Richardsite, Zn2CuGaS4, A New Gallium-Essential Member of the Stannite Group from the Gem Mines near Merelani, Tanzania
Abstract
1. Introduction
2. Occurrence
3. Analytical Methods
4. Appearance and Physical Properties
5. Optical Properties
6. Raman Spectroscopy
7. Chemical Composition and X-ray Crystallography
8. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilson, W.E.; Saul, J.M.; Pardieu, V.; Hughes, R.W. The Merelani tanzanite mines, Lelatema Mountains, Arusha Region, Tanzania. Mineral. Rec. 2009, 40, 347–408. [Google Scholar]
- Jaszczak, J.A.; Trinchillo, D. Miracle at Merelani: A remarkable occurrence of graphite, diopside, and associated minerals from the Karo mine, Block D, Merelani Hills, Arusha region, Tanzania. Rocks Miner. 2013, 88, 154–165. [Google Scholar] [CrossRef]
- Long, J.M.; Rakovan, J.; Jaszczak, J.A.; Sommer, A.J.; Anczkiewicz, R. Flourapatite from a remarkable occurrence of graphite and associated minerals. Rocks Miner. 2013, 88, 178–183. [Google Scholar] [CrossRef]
- Giuliani, G. (Ed.) Les Gemmes du Gondwana; Les Cahiers du Règne Minéral No. 2; Editions du Piat: Saint-Julien-du-Pinet, France, 2013; 146p. [Google Scholar]
- Weiss, S.; Jaszczak, J.A.; Harrison, S.; Hintze, J.; Radl, W. Merelani: Tansanit und seltene Sammlermineralien. Lapis 2015, 40, 34–63. [Google Scholar]
- Harrison, S.; Jaszczak, J.A.; Keim, M.; Rumsey, M.; Wise, M.A. Spectacular sulfides from the Merelani tanzanite deposit, Manyara Region, Tanzania. Mineral. Rec. 2014, 45, 553–570. [Google Scholar]
- Jaszczak, J.A.; Rumsey, M.S.; Bindi, L.; Hackney, S.A.; Wise, M.A.; Stanley, C.J.; Spratt, J. Merelaniite, Mo4Pb4VSbS15, a new molybdenum-essential member of the cylindrite group, from the Merelani tanzanite deposit, Lelatema Mountains, Manyara region, Tanzania. Minerals 2016, 6, 115. [Google Scholar] [CrossRef]
- Pring, A.; Wade, B.; McFadden, A.; Lenehan, C.E.; Cook, N.J. Coupled substitutions of minor and trace elements in co-existing sphalerite and wurtzite. Minerals 2020, 10, 147. [Google Scholar] [CrossRef]
- Richards, R.P.; Shewfelt, W.R.; Carlson, E.H.; Kampf, A.R.; Nash, B.P. Mineralogy of the Huron River Shale Fire, Huron County, Ohio. Rocks Miner. 2017, 92, 244–263. [Google Scholar] [CrossRef]
- Weiss, S. Edelsteinbergbau in Merelani, Tansania. Lapis 2015, 40, 12–33. [Google Scholar]
- Olivier, B. The Geology and Petrology of the Merelani Tanzanite Deposit, Tanzania. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2006. Available online: https://scholar.sun.ac.za/bitstream/handle/10019.1/1093/olivier-b-2008.pdf (accessed on 9 April 2020).
- Harris, C.; Hlongwane, W.; Gule, N.; Scheepers, R. Origin of tanzanite and associated gemstone mineralization at Merelani, Tanzania. S. Afr. J. Geol. 2014, 117, 15–30. [Google Scholar] [CrossRef]
- Feneyrol, J.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Martelat, J.E.; Monié, P.; Dubessy, J.; Rollion-Bard, C.; Le Goff, E.; Malisa, A.; et al. New aspects and perspectives on tsavorite deposits. Ore Geol. Rev. 2013, 53, 1–25. [Google Scholar] [CrossRef]
- Bruker. APEX3; Bruker AXS Inc.: Madison, WI, USA, 2016; Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html (accessed on 12 April 2020).
