Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology
Abstract
1. Introduction
2. Geological and Metallogenic Setting of the Assarel Ore Deposit
2.1. Regional Geological Setting
2.2. Major Ore and Alteration Mineral Assemblages in the Panagyurishte District
- Magnetite-hematite (±ilmenite, rutile) ± bornite, chalcopyrite is an early mineral assemblage. Tarkian et al. [23] refer to this assemblage as “magnetite–chalcopyrite–bornite” at the Elatsite deposit, mentioning the hematite as a secondary phase formed on magnetite.
- Quartz–pyrite–chalcopyrite is the main Cu-bearing mineral association, related to propylitic, sericitic and transitional sericitic-propylitic alteration of the host rocks; it occurs as veinlets, small nests and disseminations.
- Quartz-molybdenite occurs in the inner parts of the deposits (spatially associated with the quartz-pyrite-chalcopyrite assemblage), sometimes in veinlets.
- Quartz-pyrite containing milky quartz and subhedral to euhedral pyrite aggregates; it locally occurs in veins and veinlets.
- Quartz–sphalerite–galena (pyrite, chalcopyrite) occurs as veins in the upper and marginal parts of deposits.
- A supergene alteration assemblage containing variable amounts of chalcocite, covellite, malachite, azurite, and Fe-hydroxide is also known from the porphyry Cu deposits.
2.3. The Assarel Porphyry Copper Deposit
3. Materials and Methods
4. Results
4.1. Ore and Hydrothermal Alteration Mineralogy
4.1.1. Chalcopyrite–Pyrite–Magnetite ± Bornite (CPM) Assemblage Associated with Propylitic Alteration
4.1.2. Chalcopyrite–Pyrite–Hematite (CPH) Assemblage Associated with Sericitic-Chloritic Alteration
4.1.3. Fine-Grained Pyrite–Chalcopyrite (PC) Assemblage Associated with Argillic Alteration
4.1.4. Quartz–Pyrite ± Chalcopyrite (QP) Assemblage Associated with Sericitic Alteration
4.2. Mode of Occurrence of Precious Metals and Associated Minerals
4.2.1. Gold Minerals
4.2.2. Silver Minerals
4.2.3. Platinum-Group Minerals
4.2.4. Nickel Minerals
4.2.5. Bismuth Minerals
4.2.6. Other Minerals
5. Discussion
5.1. Mineralization and Alteration
5.2. Precious Metals and Aspects of Ore-Forming Conditions
5.3. Implications of Precious Metals Distribution and for the Validation of 3D XRF-XCT Scanning
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sinclair, W.D. Porphyry deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposits—Types. District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5: St. John’s, NL, Canada, 2007; pp. 223–243. [Google Scholar]
- McFall, K.A.; Roberts, S.; Teagle, D.; Naden, J.; Lusty, P.; Boyce, A. The origin and distribution of critical metals (Pd, Pt, Te and Se) within the Skouries Cu–Au porphyry deposit, Greece. Appl. Earth Sci. 2016, 125, 100–101. [Google Scholar] [CrossRef]
- Crespo, J.; Reich, M.; Barra, F.; Verdugo, J.J.; Martinez, C. Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile. Minerals 2018, 8, 519. [Google Scholar] [CrossRef]
- Agorhom, E.A.; Skinner, W.; Zanin, M. Influence of gold mineralogy on its flotation recovery in a porphyry copper–gold ore. Chem. Eng. Sci. 2013, 99, 127–138. [Google Scholar] [CrossRef]
- Sadegh Safarzadeh, M.; Horton, M.; Van Rythoven, A.D. Review of Recovery of Platinum Group Metals from Copper Leach Residues and Other Resources. Miner. Process. Extr. Metall. Rev. 2018, 39, 1–17. [Google Scholar] [CrossRef]
