The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Mapping
3.2. Rock and Fluid Sampling
3.3. Geochemical and Mineralogical Analyses
3.4. Isotope Geochemistry
3.5. Geochronology
3.6. Fluid Chemistry and Dissolved Gasses
4. Results
4.1. Vent Field Architecture
4.2. Petrography
4.2.1. Basaltoid Scoria
4.2.2. Consolidated Volcaniclasts with Vitriclastic Textures
4.2.3. Mineralized Samples
4.2.4. Silica Crusts
4.2.5. Hydrothermally Altered Material
4.3. Geochemistry of Mineralized and Hydrothermally Altered Samples
4.4. Isotope Geochemistry
4.5. Geochronology
4.6. Fluid and Gas Chemistry
5. Discussion
5.1. Explosive Volcanism, Mafic-Volcaniclastic Sucessions, and Hydrothermal Activity
5.2. Fluid Chemistry and Phase Separation Processes in a Shallow System
5.3. Silica and Secondary Alteration Minerals
5.4. Magmatic Degassing at Seven Sisters
5.5. Tracing the Fluid Source at Seven Sisters
[Sr]HF [(87Sr/86Sr)M − (87Sr/86Sr)HF]
5.6. Age of Mineralization
5.7. A Shallow, Mafic Volcaniclastic Hosted VMS Analogue?
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Von Damm, K.L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu. Rev. Earth Planet. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Magmatic fluids as a source of metals in seafloor hydrothermal systems. Geophys. Monogr. 2006, 166, 1–23. [Google Scholar]
- Hannington, M. Volcanogenic Massive Sulfide Deposits. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 463–488. [Google Scholar]
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. In Economic Geology 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 111–141. [Google Scholar]
- Stanton, R. Ore Elements in Arc Lavas; Oxford Science Publications: Oxford, UK, 1994; Volume 29. [Google Scholar]
- Scott, S.D. Submarine Hydrothermal Systems and Deposits. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 797–876. [Google Scholar]
- Reeves, E.P.; Seewald, J.S.; Saccocia, P.; Bach, W.; Craddock, P.R.; Shanks, W.C.; Sylva, S.P.; Walsh, E.; Pichler, T.; Rosner, M. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta 2011, 75, 1088–1123. [Google Scholar] [CrossRef] [Green Version]
- Leybourne, M.I.; Schwarz-Schampera, U.; de Ronde, C.E.J.; Baker, E.T.; Faure, K.; Walker, S.L.; Butterfield, D.A.; Resing, J.A.; Lupton, J.E.; Hannington, M.D.; et al. Submarine Magmatic-Hydrothermal Systems at the Monowai Volcanic Center, Kermadec Arc. Econ. Geol. 2012, 107, 1669–1694. [Google Scholar] [CrossRef] [Green Version]
- Bottinga, Y.; Javoy, M. MORB degassing: Bubble growth and ascent. Chem. Geol. 1990, 81, 255–270. [Google Scholar] [CrossRef]
- Dixon, J.; Stolper, E. An experimental study of water and carbon dioxide solubilities in Mid-Ocean Ridge basaltic liquids. Part II: Applications to degassing. J. Petrol. 1995, 36, 1633–1646. [Google Scholar]
- Rubin, K. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observations and predictions. Geochim. Cosmochim. Acta 1997, 61, 3525–3542. [Google Scholar] [CrossRef]
- Lilley, M.; Butterfield, D.; Lupton, J.; Olson, E. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 2003, 422, 878–881. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the Eastern Manus Back-Arc Basin, Western Pacific. Econ. Geol. 2002, 97, 1079–1100. [Google Scholar] [CrossRef]
- Yang, K.; Scott, S.D. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 1996, 383, 420–423. [Google Scholar] [CrossRef]
- Marques, A.F.A.; Scott, S.D.; Guillong, M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system. Earth Planet. Sci. Lett. 2011, 310, 145–160. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Hannington, M.; Stoffers, P.; Wright, I.; Ditchburn, R.; Reyes, A.; Baker, E.; Massoth, G.; Lupton, J. Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand. Econ. Geol. 2005, 100, 1097–1133. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Humphris, S.E.; Höfig, T.W.; Reyes, A. IODP expedition. Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano. Geology 2019, 47, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Berkenbosch, H.A.; de Ronde, C.E.J.; Ryan, C.G.; McNeill, A.W.; Howard, D.L.; Gemmel, J.B.; Danyushevsky, L.V. Trace Element Mapping of Copper- and Zinc-Rich Black Smoker Chimneys from Brothers Volcano, Kermadec Arc, Using Synchrotron Radiation XFM and LA-ICP-MS. Econ. Geol. 2019, 114, 67–92. [Google Scholar] [CrossRef]
- Stucker, V.K.; Walker, S.L.; de Ronde, C.E.J.; Tontini, F.C.; Tsuchida, S. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry. Geochem. Geophys. Geosyst. 2017, 18, 3646–3661. [Google Scholar] [CrossRef]
- Ronde, C.E.J.; Massoth, G.J.; Butterfield, D.A.; Christenson, B.W.; Ishibashi, J.; Ditchburn, R.G.; Hannington, M.D.; Brathwaite, R.L.; Lupton, J.E.; Kamenetsky, V.S.; et al. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Depos. 2011, 46, 541–584. [Google Scholar] [CrossRef]
- Petersen, S.; Monecke, T.; Westhues, A.; Hannington, M.D.; Gemmell, J.B.; Sharpe, R.; Petters, M.; H., S.; Lackschewitz, K.S.; Augustin, N.; et al. Drilling shallow-water massive sulfides at the Palinuro Volcanic Complex, Aeolian Island Arc, Italy. Econ. Geol. 2014, 109, 2129–2157. [Google Scholar] [CrossRef]
- Kilias, S.P.; Nomikou, P.; Papanikolaou, D.; Polymenakou, P.N.; Godelitsas, A.; Argyraki, A.; Carey, S.; Gamaletsos, P.; Mertzimekis, T.J.; Stathopoulou, E.; et al. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci. Rep. 2013, 3, 2421. [Google Scholar] [CrossRef]
- Glasby, G.; Lizasa, K.; Yuasa, M.; Usui, A. Submarine Hydrothermal Mineralization on the Izu-Bonin Arc, South of Japan: An Overview. Mar. Georesources Geotechnol. 2000, 18, 141–176. [Google Scholar] [CrossRef]