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Fontané, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Y.; Pérez-Rodríguez, A.; Morante, J.R. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloy. Compds. 2012, 539, 190–194. [Google Scholar] [CrossRef]
- Rincón, C.; Quintero, M.; Moreno, E.; Power, C.; Quintero, E.; Henao, J.A.; Macías, M.A. Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compounds. Superlatt. Microstruct. 2015, 88, 99–103. [Google Scholar] [CrossRef]
- Hall, S.R.; Szymanski, J.T.; Stewart, J.M. Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals. Can. Miner. 1978, 16, 131–137. [Google Scholar]
- Bonazzi, P.; Bindi, L.; Bernardini, G.P.; Menchetti, S. A model for the mechanism of incorporation of Cu, Fe, and Zn in the stannite–kësterite series, Cu2FeSnS4–Cu2ZnSnS4. Can. Miner. 2003, 41, 639–647. [Google Scholar] [CrossRef]
- Makovikcy, E. Crystal structures of sulfides and other chalcogenides. Rev. Miner. Geochem. 2006, 61, 7–125. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Wilson, A.J.C. International Tables for Crystallography: Mathematical, Physical, and Chemical Tables; International Union of Crystallography: Chester, UK, 1992; Volume 3. [Google Scholar]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Cryst. 1991, 47, 192–197. [Google Scholar] [CrossRef]
- Nickel, E.H. Discussion Paper on Mineral Groups. Available online: https://www.ima-mineralogy.org/docs/Nickel.pdf (accessed on 10 May 2020).
- Vaughan, D.J.; Corkhill, C.L. Mineralogy of Sulfides. Elements 2017, 13, 81–87. [Google Scholar] [CrossRef]
- Cantinolle, P.; Laforêt, C.; Maurel, C.; Picot, P.; Grangeon, J. Contribution to the mineralogy of indium: Discovery of two new indium sulfides and of two new occurrences of roquesite in France. Bull. Minéral. 1985, 108, 245–248. (In French) [Google Scholar] [CrossRef]
- Kieft, K.; Damman, A.H. Indium-bearing chalcopyrite and sphalerite from the Gåsborn area, West Bergslagen, central Sweden. Miner. Mag. 1990, 54, 109–112. [Google Scholar] [CrossRef][Green Version]
- Ohta, E. Occurrence and chemistry of indium-containing minerals from the Toyoha mine, Hokkaido, Japan. Min. Geol. 1989, 39, 355–372. [Google Scholar]
- Semenyak, B.I.; Nedashkovskii, A.P.; Nikulin, N.N. Indium minerals in the ores of the Pravourmiiskoe deposit (Russian Far East). Geol. Ore Depos. 1994, 36, 207–213. [Google Scholar]
- Fan, F.-J.; Wu, L.; Yu, S.-H. Energetic I-III-VI2 and I2-II-IV-VI4 nanocrystals: Synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 2014, 7, 190–208. [Google Scholar] [CrossRef]
- Ghosh, A.; Palchoudhury, S.; Thangavel, R.; Zhou, Z.; Naghibolashrafi, N.; Ramasamy, K.; Gupta, A. A new family of wurtzite-phase Cu2ZnAS4−x and CuZn2AS4 (A = Al, Ga, In) nanocrystals for solar energy conversion applications. Chem. Commun. 2016, 52, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, B.G. Thermoelectric properties of stannite-phase CuZn2AS4 (CZAS.; A = Al, Ga and In) nanocrystals for solar energy conversion applications. Philos. Mag. 2016, 96, 2280–2299. [Google Scholar] [CrossRef]
