Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization and Preparation of Mine Tailing
2.2. Plants Species
2.3. Potted Experiments
2.4. Sample Preparation and ICP-OES Measurements
2.5. Heavy Metal Determination
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B. Mine Wastes: Characterization, Treatment and Environmental Impacts, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sernageomin. Available online: https://www.sernageomin.cl/datos-publicos-deposito-de-relaves/ (accessed on 10 August 2020).
- Radziemska, M.; Versova, M.D.; Baryla, A. Phytostabilization—Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Int. J. Environ. Res. Public Health 2017, 14, 958. [Google Scholar] [CrossRef] [PubMed]
- Ochard, C.; León-Lobos, O.; Ginocchio, R. Phytostabilization of massive mine wastes with native phytogenic resources: Potential for sustainable use and conservation of the native flora in north-central Chile. Cienc. Inv. Agric. 2009, 35, 3. [Google Scholar] [CrossRef]
- Frascoli, F.; Hudson-Edwards, K.A. Geochemistry, Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments. Minerals 2018, 8, 42. [Google Scholar] [CrossRef]
- Tapia, J.; Valdés, J.; Orrego, R.; Tchernitchin, A.; Dorador, C.; Bolados, A.; Harrod, C. Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: Health risk implications. PeerJ 2018, 6, e4699. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Zohaib Anjum, M. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019, 250, 109557. [Google Scholar] [CrossRef]
- David, A.J.; Leventhal, J.S. Chapter 2: Bioavailability of metals. In Book Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models; Open-File Report; Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 1995; pp. 95–831. [Google Scholar]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead Uptake, Toxicity, and Detoxification in Plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [CrossRef]
- Kumar, P.B.A.N.; Dushenkov, V.; Motoo, H.; Raskin, I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R. Lead Toxicity in Plants. Braz. J. Plant Physiol. 2005, 17. [Google Scholar] [CrossRef]
- WHO. Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Oorts, K. Copper. In Heavy Metals in Soils. Environmental Pollution; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 22. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995; ISBN 9780124735439. [Google Scholar]
- Gupta, U. Deficient, Sufficient, and Toxic Concentrations of Molybdenum in Crops. In Molybdenum in Agriculture; Gupta, U., Ed.; Cambridge University Press: Cambridge, UK, 1997; pp. 150–159. [Google Scholar] [CrossRef]
- Anning, A.K.; Akoto, R. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides. Ecotoxicol. Environ. Saf. 2018, 148, 97–104. [Google Scholar] [CrossRef]
- Wang, L.; Yuehua, B.J.; Hu, Y.; Liu, R.; Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Rangel, A.; Castro, P. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Lam, E.; Keith, B.; Montofré, I. Copper Uptake by Adesmia atacamensis in a Mine Tailing in an Arid Environment. Air Soil Water Res. 2018, 11. [Google Scholar] [CrossRef]
- Misra, V.; Tiwari, A.; Shukla, B.; Seth, C.S. Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ. Monit. Assess. 2009, 155, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Mishra, T.; Pandey, V. Phytoremediation of Red Mud Deposits through Natural Succession, Chapter 16. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 409–424. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Chen, Y.; Zhang, Z. Transfer of Heavy Metals from the polluted Rhizosphere Soil to Celosia argentea L., in Copper Mine Tailings. Hortic. Environ. Biotechnol. 2017, 58, 93–100. [Google Scholar] [CrossRef]
- Nirola, R.; Megharaj, M.; Palanisami, T.; Aryal, R.; Venkateswarlu, K.; Naidu, R. Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine—A quest for phytostabilization. J. Sustain. Min. 2015, 14, 115–123. [Google Scholar] [CrossRef]
- Alcantara, H.J.P.; Doronila, A.I.; Nicolas, M.; Ebbs, S.D.; Kolev, S.D. Growth of selected plants species in biosolids-amended mine tailings. Miner. Eng. 2015, 80, 25–32. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, I.C.A.; Paz-Ferreiro, J.; Beesley, L. Cadmiun, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ. Sci. Pollut. Res. 2015, 22, 17606–17614. [Google Scholar] [CrossRef]
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J. Geochem. Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Afonso, T.F.; Demarco, C.F.; Pieniz, S.; Quadro, M.S.; Camargo, F.A.O.; Andreazza, R. Bioprospection of indigenous flora grown in copper mining tailing area for phytoremediation of metals. J. Environ. Manag. 2019, 256, 109953. [Google Scholar] [CrossRef]
- ASTM E11—20. Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves. In American Society for Testing and Materials Standard; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- United Stated Department of Agriculture (USDA). Forest Service. Available online: https://www.fs.fed.us/wildflowers/Native_Plant_Materials/Native_Gardening/hardinesszones.shtml (accessed on 21 October 2020).
