purity was 96%. | [41] |
Ionic liquid | Cobalt(II)/nickel(II) separation from sulfate media | The separation of cobalt(II) and nickel(II) with [C101][Cl] and [C101][SCN] was investigated by extraction from sulfate media. Co(II) extraction was close to 100% while no extracted Ni(II) could be detected. Extraction did not follow the split-anion mechanism but occurred through a regular anion-exchange mechanism. | [42] |
Polymer inclusion membrane containing extractant | Separation of cobalt(II) from manganese(II) | Co(II) separation and preconcentration has been demonstrated by the complete transfer of Co(II) from a feed solution containing a similar concentration of Mn(II) into a sulfuric acid receiving solution with less than 5% Mn(II) being transported during the same period. | [43] |
Hollow-fiber supported liquid membrane | Separation of Co(II) and Li(I) with Cyanex 272 | Co(II) and Li(I) was prepared by dissolving calculated amount of CoSO4 and Li2SO4. A complete separation of both the metals with 99.99% purity can be achieved by HFSLM process using Cyanex 272 as a mobile carrier. | [44] |
Types of Solvent Extraction in This Study | Separation Factor βCo/Ni | Co Extraction Percentage (%) | Co Purity (%) |
---|---|---|---|
Conventional solvent extraction | 72 | 95 (six stages) | 94 (six stages) |
70 (one stage) | 70 (one stage) | ||
Complexation-assisted solvent extraction | 372 | 85 (one stage) | 98 (one stage) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-Y.; Yang, H.-C.; Xu, R.-B. High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction. Minerals 2020, 10, 662. https://doi.org/10.3390/min10080662
Wang W-Y, Yang H-C, Xu R-B. High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction. Minerals. 2020; 10(8):662. https://doi.org/10.3390/min10080662
Chicago/Turabian StyleWang, Wen-Yu, Hong-Chi Yang, and Ren-Bin Xu. 2020. "High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction" Minerals 10, no. 8: 662. https://doi.org/10.3390/min10080662
APA StyleWang, W.-Y., Yang, H.-C., & Xu, R.-B. (2020). High-Performance Recovery of Cobalt and Nickel from the Cathode Materials of NMC Type Li-Ion Battery by Complexation-Assisted Solvent Extraction. Minerals, 10(8), 662. https://doi.org/10.3390/min10080662