Physical Property | Observation |
---|---|
Color | Dark gray |
Streak | Black |
Luster | Metallic |
Fluorescence | Non-fluorescent |
Hardness (Mohs) | 3 |
Hardness (microindentation) | Not measured |
Cleavage | None observed |
Parting | None observed |
Tenacity | Brittle |
Fracture | Irregular |
Density | Could not be measured due to the small grain size |
Density (calculated) | 4.278 g·cm−3 using the ideal formula and X-ray single-crystal data |
Magnetic properties | Not measured |
Rmax | Rmin | λ (nm) |
---|---|---|
25.0 | 23.5 | 471.1 |
28.9 | 27.4 | 548.3 |
29.4 | 28.1 | 586.6 |
28.9 | 27.7 | 652.3 |
Constituent | Mean | Range | Standard Deviation (σ) |
---|---|---|---|
Mn | 0.10 | 0.07–0.14 | 0.03 |
Sn | 0.15 | 0.10–0.21 | 0.03 |
Fe | 0.41 | 0.31–0.55 | 0.04 |
Ga | 17.60 | 17.22–17.92 | 0.16 |
Ge | 0.08 | 0.05–0.12 | 0.04 |
Zn | 32.85 | 32.11–33.24 | 0.22 |
Cu | 16.08 | 15.68–16.48 | 0.15 |
S | 32.55 | 32.08–33.11 | 0.31 |
Total | 99.81 | 98.03–101.11 |
Miller Indices | Observed | Calculated 1 | ||||
---|---|---|---|---|---|---|
h | k | l | dobs | Iest | dcalc | Icalc |
1 | 1 | 2 | 3.084 | 100 | 3.0827 | 100 |
2 | 0 | 0 | - | - | 2.6813 | 8 |
0 | 0 | 4 | - | - | 2.6468 | 4 |
2 | 2 | 0 | 1.898 | 20 | 1.8960 | 19 |
2 | 0 | 4 | 1.882 | 40 | 1.8837 | 36 |
3 | 1 | 2 | 1.614 | 20 | 1.6150 | 23 |
1 | 1 | 6 | 1.600 | 10 | 1.5998 | 11 |
4 | 0 | 0 | - | - | 1.3406 | 5 |
3 | 3 | 2 | - | - | 1.2294 | 4 |
3 | 1 | 6 | - | - | 1.2227 | 7 |
4 | 2 | 4 | 1.092 | 10 | 1.0923 | 9 |
2 | 2 | 8 | - | - | 1.0852 | 4 |
5 | 1 | 2 | - | - | 1.0315 | 4 |
5 | 3 | 2 | - | - | 0.9061 | 3 |
5 | 1 | 6 | - | - | 0.9034 | 3 |
3 | 1 | 10 | - | - | 0.8981 | 3 |
Atom | Wyckoff | x/a | y/b | z/c | Uiso |
---|---|---|---|---|---|
Zn | 4d | 0 | ½ | ¼ | 0.01187(13) |
Ga | 2a | 0 | 0 | 0 | 0.00993(13) |
Cu | 2b | 0 | 0 | ½ | 0.02108(12) |
S | 8i | 0.75389(6) | 0.75389(6) | 0.87356(4) | 0.01009(11) |
Bond Type | Bond Distance (Å) |
---|---|
Cu–S | 2.3451(5) (×4) |
Zn–S | 2.3037(3) (×4) |
Ga–S | 2.2969(5) (×4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bindi, L.; Jaszczak, J.A. Richardsite, Zn2CuGaS4, A New Gallium-Essential Member of the Stannite Group from the Gem Mines near Merelani, Tanzania. Minerals 2020, 10, 467. https://doi.org/10.3390/min10050467
Bindi L, Jaszczak JA. Richardsite, Zn2CuGaS4, A New Gallium-Essential Member of the Stannite Group from the Gem Mines near Merelani, Tanzania. Minerals. 2020; 10(5):467. https://doi.org/10.3390/min10050467
Chicago/Turabian StyleBindi, Luca, and John A. Jaszczak. 2020. "Richardsite, Zn2CuGaS4, A New Gallium-Essential Member of the Stannite Group from the Gem Mines near Merelani, Tanzania" Minerals 10, no. 5: 467. https://doi.org/10.3390/min10050467
APA StyleBindi, L., & Jaszczak, J. A. (2020). Richardsite, Zn2CuGaS4, A New Gallium-Essential Member of the Stannite Group from the Gem Mines near Merelani, Tanzania. Minerals, 10(5), 467. https://doi.org/10.3390/min10050467