Effect of Additive Material on Controlling Chromium (Cr) Leaching from Coal Fly Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Leaching Test
2.3. Analysis and Instrumentation
2.4. Analysis by FactSage
3. Results
3.1. Analysis of Calcium Compound in Additive Material
3.2. Effect of Additive on Chromium Leaching Concentration from Fly Ash
3.3. Effect of pH on Chromium Leaching Concentration
3.4. Analysis by FactSage 7.2.
3.5. Comparison Result between Experiment and Simulation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Energy Agency, Fuel Report. Coal 2019 Analysis and Forecasts to 2024. 2019. Available online: https://www.iea.org/reports/coal-2019/ (accessed on 14 February 2020).
- Darakas, E.; Tsiridis, V.; Petala, M.; Kungolos, A. Hexavalent chromium release from lignite fly ash and related ecotoxic effects. J. Environ.Sci. Health A 2013, 48, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Kosson, D.S.; Sanchez, F.; Kariher, P.; Turner, L.H.; Delapp, R.; Seignette, P. Characterization of Coal Combustion Residues from Electric Utilities–Leaching and Characterization Data; U.S. EPA: Washington, DC, USA, 2009; EPA-600/R-09/151.
- Xue, Q.; Wei, M. Leachability and stability of hexavalent-chromium-contaminated soil stabilized by ferrous sulfate and calcium polysulfide. Appl. Sci. 2018, 8, 1431. [Google Scholar]
- Morales, C.M.; Serano, A.R.; Zeifert, B.; Ramirez, A.H.; Ramirez, A.C.; Labra, M.P. Stabilization of Chromium in Synthetic Slags with FeSO4 and FeS2. Trans. Indian Inst. Met. 2017, 70, 1399–1407. [Google Scholar]
- Hanum, F.F.; Desfitri, E.R.; Hayakawa, Y.; Kambara, S. Preliminary study on additives for controlling As, Se, B, and F leaching from coal fly as. Minerals 2019, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Desfitri, E.R.; Hanum, F.F.; Hayakawa, Y.; Kambara, S. Calcium performance in paper sludge ash as suppressing material. IOP Conf. Ser. Mater. Sci. 2019, 543, 012092. [Google Scholar] [CrossRef] [Green Version]
- Narukawa, T.; Riley, K.W.; French, D.H.; Chiba, K. Speciation of chromium in Australian fly ash. Talanta 2007, 73, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Vollpracht, A.; van der Sloot, H.A. pH dependent leaching characterization of major and trace elements from fly ash and metakaolin geopolymers. Cem. Concr. Res. 2019, 125, 105889. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.; Li, J.; Yang, P. Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. Int. J. Coal. Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, S.; Finkelman, R.B.; Graham, I.T.; French, D.; Hower, J.C.; Li, X. Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel 2019, 255, 115710. [Google Scholar] [CrossRef]
- Roy, W.; Berger, P.M. Geochemical controls of coal fly ash leachate pH. CCGP 2011, 3, 63–66. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yu, L.; Oakey, J. Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Process. Technol. 2006, 87, 209–215. [Google Scholar] [CrossRef]