- Chileflora. Available online: http://www.chileflora.com/Florachilena/FloraSpanish/PIC_NORTHERN_PLANTS_0.php (accessed on 21 October 2020).
- Mellen, J.J.; Baijnath, H.; Odhav, B. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J. Environ. Sci. Health A 2009, 44, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Embrandiri, A.; Rupani, P.F.; Shahadat, M.; Singh, R.P.; Ismail, S.A.; Ibrahim, M.H.; Kadir Abd, M.O. The phytoextraction potential of selected vegetable plants from soil amended with oil palm decanter cake. Int. J. Recycl. Org. Waste Agric. 2017, 6, 37–45. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, X.; Cui, Z. Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol. Environ. Saf. 2019, 180, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Calderón, C.; Alcaide, O.; Li Kao, J. Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile. Rev. Chil. Hist. Nat. 2008, 81, 489–499. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Specific gravity | 2.82 |
Solid concentration in weight % | 83 |
Granulometry d50 micrometers | 0.046 |
Granulometry d20 micrometers | 0.005 |
Granulometry d80 micrometers | 0.240 |
Element | Concentration mg·kg−1 Dry Tailing ± IC |
---|---|
Cu | 1582.22 ± 78.31 |
Mo | 3.86 ± 0.17 |
Pb | 228.15 ± 2.79 |
Zn | 86.98 ± 3.15 |
Ni | 9.46 ± 0.25 |
Cd | Under detection limit |
Cr | 15.46 ± 0.54 |
Element | Concentration |
---|---|
Nitrogen | 0.1% w/w |
Phosphorous | 0.0% w/w |
Potassium | 3.0% w/w |
Arsenic | <0.5 mg·kg−1 |
Cadmium | <0.5 mg·kg−1 |
Lead | <1 mg·kg−1 |
Mercury | <0.5 mg·kg−1 |
Element | Plant Species | Oxalis gigantea | Cistanthe grandiflora | Puya berteroniana | Solidago chilensis |
---|---|---|---|---|---|
Mo | TF | 1.03 ± 0.03 | 0.53 ± 0.03 | 0.75 ± 0.02 | 1.82 ± 0.06 |
BCFroots | 0.47 ± 0.01 | 0.78 ± 0.03 | 1.03 ± 0.01 | 2.57 ± 0.03 | |
BCFaerial | 0.49 ± 0.00 | 0.42 ± 0.01 | 0.73 ± 0.02 | 4.68 ± 0.17 | |
% RE | 16.38 ± 0.75 | 15.86 ± 0.34 | 19.48 ± 0.53 | 28.70 ± 1.57 | |
Pb | TF | 0.27 ± 0.01 | 0.13 ± 0.01 | 0.09 ± 0.01 | 0.41 ± 0.01 |
BCFroots | 0.09 ± 0.01 | 0.19 ± 0.01 | 0.46 ± 0.01 | 0.72 ± 0.01 | |
BCFaerial | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.04 ± 0.00 | 0.30 ± 0.01 | |
% RE | 7.01 ± 0.87 | 8.78 ± 0.56 | 7.62 ± 0.45 | 4.41 ± 0.22 | |
Cu | TF | 0.26 ± 0.01 | 0.12 ± 0.00 | 0.09 ± 0.00 | 0.52 ± 0.01 |
BCFroots | 0.16 ± 0.01 | 0.24 ± 0.01 | 0.90 ± 0.02 | 0.92 ± 0.03 | |
BCFaerial | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.08 ± 0.01 | 0.48 ± 0.02 | |
% RE | 8.63 ± 0.67 | 8.72 ± 0.78 | 15.59 ± 1.03 | 14.91± 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazo, P.; Lazo, A. Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings. Minerals 2020, 10, 1020. https://doi.org/10.3390/min10111020
Lazo P, Lazo A. Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings. Minerals. 2020; 10(11):1020. https://doi.org/10.3390/min10111020
Chicago/Turabian StyleLazo, Pamela, and Andrea Lazo. 2020. "Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings" Minerals 10, no. 11: 1020. https://doi.org/10.3390/min10111020
APA StyleLazo, P., & Lazo, A. (2020). Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings. Minerals, 10(11), 1020. https://doi.org/10.3390/min10111020