Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain)
Abstract
1. Introduction
dolomite portlandite calcite brucite
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
3. Results
3.1. Raw Dolostones
3.2. Concrete Petrography and Mineralogy
3.2.1. Type A Concrete
3.2.2. Type B Concrete
4. Discussion
CSH brucite serpentine group mineral portlandite
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swenson, E.G. A Reactive Aggregate Undetected by ASTM Tests. ASTM Bull. 1957, 226, 48–51. [Google Scholar]
- Swenson, E.G.; Gillott, J.E. Characteristics of Kingston carbonate rock reaction. Highw. Res. Board Bull. 1960, 275, 18–31. [Google Scholar]
- Hadley, D.W. Alkali Reactivity of Carbonate Rocks-Expansion and Dedolomitization. Highw. Res. Board Proc. 1961, 40, 462–474. [Google Scholar]
- Deng, M.; Tang, M.S. Mechanism of dedolomitization and expansion of dolomitic rocks. Cem. Concr. Res. 1993, 23, 1397–1408. [Google Scholar]
- Tong, L.; Deng, M.; Lan, X.H.; Tang, M.S. A case study of two airport runways affected by alkali-carbonate reaction. Part one: Evidence of deterioration and evaluation of aggregates. Cem. Concr. Res. 1997, 27, 321–328. [Google Scholar] [CrossRef]
- Gao, P.; Lu, X.; Geng, F.; Li, X.; Hou, J.; Lin, H.; Shi, N. Production of MgO-type expansive agent in dam concrete by use of industrial by-products. Build. Environ. 2008, 43, 453–457. [Google Scholar] [CrossRef]
- Prinčič, T.; Štukovnik, P.; Pejovnik, S.; De Schutter, G.; Bosiljkov, V.B. Observations on dedolomitization of carbonate concrete aggregates, implications for ACR and expansion. Cem. Concr. Res. 2013, 54, 151–160. [Google Scholar] [CrossRef]
- Tong, L.; Tang, M. Correlation between reaction and expansion of alkali-carbonate reaction. Cem. Concr. Res. 1995, 25, 470–476. [Google Scholar] [CrossRef]
- Swenson, E.G.; Gillott, J.E. Alkali reactivity of dolomitic limestone aggregate. Mag. Concr. Res. 1967, 19, 95–104. [Google Scholar] [CrossRef]
- Katayama, T. A critical review of carbonate rock reactions—Is their reactivity useful or harmful? In Proceedings of the 9th Int. Conf. on Alkali-Aggregate Reaction in Concrete (ICAAR), London, UK, 27–31 July 1992; pp. 508–517. [Google Scholar]
- Charlwood, R.; Sims, I.A. Review of the Effectiveness of Strategies to Manage Expansive Chemical Reactions in Dams and Hydro Projects. In Proceedings of the Dam Swelling Concrete DSC, London, UK, 15 June 2017; p. 3. [Google Scholar]
- Newell, V.A.; Wagner, C.D. Modifications to Hiwassee Dam and planned modification to Fontana and Chickamauga Dams by the Tennessee Valley Authority to manage alkali-aggregate reaction. In Proceedings of the 2nd Int. Conf. on Alkali-Aggregate Reaction in Hydroelectric Plants and Dams. USCOLD, Chattanooga, TN, USA, 22–27 October 1995; pp. 83–100. [Google Scholar]