- Leelarungroj, K.; Likitlersuang, S.; Chompoorat, T.; Janjaroen, D. Leaching mechanisms of heavy metals from fly ash stabilised soils. Waste Manag. Res. 2018, 36, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Sakakibara, K.; Wang, L.; Sato, K.; Inoue, C. Immobilization of B, F, Cr, and As in alkaline coal fly ash through an aging process with water. Environ. Monit. Assess. 2014, 186, 6757–6770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Reardon, E.J. Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ. Sci. Technol. 2003, 37, 2947–2952. [Google Scholar] [CrossRef] [PubMed]
- Mahedi, M.; Cetin, B.; Dayioglu, A.Y. Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils. J. Environ. Manag. 2020, 253, 109720. [Google Scholar] [CrossRef] [PubMed]
- Hartuti, S.; Kambara, S.; Takeyama, A.; Hanum, F.F. Leaching characteristic of arsenic in coal fly ash. JMSE-B, 2017, 7, 19–26. JMSE-B 2017, 7, 19–26. [Google Scholar]
- Neupane, G.; Donahoe, R.J. Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 2013, 104, 758–770. [Google Scholar] [CrossRef]
- Roy, B.; Choo, L.W.; Battacharya, S. Prediction of distribution of trace elements under Oxy-fuel combustion condition using Victorian brown coals. Fuel 2013, 114, 135–142. [Google Scholar] [CrossRef]
Fly Ash | A | B | C | D | E | F | G | H | I | J | K | L | M | N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Power Station | Unit 2 | Unit 2 | Unit 2 | Unit 2 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | Unit 1 | |
Chemical Composition (%) | SiO2 | 52.61 | 51.42 | 64.34 | 74.78 | 55.30 | 66.99 | 66.21 | 59.55 | 59.21 | 65.07 | 56.82 | 57.32 | 64.84 | 63.08 |
Al2O3 | 31.35 | 22.39 | 22.79 | 16.68 | 30.84 | 26.40 | 26.65 | 26.09 | 26.32 | 21.83 | 21.06 | 20.68 | 23.28 | 22.73 | |
TiO2 | 2.08 | 2.16 | 2.27 | 1.14 | 1.94 | 2.01 | 1.77 | 1.83 | 1.77 | 1.11 | 1.06 | 0.96 | 1.12 | 1.24 | |
Fe2O3 | 7.06 | 7.01 | 3.71 | 3.93 | 5.75 | 2.15 | 2.57 | 6.80 | 6.79 | 7.17 | 7.23 | 7.17 | 5.81 | 5.65 | |
CaO | 3.26 | 10.80 | 2.71 | 0.45 | 2.28 | 0.66 | 0.81 | 1.94 | 2.07 | 1.43 | 8.86 | 8.79 | 1.39 | 2.67 | |
MgO | 0.58 | 1.05 | 0.85 | 0.22 | 0.98 | 0.51 | 0.54 | 0.84 | 0.91 | 0.52 | 0.96 | 1.02 | 0.82 | 1.12 | |
Na2O | 0.38 | 1.23 | 1.20 | 0.38 | 1.14 | 0.27 | 0.29 | 0.66 | 0.74 | 0.44 | 0.75 | 0.80 | 0.52 | 1.25 | |
K2O | 0.96 | 1.19 | 0.80 | 1.43 | 1.20 | 0.58 | 0.54 | 1.49 | 1.44 | 1.76 | 1.97 | 1.97 | 1.67 | 1.44 | |
P2O5 | 0.61 | 0.22 | 0.07 | 0.10 | 0.19 | 0.04 | 0.06 | 0.19 | 0.18 | 0.16 | 0.28 | 0.27 | 0.13 | 0.20 | |
MnO | 0.09 | 0.18 | 0.06 | 0.04 | - | 0.12 | 0.11 | 0.09 | 0.10 | - | - | - | 0.00 | 0.07 | |
V2O5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.01 | 0.02 | 0.03 | 0.03 | 0.15 | 0.17 | 0.17 | 0.08 | 0.04 | |
SO3 | 0.27 | 1.22 | 0.28 | 0.28 | 0.28 | 0.26 | 0.44 | 0.53 | 0.50 | 0.35 | 0.84 | 0.87 | 0.35 | 0.53 | |
Cr Leaching Concentration (μg/L) | 82.94 | 9.48 | 32.53 | 17.74 | 9.58 | 24.46 | 7.10 | 46.66 | 72.84 | 43.93 | 0.00 | 0.00 | 0.00 | 38.97 |
Chemical Composition (%) | Additive Material | ||
---|---|---|---|
PS Ash 8 | BF Cement | Ca(OH)2 | |
SiO2 | 28.76 | 31.03 | 0.09 |
Al2O3 | 15.41 | 13.32 | 0.07 |
TiO2 | 0.35 | 0.19 | 0.07 |
Fe2O3 | 0.91 | 0.44 | - |
CaO | 51.22 | 48.35 | 99.23 |
MgO | 2.76 | 3.77 | 0.36 |
Na2O | 0.02 | 0.08 | 0.08 |
K2O | 0.15 | 0.36 | 0.01 |
P2O5 | 0.10 | 0.00 | 0.05 |
MnO | 0.04 | 0.05 | - |
V2O5 | 0.02 | 0.02 | 0.03 |
SO3 | 0.27 | 2.39 | 0.01 |
Coal Fly Ash | Additive | |
---|---|---|
A, B, C, D, E, F, G, H, I, J, K L, M, and N | Single additive | (1) 3% of Ca(OH)2 |
(2) 10% of PS ash 8 | ||
