Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-Ray Diffraction at High Pressure and Ambient Temperature
3.2. X-Ray Diffraction at High Pressure and High Temperature
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 1952, 57, 227–286. [Google Scholar] [CrossRef]
- Poirier, J.P. Light elements in the Earth’s outer core: A critical review. Phys. Earth Planet. Inter. 1994, 85, 319–337. [Google Scholar] [CrossRef]
- Li, J.; Fei, Y. Experimental constraints on core composition. In Treatise on Geochemistry; Elsevier: New York, NY, USA, 2007; pp. 1–31. [Google Scholar]
- Dewaele, A.; Loubeyre, P.; Occelli, F.; Mezouar, M.; Dorogokupets, P.I.; Torrent, M. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 2006, 97, 215504. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Murphy, C.; Shibazaki, Y.; Shahar, A.; Huang, H. Thermal equation of state of hcp-iron: Constraint on the density deficit of the Earth’s solid inner core. Geophys. Res. Lett. 2016, 43, 6837–6843. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.K.; Wu, Y.; Chen, L.C.; Shu, J.F. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for composition of the core. J. Geophys. Res. 1990, 95, 21737–21742. [Google Scholar] [CrossRef]
- Asanuma, H.; Ohtani, E.; Sakai, T.; Terasaki, H.; Kamada, S.; Hirao, N.; Ohishi, Y. Static compression of Fe0.83Ni0.09Si0.08 alloy to 374 GPa and Fe0.93Si0.07 alloy to 252 GPa: Implications for the Earth’s inner core. Earth Planet. Sci. Lett. 2011, 310, 113–118. [Google Scholar] [CrossRef]
- Morrison, R.A.; Jackson, J.M.; Sturhahn, W.; Zhang, D.; Greenberg, E. Equation of state and anisotropy of Fe-Ni-Si alloys. J. Geophys. Res. Solid Earth 2018, 123, 4647–4675. [Google Scholar] [CrossRef]
- Kantor, A.P.; Kantor, I.Y.; Kurnosov, A.V.; Kuznetsov, A.Y.; Dubrovinskaia, N.A.; Krisch, M.; Bossak, A.A.; Dimitriev, V.P.; Urusov, V.S.; Dubrovinsky, L.S. Sound wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering. Phys. Earth Planet. Inter. 2007, 164, 83–89. [Google Scholar] [CrossRef]
- Antonangeli, D.; Siebert, J.; Badro, J.; Farber, D.L.; Fiquet, G.; Morard, G.; Ryerson, F.J. Composition of the Earth’s inner core from high-pressure velocity measurements in Fe-Ni-Si alloys. Earth Planet. Sci. Lett. 2010, 295, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Wakamatsu, T.; Ohta, K.; Yagi, T.; Hirose, K.; Ohishi, Y. Measurements of sound velocity in iron-nickel alloys by femtosecond laser pulses in a diamond anvil cell. Phys. Chem. Miner. 2018, 45, 589–595. [Google Scholar] [CrossRef]
- Morrison, R.A.; Jackson, J.M.; Sturhahn, W.; Zhao, J.; Toellner, T.S. High pressure thermoelasticity and sound velocities of Fe-Ni-Si alloys. Phys. Earth Planet. Inter. 2019, 294, 106268. [Google Scholar] [CrossRef] [Green Version]
- Martorell, B.; Brodholt, J.; Wood, I.G.; Vočadlo, L. The effect of nickel on the properties of iron at the conditions of Earth’s inner core: Ab initio calculations of seismic wave velocities of Fe-Ni alloys. Earth Planet. Sci. Lett. 2013, 365, 143–151. [Google Scholar] [CrossRef]
- Guillaume, C.E. Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique. CR Acad. Sci. 1897, 125, 18. [Google Scholar]
- Van Schilfgaarde, M.; Abrikosov, I.A.; Johansson, B. Origin of the Invar effect in iron-nickel alloys. Nature 1999, 400, 46–49. [Google Scholar] [CrossRef]
- Dubrovinsky, L.; Dubrovinskaia, N.; Abrikosov, I.A.; Vennström, M.; Westman, F.; Carlson, S.; van Schilfgaarde, M.; Johansson, B. Pressure-induced invar effect in Fe-Ni alloys. Phys. Rev. Lett. 2001, 86, 4851–4854. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Tateno, S.; Hirose, K.; Komabayashi, T.; Ozawa, H.; Ohishi, Y. The structure of Fe-Ni alloy in Earth’s inner core. Geophys. Res. Lett. 2012, 39, L12305. [Google Scholar] [CrossRef] [Green Version]
- Tateno, S.; Kuwayama, Y.; Hirose, K.; Ohishi, Y. The structure of Fe-Si alloy in Earth’s inner core. Earth Planet. Sci. Lett. 2015, 418, 11–19. [Google Scholar] [CrossRef]