- Zachariáš, J.; Pertold, Z.; Pudilová, M.; Zák, K.; Pertoldová, J.; Stein, H.; Markey, R. Geology and genesis of Variscan porphyry-style gold mineralization, Petráčkova hora deposit, Bohemian Massif, Czech Republic. Miner. Depos. 2001, 36, 517–541. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Eliopoulos, D.G. Mineralogical and geochemical characteristics of the Skouries porphyry-Cu-Au-Pd-Pt deposit (Greece): Evidence for the precious metal. In Mineral Deposit Research: Meeting the Global Challenge; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Gray, C.A.; Rythoven, A.D. A Comparative Study of Porphyry-Type Copper Deposit Mineralogies by Portable X-ray Fluorescence and Optical Petrography. Minerals 2020, 10, 431. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’Angelo, M.; Lee, R.G. Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications. Minerals 2020, 10, 473. [Google Scholar] [CrossRef]
- Kauppinen, T.; Khajehzadeh, N.; Haavisto, O. Laser-induced fluorescence images and Raman spectroscopy studies on rapid scanning of rock drillcore samples. Int. J. Miner. Process. 2014, 132, 26–33. [Google Scholar] [CrossRef]
- Haavisto, O.; Kauppinen, T.; Häkkänen, H. Laser-Induced Breakdown Spectroscopy for Rapid Elemental Analysis of Drillcore. IFAC Proc. Vol. 2013, 46, 87–91. [Google Scholar] [CrossRef]
- Wells, M.A.; Ramanaidou, E.R. Raman Spectroscopic Core Scanning for Iron Ore and BIF Characterization. In Proceedings of the 11th International Congress for Applied Mineralogy (ICAM); Dong, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 387–396. [Google Scholar] [CrossRef]
- Kyle, J.R.; Mote, A.S.; Ketcham, R.A. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia. Miner. Depos. 2008, 43, 519–532. [Google Scholar] [CrossRef]
- Munteanu, M.; Sädbom, S.; Paaso, J.; Bergqvist, M.; Arvanitidis, N.; Arvidsson, R.; Kolacz, J.; Bakalis, E.; Ivanov, D.; Grammi, K.; et al. X-MINE project (H2020): Testing the capabilities of X-ray techniques in drill core scanning and ore sorting. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Bergqvist, M.; Landström, E.; Hansson, A.; Luth, S. Access to geological structures, density, minerals and textures through novel combination of 3D tomography, XRF and sample weight. ASEG Ext. Abstr. 2019, 2019. [Google Scholar] [CrossRef]
- Sahlström, F.; Jonsson, E.; Högdahl, K.; Ghaderidosst, J.; Luth, S.; Lynch, E.; Landström, E.; Sädbom, S. Textural evolution of the Lovisa Zn-Pb-(Ag) deposit, Bergslagen, Sweden: Insights from microscopy and 3D X-ray tomography. In Proceedings of the 15th Biennial SGA Biennial Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 443–446. [Google Scholar]
- Luth, S.; Sahlström, F.; Jansson, N.; Jönberger, J.; Sädbom, S.; Landström, E.; Bergqvist, M.; Arvanitidis, N.; Arvidsson, R. Building 3D geomodels using XRF-XCT-generated drillcore data: The Lovisa-Håkansboda base metal-and Stråssa-Blanka iron deposits in Bergslagen, Sweden. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 3, pp. 1282–1285. [Google Scholar]
- Högdahl, K.; Johnsson, E.; Roško, S.; Wlodek, A.; Zack, T.; Landström, E.; Lynch, E.P.; Sahlström, F.; Tsitsanis, P.; Bacalis, V. Ore mineralogy, trace element distribution and 3D X-ray tomography of the polymetallic sulphide deposits at Mavres Petres and Piavitsa, Greece. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 279–282. [Google Scholar]