- Hein, J.R.; Ronde, C.E.J.; Koski, R.; Ditchburn, R.G.; Mizzel, K.; Tamura, Y.; Stern, R.; Conrad, T.A.; Ishizuka, O.; Leybourne, M. Layered Hydrothermal Barite-Sulfide Mound Field, East Diamante Caldera, Mariana Volcanic Arc. Econ. Geol. 2014, 109, 2179–2206. [Google Scholar] [CrossRef]
- Baker, E.T.; Embley, R.W.; Walker, S.L.; Resing, J.A.; Lupton, J.E.; Nakamura, K.-I.; de Ronde, C.E.J.; Massoth, G.J. Hydrothermal activity and volcano distribution along the Mariana arc. J. Geophys. Res. Solid Earth 2008, 113, B08S09. [Google Scholar] [CrossRef] [Green Version]
- Hanert, H. Bacterial and chemical iron oxide deposition in a shallow bay on Palaea Kameni, Santorini, Greece: Microscopy, electron probe microanalysis, and photometry of in situ experiments. Geomicrobiol. J. 2002, 19, 317–342. [Google Scholar] [CrossRef]
- Johnson, G.L.; Heezen, B.C. Morphology and evolution of the Norwegian-Greenland Sea. Deep Sea Res. 1967, 14, 755–771. [Google Scholar] [CrossRef]
- Pedersen, R.B.; Thorseth, I.H.; Nygård, T.E.; Lilley, M.D.; Kelley, D.S. Hydrothermal Activity at the Arctic Mid-Ocean Ridges. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P., Devey, C.W., Dyment, J., Murton, B., Eds.; American Geophysical Union: Washington, DC, USA, 2010; pp. 67–89. [Google Scholar]
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, R.B.; Rapp, H.T.; Thorseth, I.H.; Lilley, M.D.; Barriga, F.J.A.S.; Baumberger, T.; Flesland, K.; Fonseca, R.; Früh-Green, G.L.; Jorgensen, S.L. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Comms. 2010, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kodaira, S.; Mjelde, R.; Gunnarsson, K.; Shiobara, H.; Shimamura, H. Crustal structure of the Kolbeinsey Ridge, North Atlantic, obtained by use of ocean bottom seismographs. J. Geophys. Res. Solid Earth 1997, 102, 3131–3151. [Google Scholar] [CrossRef]
- Appelgate, B. Modes of axial reorganization on a slow-spreading ridge: The structural evolution of Kolbeinsey Ridge since 10 Ma. Geology 1997, 25, 431–434. [Google Scholar] [CrossRef]
- Tan, P.; Breivik, A.J.; Trønnes, R.G.; Mjelde, R.; Azuma, R.; Eide, S. Crustal structure and origin of the Eggvin Bank west of Jan Mayen, NE Atlantic. J. Geophys. Res. Solid Earth 2017, 122, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Yeo, I.A.; Devey, C.W.; LeBas, T.P.; Augustin, N.; Steinführer, A. Segment-scale volcanic episodicity: Evidence from the North Kolbeinsey Ridge, Atlantic. Earth Planet. Sci. Lett. 2016, 439, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.F.A.; Pedersen, R.B.; Roerdink, D.; Baumberger, T.; Thorseth, I.H.; Hamelin, C.O.S.; Okland, I.; Stensland, A. Shallow water venting on the Arctic Mid-Ocean ridge: The Seven Sisters hydrothermal system. In Mineral Resources in a Sustainable World. In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 August 2015; Volume 3, pp. 1253–1256. [Google Scholar]
- Fossum, T.G.; Saebo, T.O.; Langli, B.; Callow, H.; Hansen, R.E. HISAS 1030: High resolution synthetic aperture sonar with bathymetric capabilities. Shallow Surv. Portsm. NH USA 2008, 10, 11. [Google Scholar]
- Hansen, R.E.; Saebo, T.O.; Callow, H.J.; Hagen, P.E.; Hammerstad, E. Synthetic aperture sonar processing for the HUGIN AUV. In Europe Oceans; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 1090–1094. [Google Scholar]
- Whitehouse, M.J. Multiple Sulfur Isotope Determination by SIMS: Evaluation of Reference Sulfides for Δ33S with Observations and a Case Study on the Determination of Δ36S. Geostand. Geoanalytical Res. 2013, 37, 19–33. [Google Scholar] [CrossRef]
- Cabral, R.A.; Jackson, M.G.; Rose-Koga, E.F.; Koga, K.T.; Whitehouse, M.J.; Antonelli, M.A.; Farquhar, J.; Day, J.M.D.; Hauri, E.H. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 2013, 496, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, D.L.; Mason, P.R.D.; Whitehouse, M.J.; Brouwer, F.M. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 2016, 280, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Ditchburn, R.G.; Graham, I.J.; Barry, B.J. Uranium series disequilibrium dating of black smoker chimneys. New Zealand Sci. Rev. 2004, 61, 54–56. [Google Scholar]
- Ditchburn, R.G.; de Ronde, C.E.J.; Barry, B.J. Radiometric Dating of Volcanogenic Massive Sulfides and Associated Iron Oxide Crusts with an Emphasis on Ra-226/Ba and Ra-228/Ra-226 in Volcanic and Hydrothermal Processes at Intraoceanic Arcs. Econ. Geol. 2012, 107, 1635–1648. [Google Scholar] [CrossRef]
- Jamieson, J.W.; Hannington, M.D.; Tivey, M.K.; Hansteen, T.; Williamson, N.M.B.; Stewart, M.; Fietzke, J.; Butterfield, D.; Frische, M.; Allen, L.; et al. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2016, 173, 64–85. [Google Scholar] [CrossRef] [Green Version]
- Ditchburn, R.G.; de Ronde, C.E.J. Evidence for Remobilization of Barite Affecting Radiometric Dating Using 228Ra, 228Th, and 226Ra/Ba Values: Implications for the Evolution of Sea-Floor Volcanogenic Massive Sulfides. Econ. Geol. 2017, 112, 1231–1245. [Google Scholar] [CrossRef]
- Lupton, J.; Butterfield, D.; Lilley, M.; Evans, L.; Nakamura, K.-I.; Chadwick, W.; Resing, J.; Embley, R.; Olson, E.; Proskurowski, G.; et al. Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochem. Geophys. Geosyst. 2006, 7, 08007. [Google Scholar] [CrossRef] [Green Version]
- Mottl, M.J.; Holland, H.D. Chemical exchange during hydrothermal alteration of basalt by seawater—I. Experimental results for major and minor components of seawater. Geochim. Cosmochim. Acta 1978, 42, 1103–1115. [Google Scholar] [CrossRef]
- Baumberger, T.; Früh-Green, G.L.; Thorseth, I.H.; Lilley, M.D.; Hamelin, C.; Bernasconi, S.M.; Okland, I.E.; Pedersen, R.B. Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge. Geochim. Cosmochim. Acta 2016, 187, 156–178. [Google Scholar] [CrossRef]