(3) 10% of BF cement | ||
Two-mixed additive | (4) 10% PS ash 8 + 10% BF cement | |
Three-mixed additive | (5) 3% Ca(OH)2 + 10% PS ash 8 + 10% BF cement |
No | Interaction | Species formed |
---|---|---|
1 | Cr + O2 | CrO2(g), CrO3(g) and CrO2(s) |
2 | Cr + O2 + SiO2 | CrO2(g), CrO3(g) and CrO2(s) |
3 | Cr + O2 + Al2O3 | CrO2(g), CrO3(g) and CrO2(s) |
4 | Cr + O2 + TiO2 | CrO2(g), CrO3(g) and CrO2(s) |
5 | Cr + O2 + Fe2O3 | CrO2(g), CrO3(g) and CrO2(s) |
6 | Cr + O2 + CaO | CrO2(g), CrO3(g) and CaCr2O4(s) |
7 | Cr + O2 + MgO | CrO2(g), CrO3(g) and CrO2(s) |
8 | Cr + O2 + Na2O | CrO2(g), CrO3(g) Na2CrO4(liq) and Na2CrO4(s) |
9 | Cr + O2 + K2O | CrO2(g), CrO3(g) K2CrO4(liq) and K2CrO4(s) |
10 | Cr + O2 + P2O5 | CrO2(g), CrO3(g) and CrO2(s) |
11 | Cr + O2 + SO3 | CrO2(g), CrO3(g) and Cr2(SO4)3(s) |
12 | Cr + O2 + K2O + SO3 | CrO3(g) K2CrO4(liq) and K2CrO4(s) |
13 | Cr + O2 + K2O + SO3 + SiO2 | CrO3(g) K2CrO4(liq) and K2CrO4(s) |
14 | Cr + O2 + K2O + SO3 + SiO2 + CaO | CrO3(g) K2CrO4(liq) and K2CrO4(s) |
15 | Cr + O2 + K2O + SO3 + SiO2 + CaO + Al2O3 | CrO2(g), CrO3(g) and CrO2(s) |
16 | Cr + O2 + K2O + SO3 + SiO2 + CaO + Al2O3 + Fe2O3 +Na2O + MgO + TiO2 | CrO2(g), CrO3(g) and CrO2(s) |
No | Interaction | Species formed | |
---|---|---|---|
−5 °C | 25 °C | ||
1 | CrO2 + H2O | Cr3+(aq), CrO42−(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), CrO42−(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
2 | CrO2 + H2O + SiO2 | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
3 | CrO2 + H2O + Al2O3 | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
4 | CrO2 + H2O + TiO2 | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
5 | CrO2 + H2O + Fe2O3 | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
6 | CrO2 + H2O + CaO | Cr3+(aq), CrO42−(aq), and Cr2O3(s) | Cr3+(aq), CrO42−(aq), and Cr2O3(s) |
7 | CrO2 + H2O + MgO | Cr3+(aq), CrO42−(aq), and Cr2O3(s) | Cr3+(aq), CrO42−(aq), and Cr2O3(s) |
8 | CrO2 + H2O + Na2O | Cr3+(aq), CrO42−(aq), and Cr2O3(s) | Cr3+(aq), CrO42−(aq), and Cr2O3(s) |
9 | CrO2 + H2O + K2O | Cr3+(aq), CrO42−(aq), K2CrO4(s), and Cr2O3(s) | Cr3+(aq), CrO42−(aq), and Cr2O3(s) |
10 | CrO2 + H2O + P2O5 | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) | Cr3+(aq), Cr2O72−(aq), HCrO4−(aq), Cr(OH)2+ and Cr2O3(s) |
11 | CrO2 + H2O + SO3 | Cr3+(aq) and HCrO4−(aq) | Cr3+(aq) and HCrO4−(aq) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desfitri, E.R.; Sutopo, U.M.; Hayakawa, Y.; Kambara, S. Effect of Additive Material on Controlling Chromium (Cr) Leaching from Coal Fly Ash. Minerals 2020, 10, 563. https://doi.org/10.3390/min10060563
Desfitri ER, Sutopo UM, Hayakawa Y, Kambara S. Effect of Additive Material on Controlling Chromium (Cr) Leaching from Coal Fly Ash. Minerals. 2020; 10(6):563. https://doi.org/10.3390/min10060563
Chicago/Turabian StyleDesfitri, Erda Rahmilaila, Ulung Muhammad Sutopo, Yukio Hayakawa, and Shinji Kambara. 2020. "Effect of Additive Material on Controlling Chromium (Cr) Leaching from Coal Fly Ash" Minerals 10, no. 6: 563. https://doi.org/10.3390/min10060563
APA StyleDesfitri, E. R., Sutopo, U. M., Hayakawa, Y., & Kambara, S. (2020). Effect of Additive Material on Controlling Chromium (Cr) Leaching from Coal Fly Ash. Minerals, 10(6), 563. https://doi.org/10.3390/min10060563