Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S
Abstract
:1. Introduction
2. Geological Background
3. Analytical Methods
4. Results
5. Discussion
5.1. MORBs from the SMAR at 18–21°S Originated from a Heterogeneous Mantle Source
5.2. Mixing Components in the MORBs from the SMAR at 18–21°S
5.2.1. EM-Type Components
5.2.2. HIMU-Type Components
5.3. Geodynamic Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.F.G. The genesis of Mid–Ocean ridge basalt. Earth Sci. Rev. 1982, 18, 1–57. [Google Scholar] [CrossRef]
- Le Roux, P.J.; le Roex, A.L.; Schilling, J.G. Crystallization processes beneath the southern Mid–Atlantic Ridge (40–55° S), evidence for high–pressure initiation of crystallization. Contrib. Mineral. Petrol. 2002, 142, 582–602. [Google Scholar] [CrossRef]
- Sun, S.S.; Nesbit, R.W.; Sharaskin, A. Chemical characteristics of mid–ocean ridge basalts. Earth Planet. Sci. Lett. 1979, 45, 119–138. [Google Scholar] [CrossRef]
- Wood, D.A.; Joron, J.L.; Treuil, M.; Norry, M.; Tarney, J. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol. 1979, 70, 319–339. [Google Scholar] [CrossRef]
- Schilling, J.G. Upper mantle heterogeneities and dynamics. Nature 1985, 314, 62–67. [Google Scholar] [CrossRef]
- Graham, D.W.; Jenkins, W.J.; Schilling, J.G.; Thompson, G.; Kurz, M.D.; Humphris, S.E. Helium isotope geochemistry of mid–ocean ridge basalts from the South Atlantic. Earth Planet. Sci. Lett. 1992, 110, 133–147. [Google Scholar] [CrossRef]
- Andres, M.; Blichert–Toft, J.; Schilling, J.G. Hafnium isotopes in basalts from the southern Mid–Atlantic Ridge from 40° S to 55° S: Discovery and Shona plume–ridge interactions and the role of recycled sediments. Geochem. Geophys. Geosyst. 2002, 3, 1–25. [Google Scholar] [CrossRef]
- Hoernle, K.; Hauff, F.; Kokfelt, T.F.; Haase, K.; Garbe–Schonberg, D.; Werner, R. On– and off–axis chemical heterogeneities along the South Atlantic Mid–Ocean–Ridge (5–11° S): Shallow or deep recycling of ocean crust and/or intraplate volcanism? Earth Planet. Sci. Lett. 2011, 306, 86–97. [Google Scholar] [CrossRef]
- Skolotnev, S.G.; Peive, A.A.; Belyatskii, B.V. Geochemical and isotopic features of basalts in the axial Mid–Atlantic Ridge near the Martin Vaz Fracture Zone, South Atlantic (19°–20° S). Dokl. Earth Sci. 2006, 407, 401–407. [Google Scholar] [CrossRef]
- Turner, S.; Kokfelt, T.; Hauff, F.; Hasse, K.; Lundstrom, C.; Hoernle, K.; Yeo, I.; Devey, C. Mid–ocean ridge basalt generation along the slow–spreading, South Mid–Atlantic Ridge (5–11° S): Inferences from 238U–230Th–226Ra disequilibria. Geochim. Cosmochim. Acta. 2015, 169, 152–166. [Google Scholar] [CrossRef]
- Douglass, J.; Schilling, J.G. Systematics of three–component, pseudo–binary mixing lines in 2D isotope ratio space representations and implications for mantle plume–ridge interaction. Chem. Geol. 2000, 163, 1–23. [Google Scholar] [CrossRef]
- Zindler, A.H.; Staudigel, H.; Batiza, R. Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth Planet. Sci. Lett. 1984, 70, 175–195. [Google Scholar] [CrossRef]
- Gurnis, M. Quantitative bounds on the size spectrum of isotopic heterogeneity within the mantle. Nature 1986, 323, 317–320. [Google Scholar] [CrossRef]
- Graham, D.W.; Zindler, A.; Kurz, M.D.; Jenkins, W.J.; Batiza, R.; Staudigel, H. He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts. Contrib. Miner. Petrol. 1988, 99, 446–463. [Google Scholar] [CrossRef]
- Schilling, J.G.; Thompson, G.; Kingsley, R.; Humphris, S. Hotspot–migrating ridge interaction in the South Atlantic. Nature 1985, 313, 187–191. [Google Scholar] [CrossRef]