- Elkins, L.J.; Hamelin, C.; Blichert-Toft, J. North Atlantic hotspot-ridge interaction near Jan Mayen Island. Geochem. Perspect. 2016, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Paytan, A.; Mearon, S.; Cobb, K.; Kastner, M. Origin of marine barite deposits: Sr and S isotope characterization. Geology 2002, 30, 747–750. [Google Scholar] [CrossRef]
- Binns, R.A.; Parr, J.M.; Gemmel, J.B.; Whitford, D.J.; Dean, J.A. Precious metals in barite-silica chimneys from Franklin Seamount, Woodlark Basin, Papua New Guinea. Mar. Geol. 1997, 142, 119–141. [Google Scholar] [CrossRef]
- Kuhn, T.; Herzig, P.M.; Hannington, M.D.; Garbe-Schönberg, D.; Stoffers, P. Origin of fluids and anhydrite precipitation in the sediment-hosted Grimsey hydrothermal field north of Iceland. Chem. Geol. 2003, 202, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Eickmann, B.; Thorseth, I.H.; Peters, M.; Strauss, H.; Bröcker, M.; Pedersen, R.B. Barite in hydrothermal environments as a recorder of subseafloor processes: A multiple-isotope study from the Loki’s Castle vent field. Geobiology 2014, 12, 308–321. [Google Scholar] [CrossRef]
- Ono, S.; Shanks, W.C., III; Rouxel, O.J.; Rumble, D. S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta 2007, 71, 1170–1182. [Google Scholar] [CrossRef]
- Seyfried, W.E.J.; Pester, N.J.; Ding, K.; Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36 degrees N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 2011, 75, 1574–1593. [Google Scholar] [CrossRef]
- Charlou, J.-L.; Donval, J.-P.; Douville, E.; Jean-Baptiste, P.; Radford-Knoery, J.; Fouquet, Y.; Dapoigny, A.; Stievenard, M. Compared geochemical signatures and the evolution of Menez Gwen (37°50“N) and Lucky Strike (37°17”N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem. Geol. 2000, 171, 49–75. [Google Scholar] [CrossRef]
- Von Damm, K.; Bray, A.; Buttermore, L.; Oosting, S. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 1998, 160, 521–536. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Stucker, V.K. Seafloor Hydrothermal Venting at Volcanic Arcs and Backarcs. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Elsevier, Ltd.: Amsterdam, The Netherlands, 2015; pp. 823–849. [Google Scholar]
- Von Damm, K.; Buttermore, L.; Oosting, S.; Bray, A.; Fornari, D.; Lilley, M.; Shanks, E., III. Direct Observation of the evolution of a seafloor “black smoker” from vapor to brine. Earth Planet. Sci. Lett. 1997, 149, 101–111. [Google Scholar] [CrossRef]
- German, C.R.; Von Damm, K.L. Hydrothermal Processes. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier, Ltd.: Amsterdam, The Netherlands, 2003; Volume 6, pp. 181–222. [Google Scholar]
- Beaulieu, S.E.; Baker, E.T.; German, C.R.; Maffei, A. An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosyst. 2013, 14, 4892–4905. [Google Scholar] [CrossRef] [Green Version]
- Monecke, T.; Petersen, S.; Hannington, M.D. Constraints on water depth of massive sulfide formation: Evidence from modern seafloor hydrothermal systems in Arc-related settings. Econ. Geol. 2014, 109, 2079–2101. [Google Scholar] [CrossRef]
- Yamanaka, T.; Maeto, K.; Akashi, H.; Ishibashi, J.-I.; Miyoshi, Y.; Okamura, K.; Noguchi, T.; Kuwahara, Y.; Toki, T.; Tsunogai, U.; et al. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan. J. Volcanol. Geotherm. Res. 2013, 258, 74–84. [Google Scholar] [CrossRef]
- Hannington, M.D. Shallow Submarine Hydrothermal Systems and Associated Mineral Deposits (Preliminary Map); Geological Survey of Canada Open File Report 3421. 1999; Map 1:35,000,000. [Google Scholar]
- Cardigos, F.; Colaço, A.; Dando, P.; Ávila, S.; Sarradin, P.-M.; Tempera, F.; Conceição, P.; Pascoal, A.; Serrão, S. Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chem. Geol. 2005, 224, 153–168. [Google Scholar] [CrossRef]
- Ólafsson, J.; Honjo, S.; Thors, K.; Stefánsson, U.; Jones, R.R.; Ballard, R.D. Initial observations, bathymetry and photography of a geothermal site on the Kolbeinsey Ridge. In Oceanography 1988; Ayala-Castañares, A., Wooster, W.A.Y.-A., Eds.; UNAM Press: Windhoek, Namibia, 1988; p. 208. [Google Scholar]
- Marteinsson, V.T.; Kristjánsson, J.K.; Kristmannsdóttir, H.; Dahlkvist, M.; Sæmundsson, K.; Hannington, M.; Pétursdóttir, S.K.; Geptner, A.; Stoffers, P. Discovery and Description of Giant Submarine Smectite Cones on the Seafloor in Eyjafjordur, Northern Iceland, and a Novel Thermal Microbial Habitat. Appl. Environ. Microbiol. 2001, 67, 827–833. [Google Scholar] [CrossRef] [Green Version]
- McPhie, J.; Doyle, M.G.; Allen, R. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks; Centre for Ore Deposit and Exploration Studies (CODES), University of Tasmania: Hobart, Tasmania, 1993. [Google Scholar]
- De Ronde, C.E.J.; Walker, S.L.; Ditchburn, R.G.; Tontini, F.C.; Hannington, M.D.; Merle, S.G.; Timm, C.; Handler, M.R.; Wysoczanski, R.J.; Dekov, V.M.; et al. The Anatomy of a Buried Submarine Hydrothermal System, Clark Volcano, Kermadec Arc, New Zealand. Econ. Geol. 2014, 109, 2261–2292. [Google Scholar] [CrossRef] [Green Version]
- Gibson, H.L.; Morton, R.L.; Hudak, G. Submarine volcanic processes, deposits. In Volcanic-Associated Massive Sulfide Deposits—Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hannington, M.D., Eds.; Reviews in Economic Geology, Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 13–51. [Google Scholar]
- Hannington, M.D.; Poulsen, K.; Thompson, J.F.H.; Sillitoe, R.H. Volcanogenic gold in the massive sulfide environment Volcanic-associated massive sulfide deposits. Rev. Econ. Geol. 1999, 8, 325–356. [Google Scholar]