- Galí, S.; Ayora, C.; Alfonso, P.; Tauler, E.; Labrador, M. Kinetics of dolomite-portlandite reaction, Application to Portland cement concrete. Cem. Concr. Res. 2001, 31, 933–939. [Google Scholar] [CrossRef]
- García, E.; Alfonso, P.; Labrador, M.; Galí, S. Dedolomitization in different alkaline media: Application to Portland cement paste. Cem. Concr. Res. 2003, 33, 1443–1448. [Google Scholar] [CrossRef]
- García, E.; Alfonso, P.; Tauler, E.; Galí, S. Surface alteration of dolomite in dedolomitization reaction in alkaline media. Cem. Concr. Res. 2003, 33, 1449–1456. [Google Scholar] [CrossRef]
- Wang, H.; Gillott, J.E. Alkali–carbonate reaction: significance of chemical and mineral admixtures. Mag. Concr. Res. 1995, 47, 69–75. [Google Scholar] [CrossRef]
- Katayama. The so-called alkali-carbonate reaction (ACR)—Its mineralogical and geochemical details, with special reference to ASR. Cem. Concr. Res. 2010, 40, 643–675. [Google Scholar] [CrossRef]
- Sant John, D.A.; Poole, A.W.; Sims, I. Concrete Petrography; Edward Arnold: London, UK, 1998; 474p. [Google Scholar]
- Qian, G.; Deng, M.; Lan, X.; Xu, Z.; Tang, M. Alkali carbonate reaction expansion of dolomitic limestone aggregates with porphyrotopic texture. Eng. Geol. 2002, 63, 17–29. [Google Scholar] [CrossRef]
- López-Buendía, A.M.; Climent, V.; Verdú, P. Lithological influence of aggregate in the alkali-carbonate reaction. Cem. Concr. Res. 2006, 36, 1490–1500. [Google Scholar] [CrossRef]
- Girard, J.P.; Sanjuan, B.; Czernichowski-Lauriol, I.; Fouillac, C. Diagenesis of the Oseberg Sandstone Reservoir (North Sea): An example of integration of core, formation fluid and geochemical modelling studies. AAPG Bull. 1996, 5. (CONF-960527). [Google Scholar]
- Lanza, V.; Alaejos, P. Optimized Gel Pat Test for Detection of Alkali-Reactive Aggregates. ACI Mater. J. 2012, 109, 403. [Google Scholar]
- Lindgård, J.; Nixon, P.J.; Borchers, I.; Schouenborg, B.; Wigum, B.J.; Haugen, M.; Åkesson, U. The EU “PARTNER” Project—European standard tests to prevent alkali reactions in aggregates: Final results and recommendations. Cem. Concr. Res. 2010, 40, 611–635. [Google Scholar] [CrossRef]
- Díez-Cascón, J.; Bueno, F. Ingeniería de Presas: Presas de fábrica; Univ. de Cantabria Publ. Santander: Cantabria, Spain, 2001; p. 474. [Google Scholar]
- Solana, J. Sand-cement. Rev. de Obras Públicas 1916, 64, 85–88. [Google Scholar]
- Martínez-Roig, J.M. Instalación de la confluencia. Construcción de la presa de Camarasa, Col. Tècnico-Històrica de FECSA; FECSA: Barcelona, Spain, 1995; 84p. [Google Scholar]
- Pocoví, A. Estudio geológico de las Sierras Marginales Catalanas (Prepirineo de Lérida). Acta Geol. Hisp. 1998, XIII, 73–79. [Google Scholar]
- Rodríguez-Carvajal, J. An introduction to the program FullProf 2000, Laboratoire Leon Brillouin (CEA-CNRS), Gif-sur-Yvette, France. 2001. Available online: https://www.psi.ch/sites/default/files/import/sinq/dmc/ManualsEN/fullprof.pdf (accessed on 20 December 2019).