- Antonangeli, D.; Morard, G.; Paolasini, L.; Garbarino, G.; Murphy, C.A.; Edmund, E.; Decremps, F.; Fiquet, G.; Bosak, A.; Mezouar, M.; et al. Sound velocities and density measurements of solid hcp-Fe and hcp-Fe-Si(9wt.%) alloy at high pressure: Constraints on the Si abundance in the Earth’s inner core. Earth Planet. Sci. Lett. 2018, 482, 446–453. [Google Scholar] [CrossRef]
- Kamada, S.; Suzuki, N.; Maeda, F.; Hirao, N.; Hamada, N.; Hamada, M.; Ohtani, E.; Masuda, R.; Mitsui, T.; Ohishi, Y.; et al. Electronic properties and compressional behavior of Fe-Si alloys at high pressure. Am. Mineral. 2018, 103, 1959–1965. [Google Scholar] [CrossRef]
- Komabayashi, T.; Pesce, G.; Morard, G.; Antonangeli, D.; Sinmyo, R.; Mezouar, M. Phase transition boundary between fcc and hcp structures in Fe-Si alloys and its implications for terrestrial planetary cores. Am. Mineral. 2019, 104, 94–99. [Google Scholar] [CrossRef]
- Edmund, E.; Antonangeli, D.; Decremps, F.; Miozzi, F.; Morard, G.; Boulard, E.; Clark, A.N.; Ayrinhac, S.; Gauthier, M.; Morand, M.; et al. Velocity-density systematics of Fe-5wt%Si: Constraints on Si content in the Earth’s inner core. J. Geophys. Res. Solid Earth 2019, 124, 3436–3447. [Google Scholar] [CrossRef]
- Siebert, J.; Badro, J.; Antonangeli, D.; Ryerson, F.J. Terrestrial accretion under oxidizing conditions. Science 2013, 339, 1194–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.A.; Nakajima, Y.; Campbell, A.J.; Frost, D.J.; Harries, D.; Langenhorst, F. High pressure metal-silicate partitioning of Ni, Co, V, Cr, Si and O. Geochim. Cosmochim. Acta 2015, 167, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Fitoussi, C.; Bourdon, B.; Kleine, T.; Oberli, F.; Reynolds, B.C. Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett. 2009, 287, 77–85. [Google Scholar] [CrossRef]
- Fischer, R.A.; Campbell, A.J. The axial ration of hcp Fe and Fe-Ni-Si alloys to the conditions of Earth’s nner core. Am. Mineral. 2015, 100, 2718–2724. [Google Scholar] [CrossRef]
- Morard, G.; Andrault, D.; Guignot, N.; Siebert, J.; Garbarino, G.; Antonangeli, D. Melting of Fe-Ni-Si and Fe-Ni-S alloys at magabar pressure: Implications for the core-mantle boundary temperature. Phys. Chem. Miner. 2011, 38, 767–776. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Dewaele, A. Equation of state of MgO, Au, Pt, NaCl-B1 and NaCl-B2: Internally consistent high-temperature pressure scale. High Press. Res. 2012, 27, 431–446. [Google Scholar] [CrossRef]
- Dewaele, A.; Belonoshko, A.B.; Garbarino, G.; Occelli, F.; Bouvier, P.; Hanfland, M.; Mezouar, M. High-pressure high-temperature equation of state of KCl and KBr. Phys. Rev. B 2012, 85, 214105. [Google Scholar] [CrossRef]
- Campbell, A.J.; Danielson, L.; Righter, K.; Seagle, C.T.; Wang, Y.; Prakapenka, V.B. High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers. Earth Planet. Sci. Lett. 2009, 286, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Petříček, V.; Dusek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Angel, R.J.; Equation of state. High-temperature and high-pressure crystal chemistry. Rev. Mineral. Gepchemistry 2000, 41, 445–520. [Google Scholar]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limit of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equation of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef] [Green Version]
- Dewaele, A.; Torrent, M.; Loubeyre, P.; Mezouar, M. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Phys. Rev. B 2008, 78, 104102. [Google Scholar] [CrossRef]
- Dorfman, S.M.; Prakapenka, V.B.; Meng, Y.; Duffy, T.S. Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. J. Geophys. Res. 2012, 117, B08210. [Google Scholar] [CrossRef]