- De Ronde, C.E.; Faure, K.; Bray, C.J.; Chappell, D.A.; Wright, I.C. Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner. Depos. 2003, 38, 217–233. [Google Scholar] [CrossRef]
- Ishibashi, J.-I.; Nakaseama, M.; Seguchi, M.; Yamashita, T.; Doi, S.; Sakamoto, T.; Shimada, K.; Shimada, N.; Noguchi, T.; Oomori, T.; et al. Marine shallow-water hydrothermal activity and mineralization at the Wakamiko crater in Kagoshima bay, south Kyushu, Japan. J. Volcanol. Geotherm. Res. 2008, 173, 84–98. [Google Scholar] [CrossRef]
- Berndt, M.; Seyfried, W., Jr. Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim. Cosmochim. Acta 1990, 54, 2235–2245. [Google Scholar] [CrossRef]
- Von Damm, K.; Lilley, M.; Shanks, E., III; Brockington, M.; Bray, A.; O’Grady, K.; Olson, E.; Graham, A.; Proskurowski, G.; Party, S. Extraordinary phase separation and segregation in vent fluids from the Southern East Pacific Rise. Earth Planet. Sci. Lett. 2003, 206, 365–378. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Rosenbauer, R.J. The critical point and two-phase boundary of seawater, 200 °C–500 °C. Earth Planet. Sci. Lett. 1984, 68, 172–180. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Rosenbauer, R.J. Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport. Am. J. Sci. 1987, 287, 953–978. [Google Scholar] [CrossRef]
- Von Damm, K.; Humphris, S.; Lupton, J.; Mullineaux, L.; Zierenberg, R. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. Geophys. Monogr. 1995, 91, 222–247. [Google Scholar]
- Drummond, S.; Ohmoto, H. Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Ohmoto, H. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol. Rev. 1996, 10, 135–177. [Google Scholar] [CrossRef]
- Fouquet, Y.; Auclair, G.; Cambon, P.; Etoubleau, J. Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13 °N on the East Pacific Rise. Miner. Depos. 1988, 84, 145–178. [Google Scholar] [CrossRef]
- Hannington, M.; Herzig, P.; Scott, S.D.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulfides at the modern seafloor—A review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- German, C.R.; Seyfried, W.E. Hydrothermal Processes. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 8, pp. 191–233. [Google Scholar]
- Douville, E.; Charlou, J.-L.; Donval, J.-P.; Hureau, D.; Appriou, P. Le comportement de l“arsenic (As) et de l”antimoine (Sb) dans les fluides provenant de différents systèmes hydrothermaux océaniques. Comptes Rendus Académie Sci. Ser. IIA Earth Planet. Sci. 1999, 328, 97–104. [Google Scholar]
- Schroeder, R.J. Dickite and Kaolinite in Pennsylvanian Limestones of Southeastern Kansas. Clays Clay Miner. 1968, 16, 41–49. [Google Scholar] [CrossRef]
- Zotov, A.; Mukhamet-Galeev, A.; Schott, J. An experimental study of kaolinite and dickite relative stability at 150–300 degrees C and the thermodynamic properties of dickite. Am. Mineral. 1998, 83, 516–524. [Google Scholar] [CrossRef]
- Ehrenberg, S.N. Depth-Dependent Transformation of Kaolinite to Dickite in Sandstones of the Norwegian Continental Shelf. Clay Miner. 1993, 28, 325–352. [Google Scholar] [CrossRef]
- Premović, P.; Ciesielczuk, J.; Bzowska, G.; Đorđević, M. Geochemistry and electron spin resonance of hydrothermal dickite (Nowa Ruda, Lower Silesia, Poland): Vanadium and chromium. Geol. Carpathica 2012, 63, 241–252. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Hedenquist, J.W.; Inan, E.E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. Spec. Publ. Soc. Econ. Geol. 2003, 10, 285–313. [Google Scholar]
- Yeats, C.J.; Hollis, S.P.; Halfpenny, A.; Corona, J.-C.; LaFlamme, C.; Southam, G.; Fiorentini, M.; Herrington, R.J.; Spratt, J. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at the Iheya North, Okinawa Trough. Japan. Ore Geol. Rev. 2017, 84, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Knott, R.; Fouquet, Y.; Honnorez, J.; Petersen, S.; Bohn, M. Petrology of hydrothermal mineralization: A vertical section through the TAG mound. In Proceedings of the Ocean Drilling Program, Scientific Results. 1998; Volume 158, 5–26. [Google Scholar]
- Hopkinson, L.; Roberts, S.; Herrington, R.; Wilkinson, J. The nature of crystalline silica from the TAG submarine hydrothermal mound, 26°N Mid Atlantic Ridge. Contrib. Mineral. Petrol. 1999, 137, 342–350. [Google Scholar] [CrossRef]
- Binns, R.A. Bikpela: A Large Siliceous Chimney from the PACMANUS Hydrothermal Field, Manus Basin, Papua New Guinea. Econ. Geol. 2014, 109, 2243–2259. [Google Scholar] [CrossRef]
- Urabe, T.; Kusakabe, M. Barite silica chimneys from the Sumisu Rift, Izu-Bonin Arc: Possible analogue to hematitic chert associated with Kuroko deposits. Earth Planet. Sci. Lett. 1990, 100, 283–290. [Google Scholar] [CrossRef]
- Koski, R.; Jonasson, I.R.; Kadko, D.C.; Smith, V.K.; Wong, F.L. Compositions, growth mechanisms, and temporal relations of hydrothermal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 1994, 99, 4813–4832. [Google Scholar] [CrossRef]
- Hannington, M.D.; Scott, S.D. Mineralogy and geochemistry of a hydrothermal silica-sulfide-sulfate spire in the caldera of Axial Seamount, Juan De Fuca Ridge. Can. Mineral. 1988, 26, 603–625. [Google Scholar]
- Rodgers, K.A.; Browne, P.R.L.; Buddle, T.F.; Cook, K.L.; Greatrex, R.A.; Hampton, W.A.; Herdianita, N.R.; Holland, G.R.; Lynne, B.Y.; Martin, R.; et al. Silica phases in sinters and residues from geothermal fields of New Zealand. Earth Sci. Rev. 2004, 66, 1–61. [Google Scholar] [CrossRef]
- Tivey, M.K.; Delaney, J.R. Growth of large sulfide structures on the endeavour segment of the Juan de Fuca ridge. Earth Planet. Sci. Lett. 1986, 77, 303–317. [Google Scholar] [CrossRef]
- White, D.E.; Brannock, W.W.; Murata, K.J. Silica in hot-spring waters. Geochim. Cosmochim. Acta 1956, 10, 27–59. [Google Scholar] [CrossRef]