- Andersson, J.; Warlo, M.; Bauer, T.E.; Bergqvist, M.; Hansson, A. Structural controls on sulphide (re)-distribution in Kiruna. In Proceedings of the 15th Biennial SGA Meeting, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 115–118. [Google Scholar]
- Delgado Yáñez, D. Geochemical and Mineralogical Comparison of XRT-XRF Scanning Technology Versus Traditional Analysis of Drill Core from the Assarel Porphyry Copper-Gold Deposit (Panagyurishte District, Bulgaria). Master’s Thesis, Uppsala University, Uppsala, Sweden, 2020; p. 133. [Google Scholar]
- Berza, T.; Constantinescu, E.; Vlad, S.N. Upper Cretaceous magmatic series and associated mineralisation in the Carpatho-Balkan orogeny. Resour. Geol. 1998, 48, 291–306. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Stein, H. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenic Belt. Miner. Depos. 2002, 37, 541–567. [Google Scholar] [CrossRef]
- Tarkian, M.; Hunken, U.; Tokmakchieva, M.; Bogdanov, K. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner. Depos. 2003, 38, 261–281. [Google Scholar] [CrossRef]
- Handler, R.; Neubauer, F.; Velichkova, S.H. 40Ar/39Ar age constraints on the timing of magmatism and post-magmatic cooling in the Panagyurishte region, Bulgaria. Bull. Suisse Mineral. Petrogr. 2004, 84, 119–132. [Google Scholar]
- Von Cotta, B. Erzlagerstätten im Banat und in Serbien; W. Braumüller: Vienna, Austria, 1864; p. 108. [Google Scholar]
- Kamenov, K.B.; Yanev, Y.; Nedialkov, R.; Moritz, R.; Peytcheva, I.; von Quadt, A.; Stoykov, S.; Zartova, A. Petrology of Upper Cretaceous island-arc ore-magmatic centers from Central Srednogorie, Bulgaria: Magma evolution and paths. Geochem. Mineral. Petrol. 2007, 45, 39–77. [Google Scholar]
- Popov, P.; Strashimirov, S.; Popov, K.; Petrunov, R.; Kanazirski, M.; Tzonev, D. Main features in geology and metallogeny of the Panagyurishte ore region. An. Univ. Min. Geol. 2003, 46, 119–125. [Google Scholar]
- Popov, P.; Strashimirov, S.; Popov, K.; Kanazirski, M.; Bogdanov, K.; Radichev, R.; Stoykov, S. Geology and Metallogeny of the Panagyurishte ore Region; St. Ivan Rilski University of Mining and Geology: Sofia, Bulgaria, 2012; pp. 191–228. [Google Scholar]
- Zimmerman, A.; Stein, H.J.; Hannah, J.L.; Koželj, D.; Bogdanov, K.; Berza, T. Tectonic configuration of the Apuseni-Banat--Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re-Os molybdenite ages. Miner. Depos. 2008, 43, 1–21. [Google Scholar] [CrossRef]
- Strashimirov, S.; Bogdanov, K.; Popov, K.; Kehayov, R. Porphyry system of the Panagyurishte ore region. In Cretaceous Porphyry-Epithermal Systems of the Srednogorie Zone, Bulgaria; Society of Economic Geologists Guidebook Series; Bogdanov, K., Strashimirov, S., Eds.; Society of Economic Geologists: Sofia, Bulgaria, 2003; Volume 36, pp. 47–78. [Google Scholar]
- Chambefort, I.; Moritz, R. Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria. Miner. Depos. 2006, 41, 259–280. [Google Scholar] [CrossRef]
- Boccaletti, M.; Manetti, P.; Peccerillo, A. The Balkanids as an instance of back-arc thrust belt: Possible relation with the Hellenids. Geol. Soc. Am. Bull. 1974, 85, 1077–1084. [Google Scholar] [CrossRef]
- Drew, L.J. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits—Applications to Central Europe. In U.S. Geological Survey Scientific Investigations Report 2005-5272; U.S. Geological Survey: Reston, VA, USA, 2006; p. 36. Available online: https://pubs.usgs.gov/sir/2005/5272/index.html (accessed on 9 September 2020).
