Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy
Abstract
1. Introduction
2. CSEM Modeling Approach
3. Numerical Experiments
3.1. Validation of the Modeling Scheme
3.2. SMS Model Studies
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoagland, P.; Beaulieu, S.; Tivey, M.A.; Eggert, R.G.; German, C.; Glowka, L.; Jian, L. Deep-sea mining of seafloor massive sulfides. Mar. Policy 2010, 34, 728–732. [Google Scholar] [CrossRef]
- Hölz, S.; Jegen, M. How to Find Buried and Inactive Seafloor Massive Sulfides Using Transient EM-A Case Study from the Palinuro Seamount. In Proceedings of the EAGE/DGG Workshop on Deep Mineral Exploration, Münster, Germany, 18 March 2016. [Google Scholar]
- Hölz, S.; Haroon, A.; Jegen, M.; Safipour, R.; Swidinsky, A. Exploration of Seafloor Massive Sulfide Deposits with the Novel EM Induction System MARTEMIS. In Proceedings of the 27. Schmucker-Weidelt Kolloquium für Elektromagnetische Tiefenforschung, Breklum, Germany, 25–29 September 2017. [Google Scholar]
- Haroon, A.; Hölz, S.; Gehrmann, R.A.S.; Attias, E.; Jegen, M.; Minshull, T.A.; Murton, B.J. Marine dipole–dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: Effects of three-dimensional bathymetry. Geophys. J. Int. 2018, 215, 2156–2171. [Google Scholar] [CrossRef]
- Gehrmann, R.A.S.; North, L.J.; Graber, S.; Szitkar, F.; Petersen, S.; Minshull, T.A.; Murton, B.J. Marine Mineral Exploration with Controlled Source Electromagnetics at the TAG Hydrothermal Field, 26° N Mid-Atlantic Ridge. Geophys. Res. Lett. 2019, 46, 5808–5816. [Google Scholar] [CrossRef]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Crowhurst, P.; Lowe, J. Exploration and resource drilling of seafloor massive sulfide (SMS) deposits in the Bismarck Sea, Papua New Guinea. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–6. [Google Scholar]
- Schwalenberg, K.; Müller, H.; Engels, M. Seafloor Massive Sulfide Exploration—A New Field of Activity for Marine Electromagnetics. In Proceedings of the EAGE/DGG Workshop on Deep Mineral Exploration, Münster, Germany, 18 March 2016. [Google Scholar]
- Spagnoli, G.; Hannington, M.; Bairlein, K.; Hördt, A.; Jegen, M.; Petersen, S.; Laurila, T. Electrical properties of seafloor massive sulfides. Geo-Mar. Lett. 2016, 36, 235–245. [Google Scholar] [CrossRef]
- Spagnoli, G.; Weymer, B.A.; Jegen, M.; Spangenberg, E.; Petersen, S. P-wave velocity measurements for preliminary assessments of the mineralization in seafloor massive sulfide mini-cores during drilling operations. Engineering Geology 2017, 226, 316–325. [Google Scholar] [CrossRef][Green Version]
- Müller, H.; Schwalenberg, K.; Reeck, K.; Barckhausen, U.; Schwarz-Schampera, U.; Hilgenfeldt, C.; von Dobeneck, T. Mapping seafloor massive sulfides with the Golden Eye frequency-domain EM profiler. First Break 2018, 36, 61–67. [Google Scholar]
- Cheesman, S.; Edwards, R.; Chavez, A. On the theory of sea floor conductivity mapping using transient EM systems. Geophysics 1987, 52. [Google Scholar] [CrossRef][Green Version]
- Weitemeyer, K.A.; Constable, S.C.; Key, K.W.; Behrens, J.P. First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Constable, S. Ten years of marine CSEM for hydrocarbon exploration. Geophysics 2010, 75, A67–A75. [Google Scholar] [CrossRef]
- Schwalenberg, K.; Rippe, D.; Koch, S.; Scholl, C. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 2017, 122, 3334–3350. [Google Scholar] [CrossRef]
- Cairns, G.W.; Evans, R.L.; Edwards, R.N. A time domain electromagnetic survey of the TAG Hydrothermal Mound. Geophys. Res. Lett. 1996, 23, 3455–3458. [Google Scholar] [CrossRef]
- Kowalczyk, P. Geophysical prelude to first exploitation of submarine massive sulphides. First Break 2008, 26, 99–106. [Google Scholar]
- Müller, H.; Schwalenberg, K. Electromagnetic imaging of seafloor massive sulfide deposits at the Central Indian Ridge. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Constable, S.; Kowalczyk, P.; Bloomer, S. Measuring marine self-potential using an autonomous underwater vehicle. Geophys. J. Int. 2018, 215, 49–60. [Google Scholar] [CrossRef]
- Ishizu, K.; Goto, T.; Ohta, Y.; Kasaya, T.; Iwamoto, H.; Vachiratienchai, C.; Siripunvaraporn, W.; Tsuji, T.; Kumagai, H.; Koike, K. Internal Structure of a Seafloor Massive Sulfide Deposit by Electrical Resistivity Tomography, Okinawa Trough. Geophys. Res. Lett. 2019, 46, 11025–11034. [Google Scholar] [CrossRef]
- Masaki, Y.; Kinoshita, M.; Inagaki, F.; Nakagawa, S.; Takai, K. Possible kilometer-scale hydrothermal circulation within the Iheya-North field, mid-Okinawa Trough, as inferred from heat flow data. JAMSTEC Rep. Res. Dev. 2011, 12, 1–12. [Google Scholar] [CrossRef]