- Janecky, D.R.; Seyfried, W., Jr. Formation of massive sulfide deposits on oceanic ridges: Incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim. Cosmochim. Acta 1984, 48, 2723–2738. [Google Scholar] [CrossRef]
- Von Damm, K.L.; Bischoff, J.L.; Rosenbauer, R.J. Quartz solubility in hydrothermal seawater; an experimental study and equation describing quartz solubility for up to 0.5 M NaCl solutions. Am. J. Sci. 1991, 291, 977–1007. [Google Scholar] [CrossRef]
- Pester, N.J.; Rough, M.; Ding, K.; Seyfried, W.E., Jr. A new Fe/Mn geothermometer for hydrothermal systems: Implications for high-salinity fluids at 13°N on the East Pacific Rise. Geochim. Cosmochim. Acta 2011, 75, 7881–7892. [Google Scholar] [CrossRef]
- Seyfried, W., Jr.; Mottl, M. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochim. Cosmochim. Acta 1982, 46, 985–1002. [Google Scholar] [CrossRef]
- Mattey, D.P.; Carr, R.H.; Wright, I.P.; Pillinger, C.T. Carbon isotopes in submarine basalts. Earth Planet. Sci. Lett. 1984, 70, 196–206. [Google Scholar] [CrossRef]
- Pineau, F.; Javoy, M. Carbon isotopes and concentrations in mid-oceanic ridge basalts. Earth Planet. Sci. Lett. 1983, 62, 239–257. [Google Scholar] [CrossRef]
- Lupton, J.; Rubin, K.H.; Arculus, R.; Lilley, M.; Butterfield, D.; Resing, J.; Baker, E.; Embley, R. Helium isotope, C/3He, and Ba-Nb-Ti signatures in the northern Lau Basin: Distinguishing arc, back-arc, and hotspot affinities. Geochem. Geophys. Geosyst. 2015, 16, 1133–1155. [Google Scholar] [CrossRef] [Green Version]
- Javoy, M.; Pineau, F.; Iiyama, I. Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contrib. Mineral. Petrol. 1978, 67, 35–39. [Google Scholar] [CrossRef]
- Ishibashi, J.-I.; Wakita, H.; Nojiri, Y.; Grimaud, D.; Jean-Baptiste, P.; Gamo, T.; Auzende, J.-M.; Urabe, T. Helium and carbon geochemistry of hydrothermal fluids from the North Fiji Basin spreading ridge (southwest Pacific). Earth Planet. Sci. Lett. 1994, 128, 183–197. [Google Scholar] [CrossRef]
- Mattey, D.P. Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim. Cosmochim. Acta 1991, 55, 3467–3473. [Google Scholar] [CrossRef]
- Baumberger, T.; Früh-Green, G.L.; Dini, A.; Boschi, C.; van Zuilen, K.; Thorseth, I.H.; Pedersen, R.B. Constraints on the sedimentary input into the Loki’s Castle hydrothermal system (AMOR) from B isotope data. Chem. Geol. 2016, 443, 111–120. [Google Scholar] [CrossRef]
- Seal, R.R., II. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Tsunogai, U.; Yoshida, N.; Ishibashi, J.; Gamo, T. Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: Implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim. Cosmochim. Acta 2000, 64, 2439–2452. [Google Scholar] [CrossRef]
- Konn, C.; Charlou, J.L.; Holm, N.G.; Mousis, O. The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge. Astrobiology 2015, 15, 381–399. [Google Scholar] [CrossRef]
- Welhan, J. Origins of methane in hydrothermal systems. Chem. Geol. 1988, 71, 183–198. [Google Scholar] [CrossRef]
- Cruse, A.M.; Seewald, J.S. Low-molecular weight hydrocarbons in vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2010, 74, 6126–6140. [Google Scholar] [CrossRef]
- Pester, N.J.; Reeves, E.P.; Rough, M.E.; Ding, K.; Seewald, J.S.; Seyfried, W.E., Jr. Subseafloor phase equilibria in high-temperature hydrothermal fluids of the Lucky Strike Seamount (Mid-Atlantic Ridge, 37°17′N). Geochim. Cosmochim. Acta 2012, 90, 303–322. [Google Scholar] [CrossRef]
- Whiticar, M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 1999, 161, 291–314. [Google Scholar] [CrossRef]
- Eickemann, B.; Baumberger, T.; Thorseth, I.H.; Strauss, H.; Früh-Green, G.L.; Pedersen, R.B.; Jaeschle, A. Sub-seafloor sulfur cycling in a low temperature barite field: A multi-proxy study from the Arctic Loki’s Castle vent field. Chem. Geol. 2020, 539, 119495. [Google Scholar] [CrossRef]
- Berkenbosch, H.A.; de Ronde, C.E.J.; Gemmell, J.B.; McNeill, A.W.; Goemann, K. Mineralogy and Formation of Black Smoker Chimneys from Brothers Submarine Volcano, Kermadec Arc. Econ. Geol. 2012, 107, 1613–1633. [Google Scholar] [CrossRef]
- Canet, C.; Prol-Ledesma, R.M.; Proenza, J.A.; Rubio-Ramos, M.A.; Forrest, M.J.; Torres-Vera, M.A.; Rodriguez-Diaz, A.A. Mn-Ba-Hg mineralization at shallow submarine hydrothermal vents in Bahia Concepcion, Baja California Sur, Mexico. Chem. Geol. 2005, 224, 96–112. [Google Scholar] [CrossRef]
- Seyfried, W., Jr.; Bischoff, J. Experimental seawater-basalt interaction at 300 °C, 500° bar: Chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta 1981, 45, 135–147. [Google Scholar] [CrossRef]
- Blount, C.W. Barite solubilities and thermodynamic quantities up to 300 degrees C and 1400 bars. Am. Mineral. 1977, 62, 942–957. [Google Scholar]
- Berndt, M.E.; Seyfried, W.E., Jr.; Beck, J.W. Hydrothermal alteration processes at midocean ridges: Experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios. J. Geophys. Res. Solid Earth 1988, 93, 4573–4583. [Google Scholar] [CrossRef]
- Von Damm, K.L. Systematics of and postulated controls on submarine hydrothermal solution chemistry. J. Geophys. Res. Solid Earth 1988, 93, 4551–4561. [Google Scholar] [CrossRef]
- Mills, R.; Teagle, D.; Tivey, M. Fluid mixing and anhydrite precipitation within the TAG mound. Proc. Ocean Drill. Program Sci. Results 1998, 158, 119–127. [Google Scholar]
- Elderfield, H.; Mills, R.A.; Rudnicki, M.D. Geochemical and thermal fluxes, high-temperature venting and diffuse flow from mid-ocean ridge hydrothermal systems: The TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Geol. Soc. Lond. Spec. Publ. 1993, 76, 295–307. [Google Scholar] [CrossRef]