- Gallhofer, D.; von Quadt, A.; Peytcheva, I.; Schmid, S.M.; Heinrich, C.A. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 2015, 34, 1813–1836. [Google Scholar] [CrossRef]
- Chambefort, I.; Moritz, R.; von Quadt, A. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria. Miner. Depos. 2007, 42, 665–690. [Google Scholar] [CrossRef]
- Dabovski, C.; Harkovska, A.; Kamenov, B.; Mavrudchiev, B.; Stanisheva-Vassileva, G.; Yanev, Y. A geodynamic model of the Alpine magmatism in Bulgaria. Geol. Balc. 1991, 21, 3–15. [Google Scholar]
- Strashimirov, S.; Petrunov, R.; Kanazirski, M. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria. Miner. Depos. 2002, 37, 587–598. [Google Scholar] [CrossRef]
- Zartova, A.; Nedialkov, R.; Moritz, R. Petrology of magmatism of the Assarel copper porphyry deposit. In Proceedings of the Annual Conference Geology 2004, Sofia, Bulgaria, 16–17 December 2004; pp. 113–115. [Google Scholar]
- Popov, P.; Popov, K. General geologic and metallogenic features of the Panagyurishte ore region. In Geodynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 1–7. [Google Scholar]
- Kouzmanov, K.; Moritz, R.; von Quadt, A.; Chiaradia, M.; Peytcheva, I.; Fontignie, D.; Ramboz, C.; Bogdanov, K. Late Cretaceous porphyry Cu and epithermal Cu-Au association in the Southern Panagyurishte District, Bulgaria: The paired Vlaykov Vruh and Elshitsa deposits. Miner. Depos. 2009, 44, 611–646. [Google Scholar] [CrossRef]
- von Quadt, A.; Moritz, R.; Peytcheva, I.; Heinrich, C. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralisation in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria. Ore Geol. Rev. 2005, 27, 95–127. [Google Scholar] [CrossRef]
- Peytcheva, I.; von Quadt, A.; Heinrich, C.A.; Nedialkov, R.; Neubeaur, F.; Moritz, R. Medet and Assarel Cu-porphyry deposits in Central Srednogorie, SE Europe: Were they a common magmatic and hydrothermal system? In Proceedings of the 9th Biennial SGA Meeting, Dublin, Ireland, 20–23 August 2007; pp. 881–884. [Google Scholar]
- Bogdanov, B.D. Porphyry-copper deposits of Bulgaria. Int. Geol. Rev. 1983, 25, 178–188. [Google Scholar] [CrossRef]
- Popov, P.; Petrunov, R.; Kohachev, V.; Stashimirov, S.; Kanazirski, M. Elatsite-Chelopech ore field. In Geodynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 8–18. [Google Scholar]
- Popov, P.; Strashimirov, S.; Kanazirski, M. Assarel-Medet ore field. In Geodinynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 19–25. [Google Scholar]
- Popov, K. 3D modelling of the geochemical associations in the Assarel porphyry copper deposit (Bulgaria). Comptes Rendus l’Acad. Bulg. Sci. 2016, 69, 1175–1182. [Google Scholar]
- Tsonev, D.; Popov, K.; Kanazirski, M. Krasen-Petelovo ore field. In Geodinynamic and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 26–31. [Google Scholar]
- Tsonev, D.; Popov, K.; Kanazirski, M.; Stashimirov, S. Radka ore field. In Geodynamics and Ore Deposits Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Guide to Excursions A and C. ABCD-GEODE Workshop. Borovets, Bulgaria, Guide to Excursions; Strashimirov, S., Popov, P., Eds.; Publishing house “St. Ivan Rilski”, University of Mining and Geology “St. Ivan Rilski”: Sofia, Bulgaria, 2000; pp. 32–39. [Google Scholar]
- Bogdanov, K.; Ciobanu, C.L.; Cook, N.J. Porphyry-epithermal Bi-Te-Se assemblages as a guide for gold ore enrichment. In Au-Ag-Telluride Deposits of the Golden Quadritrilateral, Apuseni Mt., Romania; Intern. Field Workshop of IGCP Project 486: Alba Iulia, Romania, 2004; pp. 211–214. [Google Scholar]
- Nedialkov, R.; Zartova, A.; Moritz, R.; Bussey, F.; von Quadt, A.; Peytcheva, I.; Fontignie, D. Magmatic petrology and exsolution of ore bearing fluid in the magmatic center Assarel, Central Srednogorie, Bulgaria. In Proceedings of the XVIII Congress CBGA, Belgrade, Serbia, 3–6 September 2006; pp. 411–414. [Google Scholar]