- Blanco, A.; Segura, I.; Cavalaro, S.H.P.; Chinchón-Payá, S.; Aguado, A. Sand-cement concrete in the century-old Camarasa dam. J. Perform. Constr. Facil. 2015, 30. [Google Scholar] [CrossRef]
- Hewlett, P.C.; Liska, M. Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Katayama, T.; Jensen, V.; Rogers, C.A. The enigma of the ‘so-called’alkali–carbonate reaction. Proc. Inst. Civ. Eng. -Constr. Mater. 2016, 169, 223–232. [Google Scholar] [CrossRef]
- Jin, F.; Wang, F.; Al-Tabbaa, A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders. Chemosphere 2016, 144, 681–688. [Google Scholar] [CrossRef]
- Machner, A.; Zajac, M.; Haha, M.B.; Kjellsen, K.O.; Geiker, M.R.; De Weerdt, K. Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and metakaolin after leaching, carbonation, and chloride exposure. Cem. Concr. Res. 2018, 89, 89–106. [Google Scholar] [CrossRef]
- Cabrera Vélez, P.J. La Evolución de los Conglomerantes Hidráulicos en Presas. Master’s Thesis, Universitat Politécnica de Catalunya, Barcelona, Spain, 2013. [Google Scholar]
- Lee, H.; Cody, R.D.; Cody, A.M.; Spry, P.G. Observations on brucite formation and the role of brucite in Iowa highway concrete deterioration. Environ. Eng. Geosci. 2002, 8, 137–145. [Google Scholar] [CrossRef]
- Katayama, T. How to identify carbonate rock reactions in concrete. Mater. Charact. 2004, 53, 85–104. [Google Scholar] [CrossRef]
- Beyene, M.; Snyder, A.; Lee, R.J.; Blaszkiewicz, M. Alkali Silica Reaction (ASR) as a root cause of distress in a concrete made from Alkali Carbonate Reaction (ACR) potentially susceptible aggregates. Cem. Concr. Res. 2013, 51, 85–95. [Google Scholar] [CrossRef]
- Locati, F.; Falcone, D.; Marfil, S. Dedolomitization and alkali-silica reactions in low-expansive marbles from the province of Córdoba, Argentina. A microstructural and chemical study. Constr. Build. Mater. 2014, 58, 171–181. [Google Scholar] [CrossRef]
- Štukovnik, P.; Prinčič, T.; Pejovnik, R.S.; Bokan, B.V. Alkali-carbonate reaction in concrete and its implications for a high rate of long-term compressive strength increase. Const. Building Mater. 2014, 50, 699–709. [Google Scholar] [CrossRef]
Component | Particle Size (mm) | Type A (wt%) | Type B (wt%) |
---|---|---|---|
Dolomitic aggregate | 10–150 | - | 66 |
Dolomitic aggregate | 10–70 | 62 | - |
Dolomitic aggregate | 1–10 | 13 | 12 |
Dolomitic aggregate | 0.1–1 | 12.2 | 10.8 |
Dolomitic aggregate | <0.1 | 3.8 | 6 |
Portland cement | 9.0 | 5.2 |
Type | Sample | Calcite | Dolomite | Quartz | Brucite | Microcline |
---|---|---|---|---|---|---|
A | 5bi-1 | 35 | 52 | - | 13 | - |
A | 5bi-2 | 27 | 66 | - | 7 | - |
A | P5bc | 56 | 40 | 2 | 2 | - |
B | 4a | 16 | 66 | 11 | 1 | 6 |
B | 13a | 18 | 59 | 15 | 1 | 7 |
B | P4a | 18 | 67 | 11 | <1 | 4 |
B | P6a | 19 | 65 | 11 | <1 | 4 |
B | P10a1 | 18 | 65 | 12 | <1 | 5 |
B | P10a2 | 26 | 55 | 13 | 1 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, E.; Alfonso, P.; Tauler, E. Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain). Minerals 2020, 10, 117. https://doi.org/10.3390/min10020117
Garcia E, Alfonso P, Tauler E. Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain). Minerals. 2020; 10(2):117. https://doi.org/10.3390/min10020117
Chicago/Turabian StyleGarcia, Encarnación, Pura Alfonso, and Esperança Tauler. 2020. "Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain)" Minerals 10, no. 2: 117. https://doi.org/10.3390/min10020117
APA StyleGarcia, E., Alfonso, P., & Tauler, E. (2020). Mineralogical Characterization of Dolomitic Aggregate Concrete: The Camarasa Dam (Catalonia, Spain). Minerals, 10(2), 117. https://doi.org/10.3390/min10020117