- Shanks, W.C.I. Stable Isotopes in Seafloor Hydrothermal Systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Chantilly, VA, USA, 2001; Volume 43, pp. 469–525. [Google Scholar]
- Ono, S.; Wing, B.; Johnston, D.; Farquhar, J.; Rumble, D. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 2006, 70, 2238–2252. [Google Scholar] [CrossRef]
- Peters, M.; Strauss, H.; Petersen, S.; Kummer, N.-A.; Thomazo, C. Hydrothermalism in the Tyrrhenian Sea: Inorganic and microbial sulfur cycling as revealed by geochemical and multiple sulfur isotope data. Chem. Geol. 2011, 280, 217–231. [Google Scholar] [CrossRef]
- Peters, M.; Strauss, H.; Farquhar, J.; Ockert, C.; Eickmann, B.; Jost, C.L. Sulfur cycling at the Mid-Atlantic Ridge: A multiple sulfur isotope approach. Chem. Geol. 2010, 269, 180–196. [Google Scholar] [CrossRef]
- Rouxel, O.; Shanks, W.C., III; Bach, W.; Edwards, K. Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem. Geol. 2008, 252, 214–227. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, O.; Ono, S.; Alt, J.; Rumble, D.; Ludden, J. Sulfur isotope evidence for microbial sulfate reduction in altered oceanic basalts at ODP Site 801. Earth Planet. Sci. Lett. 2008, 268, 110–123. [Google Scholar] [CrossRef] [Green Version]
- McKibben, M.A.; Eldridge, C. Radical sufur isotope zonation in pyrite accompanying boiling and epithermal gold deposition; a SHRIMP study of the Valles Caldera, New Mexico. Econ. Geol. 1990, 85, 1917–1925. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and Carbon Isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 517–612. [Google Scholar]
- Herzig, P.M.; Hannington, M.D.; Arribas, A., Jr. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: Implications for magmatic contributions to seafloor hydrothermal systems. Miner. Depos. 1998, 33, 226–237. [Google Scholar] [CrossRef]
- Kusakabe, M.; Komoda, Y.; Takano, B.; Abiko, T. Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: Implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J. Volcanol. Geotherm. Res. 2000, 97, 287–307. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Chemical Composition of Volcanic Gases. In Monitoring and Mitigation of Volcano Hazards; Springer: Berlin/Heidelberg, Germany, 1996; pp. 221–256. [Google Scholar]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Spec. Publ. Soc. Econ. Geol. 2003, 10, 315–343. [Google Scholar]
- Petersen, S.; Herzig, P.M.; Hannington, M.D.; Jonasson, I.R.; Arribas, A. Submarine gold mineralization near Lihir Island, New Ireland fore-arc, Papua New Guinea. Econ. Geol. 2002, 97, 1795–1813. [Google Scholar] [CrossRef]
- Minniti, M.; Bonavia, F.F. Copper-ore grade hydrothermal mineralization discovered in a seamount in the Tyrrhenian Sea (Mediterranean): Is the mineralization related to porphyry-coppers or to base metal lodes? Mar. Geol. 1984, 59, 271–282. [Google Scholar] [CrossRef]
- Naden, J.; Kilias, S.P.; Darbyshire, D.P.F. Active geothermal systems with entrained seawater as modern analogues for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: The example of Milos Island, Greece. Geology 2005, 33, 541. [Google Scholar] [CrossRef] [Green Version]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for Epithermal Gold Deposits. SEG Rev. 2000, 13, 245–277. [Google Scholar]
- Hannington, M.D.; Scott, S.D. Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides; evidence from sulfide mineralogy and the composition of sphalerite. Econ. Geol. 1989, 84, 1978–1995. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hannington, M.D.; Thompson, J.F.H. High sulfidation deposits in the volcanogenic massive sulfide environment. Econ. Geol. 1996, 91, 204–212. [Google Scholar] [CrossRef]
- Yeats, C.J.; Parr, J.M.; Binns, R.A.; Gemmell, J.B.; Scott, S.D. The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System. Econ. Geol. 2014, 109, 2207–2226. [Google Scholar] [CrossRef]
- Anderson, M.O.; Hannington, M.D.; Mcconachy, T.F.; Jamieson, J.W.; Anders, M.; Wienkenjoham, H.; Strauss, H.; Hansteen, T.; Petersen, S. Mineralization and alteration of a modern seafloor massive sulfide deposit hosted in mafic volcaniclastic rocks. Econ. Geol. 2019, 857–896. [Google Scholar] [CrossRef]
- Hannington, M.D.; Jamieson, J.W.; Monecke, T.; Petersen, S. Modern sea-floor massive sulfides and base metal resources: Toward an estimate of global sea-floor massive sulfide potential. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R., March, E.E., Monecke, T., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2010; Volume 2, pp. 317–338. [Google Scholar]
Sample Reference | Latitude | Longitude | Depth (m) | Area | Observations | |
---|---|---|---|---|---|---|
ROV | ||||||
GS14ROV03R1 | 71° 08.844 N | 12° 47.440 W | n.a. | Pinnacle | Mineralized, polymictic, scoriaceous breccia | |
GS14ROV03R2 | 71° 08.844 N | 12° 47.440 W | n.a. | Pinnacle | Volcaniclastic breccia | |
GS14ROV03R3 | 71° 08.844 N | 12° 47.440 W | n.a. | Pinnacle | Mineralized, polymictic, scoriaceous breccia | |
GS14ROV14R1 | 71° 08.974′ N | 12° 47.312′ W | 141 | Hodr pinnacle | Barite-pyrite-silica breccia | |
GS14ROV14R2 | 71° 08.990′ N | 12° 47.343′ W | 132 | Baldr pinnacle | Vuggy barite-pyrite | |
GS14ROV14R3 | 71° 08.990′ N | 12° 47.343′ W | 132 | Baldr pinnacle | Vuggy barite-pyrite | |
GS14ROV14R4 | 71° 08.991′ N | 12° 47.354′ W | 135 | Baldr pinnacle | Vuggy silica-barite-pyrite | |
GS14ROV15R1 | 71° 08.848′ N | 12° 47.482′ W | 130 | Lily mound | Vuggy barite-pyrite | |
GS14ROV15R2 | 71° 08.848′ N | 12° 47.482′ W | 130 | Lily mound | Vuggy barite-pyrite | |
GS14ROV15R3 | 71° 08.848′ N | 12° 47.482′ W | 130 | Lily mound | Vuggy barite-pyrite | |
GS14ROV15R4 | 71° 08.848′ N | 12° 47.482′ W | 130 | Lily mound | Vuggy barite-pyrite | |