- Ye, Y.; Prakapenka, V.B.; Meng, Y.; Shim, S.-H. Intercomparison of the gold, platinum and MgO pressure scales up to 140 GPa and 2500 K. J. Geophys. Res. Solid Earth 2017, 122, 3450–3464. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P. Pressurizing conditions in helium-pressure-transmitting-medium. High Press. Res. 2007, 27, 419–429. [Google Scholar] [CrossRef]
- Bina, C.R.; Hellfrich, G.R. Calculation of Elastic Properties from Thermodynamic Equation of State Principles. Annu. Rev. Earth Sci. 1992, 20, 527–552. [Google Scholar] [CrossRef]
- Fischer, R.A.; Campbell, A.J.; Caracas, R.; Reaman, D.M.; Dera, P.; Prakapenka, V.B. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth’s core. Earth Planet. Sci. Lett. 2012, 357–358, 268–276. [Google Scholar] [CrossRef]
- Fischer, R.A.; Campbell, A.J.; Caracas, R.; Reaman, D.M.; Heinz, D.L.; Dera, P.; Prakapenka, V.B. Equation of state in the Fe-FeSi system at high pressures and temperatures. J. Geophys. Res. Solid Earth 2014, 119, 2810–2827. [Google Scholar] [CrossRef]
- Attanayake, J.; Cormier, V.F.; De Silva, S.M. Uppermost inner core seismic structure—New insights from body waveform inversion. Earth Planet. Sci. Lett. 2014, 385, 49–58. [Google Scholar] [CrossRef]
- Deuss, A. Heterogeneity and anisotropy of Earth’s inner core. Annu. Rev. Earth Planet. Sci. 2014, 42, 103–126. [Google Scholar] [CrossRef] [Green Version]
- Lythgoe, K.H.; Deuss, A.; Rudge, J.F.; Neufeld, J.A. Earth’s inner core: Innermost inner core or hemispherical variations? Earth Planet. Sci. Lett. 2014, 385, 181–189. [Google Scholar] [CrossRef]
- Antonangeli, D.; Merkel, S.; Farber, D.L. Elastic anisotropy of in hcp metals at high pressure and the sound wave anisotropy of the Earth’s inner core. Geophys. Res. Lett. 2006, 33, L24303. [Google Scholar] [CrossRef]
- Lincot, A.; Cardin, P.; Deguen, R.; Merkel, S. Multiscale model of global inner-core anisotropy induced by hcp alloy plasticity. Geophys. Res. Lett. 2016, 43, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Gannarelli, C.M.S.; Alfé, D.; Gillan, M.J. The axial ration of hcp iron at the conditions of the Earth’s inner core. Phys. Earth Planet. Inter. 2005, 152, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Vočadlo, L.; Dobson, D.P.; Wood, I.G. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth Planet. Sci. Lett. 2009, 288, 534–538. [Google Scholar] [CrossRef]
Case# | V0 (Å3) | K0 (GPa) | K’ | θD (K) | γvib,0 | q | γe | β0(10−6·cm3·mol−1·J·K−1) | k |
---|---|---|---|---|---|---|---|---|---|
1 | 22.61 ± 0.08 | 160 ± 5 | 5.13 | 422 1 | 1.66 ± 0.09 | 0.67 | 2 | 3.2 | 1.34 |
2 | 22.61 ± 0.07 | 160 ± 5 | 5.13 | 422 1 | 2.13 ± 0.08 | 0.67 | - | - | - |
3 | 22.97 ± 0.10 | 125 ± 5 | 6.38 | 417 1 | 1.82 ± 0.09 | 1 | 2 | 3.2 | 1.34 |
4 | 22.97 ± 0.09 | 125 ± 4 | 6.38 | 417 1 | 2.30 ± 0.09 | 1 | - | - | - |
[23] | 22.59 | 163 | 5.13 | 422 | 1.73 | 0.67 | 2 | 3.2 | 1.34 |
[8] | 22.84 | 125 | 6.38 | 417 | 2 | 1 | † | † | † |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edmund, E.; Miozzi, F.; Morard, G.; Boulard, E.; Clark, A.; Decremps, F.; Garbarino, G.; Svitlyk, V.; Mezouar, M.; Antonangeli, D. Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si. Minerals 2020, 10, 98. https://doi.org/10.3390/min10020098
Edmund E, Miozzi F, Morard G, Boulard E, Clark A, Decremps F, Garbarino G, Svitlyk V, Mezouar M, Antonangeli D. Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si. Minerals. 2020; 10(2):98. https://doi.org/10.3390/min10020098
Chicago/Turabian StyleEdmund, Eric, Francesca Miozzi, Guillaume Morard, Eglantine Boulard, Alisha Clark, Frédéric Decremps, Gaston Garbarino, Volodymyr Svitlyk, Mohamed Mezouar, and Daniele Antonangeli. 2020. "Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si" Minerals 10, no. 2: 98. https://doi.org/10.3390/min10020098
APA StyleEdmund, E., Miozzi, F., Morard, G., Boulard, E., Clark, A., Decremps, F., Garbarino, G., Svitlyk, V., Mezouar, M., & Antonangeli, D. (2020). Axial Compressibility and Thermal Equation of State of Hcp Fe–5wt% Ni–5wt% Si. Minerals, 10(2), 98. https://doi.org/10.3390/min10020098