- Hikov, A. Geochemistry of hydrothermally altered rocks from the Assarel porphyry copper deposit, Central Srednogorie. Geol. Balc. 2013, 42, 3–28. [Google Scholar]
- Sillitoe, R.H. The Carpathian-Balkan Porphyry Copper Belt—A Cordilleran Perspective. In European Copper Deposits, Proceedings of International Symposium, Bor, Yugoslavia, 18–22 September 1979; Jankovic, S., Sillitoe, R.H., Eds.; Department of Economic Geology, Faculty of Mining and Geology, Belgrade University: Belgrade, Serbia, 1980; pp. 26–34. [Google Scholar]
- Tarkian, M.; Stribrny, B. Platinum-group elements in porphyry copper deposits: A reconnaissance study. Miner. Petrol. 1999, 65, 161–183. [Google Scholar] [CrossRef]
- Nedialkov, R.; Zartova, A.; Moritz, R. Magmatic rocks and evolution of the Late Cretaceous magmatism in the region of the Asarel porphyry copper deposit, Central Srednogorie, Bulgaria. Rev. Bulg. Geol. Soc. 2007, 68, 57–76. [Google Scholar]
- Iliev, K.; Katckov, N. Geological Map of Bulgaria—Panagyurishte; 1: 100 000-Scale; Bulgarian Committee on Geology, Enterprise for Geophysical Studies and Geological Mapping: Sofia, Bulgaria, 1990. [Google Scholar]
- Gifkins, C.; Herrmann, W.; Large, R. Altered Volcanic Rocks. A Guide to Description and Interpretation; Centre for Ore Deposit Research, University of Tasmania: Tasmania, Australia, 2005; p. 275. [Google Scholar]
- Thompson, A.J.B.; Thompson, J.F.H. Atlas of Alteration. A Field and Petrographic Guide to Hydrothermal Alteration Minerals; Geological Association of Canada, Mineral Deposits Division: St. John’s NL, Canada, 1996; p. 119. [Google Scholar]
- Singer, D.A.; Berger, V.I.; Moring, B.C. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008; Open-File Report 2008-1155; United States Geological Survey: Reston, VA, USA, 2008; p. 45. Available online: https://pubs.usgs.gov/of/2008/1155/ (accessed on 9 September 2020).
- Seedorf, E.; Dilles, J.H.; Proffett, J.M., Jr.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists, INC.: Littleton, CO, USA, 2005; pp. 251–298. Available online: https://pubs.usgs.gov/of/2008/1155/ (accessed on 9 September 2020).
- Zhao, J.; Brugger, J.; Chen, G.; Ngothai, Y.; Pring, A. Experimental study of the formation of chalcopyrite and bornite via the sulfidation of hematite: Mineral replacements with a large volume increase. Am. Miner. 2014, 99, 343–354. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability; European Commission: Brussels, Belgium, 2020; COM (2020), 474 Final; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52020DC0474&from=EN (accessed on 9 September 2020).
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P. and the participants of IGCP-486. Understanding gold-(silver)-telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioacă, M.-E.; Munteanu, M.; Lynch, E.P.; Arvanitidis, N.; Bergqvist, M.; Costin, G.; Ivanov, D.; Milu, V.; Arvidsson, R.; Iorga-Pavel, A.; et al. Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals 2020, 10, 946. https://doi.org/10.3390/min10110946
Cioacă M-E, Munteanu M, Lynch EP, Arvanitidis N, Bergqvist M, Costin G, Ivanov D, Milu V, Arvidsson R, Iorga-Pavel A, et al. Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals. 2020; 10(11):946. https://doi.org/10.3390/min10110946
Chicago/Turabian StyleCioacă, Mihaela-Elena, Marian Munteanu, Edward P. Lynch, Nikolaos Arvanitidis, Mikael Bergqvist, Gelu Costin, Desislav Ivanov, Viorica Milu, Ronald Arvidsson, Adina Iorga-Pavel, and et al. 2020. "Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology" Minerals 10, no. 11: 946. https://doi.org/10.3390/min10110946
APA StyleCioacă, M.-E., Munteanu, M., Lynch, E. P., Arvanitidis, N., Bergqvist, M., Costin, G., Ivanov, D., Milu, V., Arvidsson, R., Iorga-Pavel, A., Högdahl, K., & Stoilov, V. (2020). Mineralogical Setting of Precious Metals at the Assarel Porphyry Copper-Gold Deposit, Bulgaria, as Supporting Information for the Development of New Drill Core 3D XCT-XRF Scanning Technology. Minerals, 10(11), 946. https://doi.org/10.3390/min10110946