GS14ROV15R5 | 71° 08.839′ N | 12° 47.466′ W | 129 | Near Lily mound | Mineralized, polymictic, scoriaceous breccia | |
GS14ROV15R6 | 71° 08.839′ N | 12° 47.466′ W | 129 | Near Lily mound | Mineralized, polymictic, scoriaceous breccia | |
Dredge | ||||||
13DR1 | Start | 71° 08.317′ N | 12° 48.959′ W | 284 | Western Flank | |
End | 71° 08.926′ N | 12° 47.321′ W | 144 | |||
13DR1R1 | Mineralized, polymictic, scoriaceous breccia = ROV samples | |||||
13DR1R4 | Altered material | |||||
13DR1R7 | Altered material | |||||
13DR1R8 | Altered material | |||||
13DR1R5 | Mineralized, polymictic, scoriaceous breccia/Replacement | |||||
13DR1R9 | Mineralized, polymictic, scoriaceous breccia/Crust | |||||
13DR1R10 | Mineralized polymictic, scoriaceous breccia = GS14DR03R3 | |||||
GS14DR2 | Start | 71° 9.2414′ N | 12° 47.0531′ W | 215 | North Flank | |
End | 71° 9.0489′ N | 12° 47.2782′ W | 145 | |||
GS14DR2R1 | Silica crust | |||||
GS14DR2R2 | Silica crust | |||||
GS14DR2R3 | Weathered Fe-oxyhydroxides | |||||
GS14DR2R4 | Weathered polymictic, scoriaceous breccia (scoria) | |||||
GS14DR2R5 | Altered polymictic, scoriaceous breccia | |||||
GS14DR2R6 | Layered, consolidated fresh tuff | |||||
GS14DR2R7 | Polymictic, scoriaceous breccia | |||||
GS14DR3 | Start | 71° 8.8831′ N | 12° 46.5321′ W | 178 | East Flank | |
End | 71° 8.7272 N | 12° 47.1275 W | 123 | |||
GS14DR3R1 | Weathered Fe-oxyhydroxides | |||||
GS14DR3R2 | Weathered polymictic, scoriaceous breccia (scoria) | |||||
GS14DR3R3 | Mineralized, polymictic, scoriaceous breccia | |||||
GS14DR3R4 | Vesicular basalt |
Reference | GS14D R2R2 | GS14ROV 14R1 | GS14ROV 14R4b | GS14ROV 14R4y | 13D R1R1 | GS14ROV 15R1 | 13D R1R7 |
---|---|---|---|---|---|---|---|
Mineralogy | Silica ± Barite | Sulfide-Sulfate | Sulfide-Sulfate | Sulfide-Sulfate | Sulfide-Sulfate | Sulfide-Sulfate | Clay |
Type | Si-crust | Barite-Pyrite-Silica | Altered | ||||
Site | Hodr pinnacle | Baldr pinnacle | Baldr pinnacle | - | Lily mound | ||
Obs. | Dredged | Top | Base | Base | Dredged | Top | Dredged |
wt.% | |||||||
SiO2 | 70.60 | 31.23 | 60.54 | 17.97 | 29.74 | 16.13 | 61.18 |
CaO | 0.14 | 0.15 | 0.20 | 0.14 | 0.42 | 0.20 | 1.61 |
FeO | 0.27 | 0.39 | 14.54 | 35.12 | 26.12 | 2.43 | 4.93 |
MgO | 0.01 | 0.08 | 0.04 | <0.01 | 0.15 | 0.1 | 0.88 |
Na2O | 0.08 | 0.23 | 0.19 | 0.12 | 0.27 | 0.22 | 1.74 |
K2O | 0.01 | 0.04 | 0.04 | 0.01 | 0.06 | 0.05 | 0.86 |
Al2O3 | 0.06 | 0.68 | 0.09 | 0.02 | 1.91 | 0.51 | 14.28 |
Cr2O3 | <0.01 | <0.01 | < 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
TiO2 | <0.02 | 0.05 | < 0.01 | <0.01 | 0.20 | 0.02 | 1.12 |
P2O5 | <0.01 | <0.01 | < 0.01 | <0.01 | <0.01 | <0.01 | 0.06 |
Sum | 71.17 | 32.85 | 75.64 | 53.38 | 58.86 | 19.65 | 86.66 |
Ba | 6.29 | 37.20 | 7.51 | 10.30 | 10.70 | 43.80 | 0.08 |
Fe | 0.21 | 0.3 | 11.3 | 27.3 | 20.3 | 1.89 | 3.83 |
S* | 0.12 | 0.34 | 12.29 | >20.00 | >20.00 | 2.20 | 0.10 |
S | 1.69 | 4.18 | 13.1 | 33 | 25.2 | 4.64 | 0.12 |
ppm | |||||||
Mn | 7 | 105 | 28 | 40 | 78 | 40 | 17 |
Ni | <1 | <1 | 2 | 6 | 5 | 4 | 4 |
Cu | 11 | 77 | 4 | 6 | 21 | 185 | 53 |
Se | <0.1 | 0.5 | 0.6 | 0.9 | 1.2 | 0.6 | 0.4 |
Zn | 62 | 99 | 11 | 16 | 216 | 1690 | 25 |
Pb | 55 | 85 | 3 | 6 | 5 | 504 | <2 |
As | 19 | 20 | 403 | 1240 | 116 | 51 | 5 |
Ag | 14.8 | 30.1 | 1.9 | 5.6 | 0.6 | 125 | <0.2 |
Hg | 0.358 | 12.4 | 30.9 | 43.3 | 203 | 4.9 | 0.1 |
Cd | <0.5 | 1.2 | < 0.5 | <0.5 | <0.5 | 6.9 | <0.5 |
Ga | <1 | <1 | <1 | <1 | 2 | 4 | 10 |
Ge | <0.1 | <0.1 | <0.1 | 0.2 | 0.2 | <0.1 | 1.3 |
Mo | 4 | 5 | 19 | 22 | 36 | 3 | <2 |
Sb | 11.3 | 4.8 | 334 | 610 | 74 | 13.5 | 4.1 |
Bi | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | 0.14 |
Te | <0.1 | <0.1 | <0.1 | <0.1 | < 0.1 | <0.1 | <0.1 |
Tl | 2.1 | 3.6 | 81.5 | 153 | 171 | 22.1 | 0.3 |
Cs | <0.05 | 0.07 | <0.05 | <0.05 | 0.21 | 0.2 | 6.85 |
ppb | |||||||
Au | < 5 | 205 | 26 | 105 | 37 | 278 | <5 |
Sample | 87/86Sr | 2σ Error | 87/86Sr Corrected | δ34SSO4 | |
---|---|---|---|---|---|
Mineralized, polymictic, scoriaceous breccia | |||||
Dredged | 13DR1R1 | 0.704824 | 0.000008 | 0.704834 | |
Dredged | 13DR1R1 | 0.704667 | 0.000009 | 0.704677 | |
Dredged | 13DR1R1 | 0.704827 | 0.000009 | 0.704831 | |
Barite-pyrite-silica | |||||
Hodr pinnacle | GS14ROV14R1 | 0.7044 | 0.000008 | 0.704404 | 24.0 |
Baldr pinnacle | GS14ROV14R2 | 0.704054 | 0.000008 | 0.704058 | 21.8 |
Baldr pinnacle | GS14ROV14R2 * | 0.70406 | 0.000008 | 0.704062 | |
Baldr pinnacle (base) | GS14ROV14R4b | 0.704192 | 0.000008 | 0.704194 | |
Baldr pinnacle (base) | GS14ROV14R4y | 0.704206 | 0.000009 | 0.704208 | 17.8 |
Lily mound (top) | GS14ROV15R1 | 0.704087 | 0.000009 | 0.704092 | 22.2 |
Lily mound (top) | GS14ROV15R2 | 0.704187 | 0.000008 | 0.704189 | 20.1 |
Lily mound (top) | GS14ROV15R2 * | 0.704184 | 0.000008 | 0.704186 | |
Silica crust | |||||
Dredged | GS14DR2R2 | 0.703956 | 0.000009 | 0.703961 | 18.1 |
13DR1R1 | Phase | δ34S | 1sd | δ33S | 1sd | Δ33S | 1sd |
---|---|---|---|---|---|---|---|
mt_M02@1 | Pyrite | 0.72 | 0.06 | 0.33 | 0.06 | −0.04 | 0.07 |
mt_M02@2 | Pyrite | −1.55 | 0.07 | −0.86 | 0.06 | −0.06 | 0.07 |
mt_M02@3 | Pyrite | −1.03 | 0.06 | −0.52 | 0.06 | 0.01 | 0.07 |
mt_M02@4 | Pyrite | 0.50 | 0.07 | 0.27 | 0.06 | 0.01 | 0.08 |
mt_M02@5 | Pyrite | −1.61 | 0.06 | −0.82 | 0.05 | 0.01 | 0.07 |
mt_M02@6 | Pyrite | 1.67 | 0.06 | 0.80 | 0.06 | −0.06 | 0.07 |
mt_M02@7 | Pyrite | −1.13 | 0.06 | −0.52 | 0.06 | 0.06 | 0.07 |
mt_M02@8 | Pyrite | 2.12 | 0.07 | 1.04 | 0.06 | −0.05 | 0.08 |
mt_M02@9 | Pyrite | 0.28 | 0.06 | 0.05 | 0.05 | −0.09 | 0.07 |
mt_M02@10 | Pyrite | 0.91 | 0.06 | 0.45 | 0.05 | −0.02 | 0.07 |
mt_M02@11 | Pyrite | 1.09 | 0.06 | 0.62 | 0.05 | 0.06 | 0.07 |
mt_M02@12 | Pyrite | 1.12 | 0.06 | 0.58 | 0.05 | 0.00 | 0.07 |