- Tsuji, T.; Takai, K.; Oiwane, H.; Nakamura, Y.; Masaki, Y.; Kumagai, H.; Kinoshita, M.; Yamamoto, F.; Okano, T.; Kuramoto, S.I. Hydrothermal fluid flow system around the Iheya North Knoll in the mid-Okinawa trough based on seismic reflection data. J. Volcanol. Geotherm. Res. 2012, 213–214, 41–50. [Google Scholar] [CrossRef]
- Mendelson, K.S.; Cohen, M.H. The effect of grain anisotropy on the electrical properties of sedimentary rocks. Geophysics 1982, 47, 257–263. [Google Scholar] [CrossRef]
- Anderson, B.; Bryant, I.; Luling, M.; Spies, B.; Helbig, K. Oilfield anisotropy: Its origins and electrical characteristics. Oilfield Rev. 1994, 6, 48–56. [Google Scholar]
- Klein, J.D.; Martin, P. The petrophysics of electrically anisotropic reservoirs. Log Anal. 1997, 38, 25–36. [Google Scholar]
- Yu, L.; Edwards, R. The detection of lateral anisotropy of the ocean floor by electromagnetic methods. Geophys. J. Int. 1992, 108, 433–441. [Google Scholar] [CrossRef][Green Version]
- Newman, G.A.; Commer, M.; Carazzone, J.J. Imaging CSEM data in the presence of electrical anisotropy. Geophysics 2010, 75, F51–F61. [Google Scholar] [CrossRef]
- Li, Y.; Dai, S. Finite element modelling of marine controlled-source electromagnetic responses in two-dimensional dipping anisotropic conductivity structures. Geophys. J. Int. 2011, 185, 622–636. [Google Scholar] [CrossRef][Green Version]
- Tompkins, M.J. The role of vertical anisotropy in interpreting marine controlled-source electromagnetic data. In Proceedings of the 2005 SEG Annual Meeting, Houston, TX, USA, 6–11 November 2005. [Google Scholar]
- Jaysaval, P.; Shantsev, D.V.; de Ryhove, S.d.l.K.; Bratteland, T. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner. Geophys. J. Int. 2016, 207, 1554–1572. [Google Scholar] [CrossRef]
- Peng, R.; Hu, X.; Chen, B.; Li, J. 3-D Marine controlled-source electromagnetic modeling in electrically anisotropic formations using scattered scalar–vector potentials. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1500–1504. [Google Scholar] [CrossRef]
- Davydycheva, S.; Frenkel, M.A. The impact of 3D tilted resistivity anisotropy on marine CSEM measurements. Lead. Edge 2013, 32, 1374–1381. [Google Scholar] [CrossRef]
- Gehrmann, R.; Haroon, A.; Morton, M.; Djanni Minshull, T. Seafloor massive sulphide exploration using deep-towed controlled source electromagnetics: Navigational uncertainties. Geophys. J. Int. 2020, 220, 1215–1227. [Google Scholar] [CrossRef]
- Constable, S.; Kannberg, P.K.; Weitemeyer, K. Vulcan: A deep-towed CSEM receiver. Geochem. Geophys. Geosyst. 2016. [CrossRef]
- Attias, E.; Weitemeyer, K.; Hölz, S.; Naif, S.; Minshull, T.A.; Best, A.I.; Haroon, A.; Jegen-Kulcsar, M.; Berndt, C. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data. Geophys. J. Int. 2018, 214, 1701–1714. [Google Scholar] [CrossRef]
- Pek, J.; Santos, F.A.M. Magnetotelluric inversion for anisotropic conductivities in layered media. Phys. Earth Planet. Inter. 2006, 158, 139–158. [Google Scholar] [CrossRef]
- Ward, S.; Hohmann, G. Electromagnetic Methods in Applied Geophysics Vol. I. Investigations in Geophysics; SEG: Tulsa, OK, USA, 1988. [Google Scholar]
- Lynch, D.R.; Paulsen, K.D. Origin of vector parasites in numerical Maxwell solutions. IEEE Trans. Microw. Theory Tech. 1991, 39, 383–394. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Jin, J. The Finite Element Method in Electromagnetics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Ansari, S.; Farquharson, C.G. 3D finite-element forward modeling of electromagnetic data using vector and scalar potentials and unstructured grids. Geophysics 2014, 79. [Google Scholar] [CrossRef]
- Si, H. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. (TOMS) 2015, 41, 11. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear Systems; Siam: University City, PA, USA, 2003. [Google Scholar]
- Hunziker, J.; Thorbecke, J.; Slob, E. The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem. Geophysics 2014, 80, F1–F18. [Google Scholar] [CrossRef]
- Boyce, R.E. Electrical resistivity of modern marine sediments from the Bering Sea. J. Geophys. Res. 1968, 73, 4759–4766. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.; Han, B.; Hu, X. Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals 2020, 10, 457. https://doi.org/10.3390/min10050457
Peng R, Han B, Hu X. Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals. 2020; 10(5):457. https://doi.org/10.3390/min10050457
Chicago/Turabian StylePeng, Ronghua, Bo Han, and Xiangyun Hu. 2020. "Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy" Minerals 10, no. 5: 457. https://doi.org/10.3390/min10050457
APA StylePeng, R., Han, B., & Hu, X. (2020). Exploration of Seafloor Massive Sulfide Deposits with Fixed-Offset Marine Controlled Source Electromagnetic Method: Numerical Simulations and the Effects of Electrical Anisotropy. Minerals, 10(5), 457. https://doi.org/10.3390/min10050457