mt_M02@13 | Pyrite | 0.58 | 0.06 | 0.31 | 0.05 | 0.01 | 0.07 |
mt_M02@14 | Pyrite | 1.21 | 0.06 | 0.54 | 0.05 | −0.08 | 0.07 |
mt_M02@15 | Pyrite | 0.51 | 0.06 | 0.18 | 0.06 | −0.08 | 0.07 |
Sample Ref. | Area | Composition | Sampled | Ba | 228Ra/ 226Ra | 228Th/ 228Ra | 226Ra/ Ba | Initial Values | Fraction of Initial 226Ra/Ba Value | Age (Years) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
228Ra/Ba | 226Ra/Ba | Oldest barite component | Recent barite | ||||||||||
(%) | (Bq/Bq) | (Bq/Bq) | (Bq/g) | (Bq/g) | (Bq/g) | (Decay factor) | minimum age* | mixing line** | using 228Th/228Ra | ||||
GS14DR2R2 | Silica crust | Silica + Barite | 23.07.2014 | 14.5 | n.d. | n.d. | 6.0 ± 0.2 | 0.123 ± 0.004 | 4840 ± 70 | ||||
GS14ROV14R1 | Hodr pinnacle | Barite + Sulfide + Silica (white) | 07.08.2014 | 40.4 | 0.023 ± 0.001 | 1.19 ± 0.06 | 49.0 ± 0.5 | 2.49 ± 0.14 | 49.14 ± 0.51 | <-- Initial value | 6.5 ± 0.8 | ||
GS14ROV14R1 | Hodr pinnacle | Barite + Sulfide + Silica (grey) | 07.08.2014 | 27.9 | n.d. | n.d. | 35.3 ± 0.4 | 0.718 ± 0.011 | 760 ± 40 | 3220 ± 560 | |||
GS14ROV14R2 | Baldr pinnacle (top) | Barite + Sulfide + Silica | 07.08.2014 | 53.2 | 0.028 ± 0.003 | 0.94 ± 0.08 | 42.8 ± 0.5 | 1.99 ± 0.20 | 42.89 ± 0.52 | 0.871 ± 0.014 | 320 ± 40 | 3220 ± 560 | 4.1 ± 0.6 |
GS14ROV14R3 | Baldr pinnacle | Barite + Sulfide + Silica | 07.08.2014 | 50.4 | 0.018 ± 0.002 | 1.29 ± 0.12 | 38.1 ± 0.4 | 1.79 ± 0.19 | 38.28 ± 0.42 | 0.776 ± 0.012 | 580 ± 30 | 3220 ± 560 | 8.1 ± 2.6 |
GS14ROV14R4 | Baldr pinnacle (base) | Barite + Sulfide + Silica (grey) | 07.08.2014 | 20.6 | n.d. | n.d. | 6.5 ± 0.1 | 0.132 ± 0.003 | 4670 ± 60 | ||||
GS14ROV15R1 | Lily mound | Barite + Sulfide + Silica | 07.08.2014 | 45.2 | 0.603 ± 0.007 | 0.98 ± 0.006 | 42.2 ± 0.5 | 43.04 ± 1.81 | 42.30 ± 0.55 | 0.859 ± 0.014 | 350 ± 40 | 1080 ± 270 | 4.4 ± 0.05 |
GS14ROV15R2 | Lily mound | Barite + Sulfide + Silica | 07.08.2014 | 51.4 | 0.772 ± 0.007 | 0.87 ± 0.004 | 45.1 ± 0.6 | 53.77 ± 2.24 | 45.18 ± 0.56 | 0.918 ± 0.015 | 200 ± 40 | 1080 ± 270 | 3.6 ± 0.03 |
GS14ROV15R5 | Near Lily mound | Barite + Sulfide + Silica | 07.08.2014 | 36 | n.d. | n.d. | 29.2 ± 0.3 | 0.595 ± 0.009 | 1200 ± 40 |
Area | Hodr Pinnacle Top | Lily Mound | ||||
---|---|---|---|---|---|---|
Hydrothermal Fluid | Hydrothermal Fluid | Seawater 1 | ||||
Depth | 141 m | 133 m | ||||
Temp. | 181 °C | 200 °C | ||||
Bottle | BL1 | BL1 | BL2 | |||
pH | 4.98 | 5.03 | 4.89 | 7.8 | ||
Alk | meq/l | 0.25 | 0.04 | 0.04 | 2.4 | |
Br | mmol/L | 0.69 | 0.76 | 0.76 | 0.8 | |
SO4 | mmol/L | 0.13 | 0.12 | 0.21 | 28 | |
H2S | µM | 303.21 | 114.89 | 126.71 | 0 | |
NH4 | µM | 51.80 | 57.73 | 56.91 | 0 | |
NO2+3 | µM | n.d. | n.d. | n.d. | ||
PO4 | µM | 1.43 | 1.56 | 1.53 | ||
Filtered | Unfiltered | |||||
Na | mmol/L | 381.98 | 371.13 | 393.37 | 393.11 | 464 |
K | mmol/L | 34.55 | 34.69 | 37.41 | 37.38 | 10.1 |
Mg | mmol/L | - | - | - | - | 52.2 |
Ca | mmol/L | 40.80 | 40.97 | 43.57 | 43.38 | 10.2 |
Si | mmol/L | 7.34 | 7.45 | 7.89 | 7.82 | 0.03–0.18 |
Mn | µmol/L | 36.16 | 29.58 | 37.33 | 36.66 | <0.001 |
Fe | µmol/L | 11.69 | 13.45 | 7.12 | 7.33 | <0.1 |
Sr | µmol/L | 162.23 | 161.29 | 173.57 | 173.87 | 87 |
B | µmol/L | 648.36 | 620.54 | 662.35 | 661.91 | 415 |
Li | µmol/L | n.d. | n.d. | n.d. | n.d. | 26 |
Ba | µmol/L | 31.03 | 22.47 | 97.12 | 102.11 | 0.14 |
Cr | nmol/l | n.d. | 152.02 | 123.95 | 207.56 | |
Co | nmol/l | 0.94 | 0.55 | 0.25 | 0.22 | 0.03 |
Ni | nmol/l | 31.18 | 9.98 | 9.55 | 9.00 | 12 |
Cu | nmol/l | 0.66 | 10.63 | 1.40 | 1.90 | 7 |
Zn | nmol/l | 139.66 | 206.03 | 1727 | 2372 | 12 |
As | nmol/l | 449.43 | 274.24 | 361.55 | 315.00 | |
Pb | nmol/l | 0.06 | 9.19 | 0.04 | 0.16 | 0.01 |
Bottle | ROV15-GT16 | ROV18-GT16 | ROV16-GT17 | |||
Obs. | Measured | End-Member | Measured | End-Member | Near Lily | |
Mg | mmol/L | 7.9 | 0 | 1.6 | 0 | 130 m |
Cl | mmol/L | 529 | 526 | 586 | 587 | Gas bubble |
Total Gas | mmol/kg | 10.32 | 5.1* | 3.01 | 3.01 | % |
CO2 | mmol/kg | 5.08 | 5.58 | 2.92 | 2.94 | 80.3 |
CH4 | mmol/kg | 0.01 | 0.02 | 0.03 | 0.03 | 4.31 |
H2 | mmol/kg | 0.004 | 0.004 | 0.008 | 0.009 | 0.010 |
Ne | mmol/kg | 0.0001 | 0.0002 | |||
N2 | mmol/kg | 3.611 | 0.13 | 14.8 | ||
O2 | mmol/kg | 1.344 | 0.03 | |||
Ar | mmol/kg | 0.075 | 0.002 | |||
δ13CO2 | ‰ VPDB | −5.0 | −5.4 | n.d. | n.d. | −1.7 |
δ13CH4 | ‰ VPDB | −11.1 | −11.1 | n.d. | n.d. | −8.1 |
3He/4He | R/Ra corr | 7.83 | 8.61 | 8.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Marques, A.F.; Roerdink, D.L.; Baumberger, T.; de Ronde, C.E.J.; Ditchburn, R.G.; Denny, A.; Thorseth, I.H.; Okland, I.; Lilley, M.D.; Whitehouse, M.J.; et al. The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge. Minerals 2020, 10, 439. https://doi.org/10.3390/min10050439
A. Marques AF, Roerdink DL, Baumberger T, de Ronde CEJ, Ditchburn RG, Denny A, Thorseth IH, Okland I, Lilley MD, Whitehouse MJ, et al. The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge. Minerals. 2020; 10(5):439. https://doi.org/10.3390/min10050439
Chicago/Turabian StyleA. Marques, Ana Filipa, Desiree L. Roerdink, Tamara Baumberger, Cornel E. J. de Ronde, Robert G. Ditchburn, Alden Denny, Ingunn H. Thorseth, Ingeborg Okland, Marvin D. Lilley, Martin J. Whitehouse, and et al. 2020. "The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge" Minerals 10, no. 5: 439. https://doi.org/10.3390/min10050439
APA StyleA. Marques, A. F., Roerdink, D. L., Baumberger, T., de Ronde, C. E. J., Ditchburn, R. G., Denny, A., Thorseth, I. H., Okland, I., Lilley, M. D., Whitehouse, M. J., & Pedersen, R. B. (2020). The Seven Sisters Hydrothermal System: First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge. Minerals, 10(5), 439. https://doi.org/10.3390/min10050439