- Douglass, J.; Schilling, J.G.; Fontignie, D. Plume–ridge interactions of the Discovery and Shona mantle plumes with the southern Mid–Atlantic Ridge (40°–55° S). J. Geophys. Res. Solid Earth 1999, 104, 2941–2962. [Google Scholar] [CrossRef]
- Vlastélic, I.; Dosso, L. Initiation of a plume–ridge interaction in the South Pacific recorded by high–precision Pb isotopes along Hollister Ridge. Geochem. Geophys. Geosyst. 2005, 6, 1–13. [Google Scholar] [CrossRef]
- Singh, S.C.; Carton, H.; Chauhan, A.S.; Androvandi, S.; Davaille, A.; Dyment, J.; Cannat, M.; Hananto, N.D. Extremely thin crust in the Indian ocean possibly resulting from plume–ridge interaction. Geophys. J. Int. 2011, 1, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Herbrich, A.; Hauff, F.; Hoernle, K.; Werner, R.; Garbe–Schonberg, D.; White, S. A 1.5 Ma record of plume–ridge interaction at the Western Galápagos Spreading Center (91°40′–92°00′ W). Geochim. Cosmochim. Acta. 2016, 185, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Fontignie, D.; Schilling, J.G. Mantle heterogeneities beneath the South Atlantic: A Nd–Sr–Pb isotope study along the Mid–Atlantic Ridge (3° S–46° S). Earth Planet. Sci. Lett. 1996, 142, 209–221. [Google Scholar] [CrossRef]
- Ding, X.; Li, J.; Zheng, C.Q.; Huang, W.; Cui, N.Y.; Dou, Y.G.; Sun, Z.L. Chemical composition of the basalts on East Pacific rise (1.5° N~1.5° S) and South Mid–Atlantic ridge (13.2° S). Marin. Geol. Quat. Geol. 2014, 34, 57–66. [Google Scholar] [CrossRef]
- Hanan, B.B.; Kingsley, R.H.; Schilling, J. Pb isotope evidence in the South Atlantic for migrating ridge–hotspot interactions. Nature 1986, 322, 137–144. [Google Scholar] [CrossRef]
- Qi, Q.; Lai, Z.Q.; Long, X.J.; Leng, C.X.; Zhao, G.T. Characteristics and Petrogenesis Significance of Plagioclases in Basalt from the South Mid–Atlantic Ridge. Perio. China Univ. Ocean. 2016, 46, 105–112, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Stakes, D.S.; Shervais, J.W.; Hopson, C.A. The volcanic–tectonic cycle of the FAMOUS and AMAR Valleys, Mid–Atlantic Ridge (36°47′ N): Evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections, AMAR 3. J. Geophys. Res. Solid Earth 1984, 89, 6995–7028. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global seafloor topography from satellite altimetry and ship depth soundings. Science 1997, 277, 1957–1962. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, H.; Hanyu, T.; Chang, Q.; Kimura, J.I.; Nichols, A.R.L.; Tatsumi, Y. The petrology and geochemistry of St. Helena alkali basalts: Evaluation of the oceanic crust–recycling model for HIMU OIB. J. Petrol. 2011, 52, 791–838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.S.; Tanimoto, T. Ridges, hotspots and their interaction as observed in seismic velocity maps. Nature 1992, 355, 45–49. [Google Scholar] [CrossRef]
- Zhang, H.T. Mid–Oceanic Ridge Basalts (MORBS) Chemistry and Characteristics of Plagioclase–Hosted Melt Inclusions in the South Atlantic Ridge 19° S and Implications for Magmatic Processes. Master’s Thesis, First Institute of Oceanography SOA, Qingdao, China, 2015. [Google Scholar]
- Douglass, J.; Schilling, J.; Fontignie, D. The Discovery and Shona mantle plumes and the LO–MU component: An inexorable connection. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 1996. [Google Scholar]
- Zhong, Y.; Liu, W.L.; Sun, Z.L.; Yakymchuk, C.; Ren, F.F.; Liu, J.N.; Li, W.; Ma, Y.L.; Xia, B. Geochemistry and Mineralogy of Basalts from the South Mid–Atlantic Ridge (18.0°–20.6° S): Evidence of a Heterogeneous Mantle Source. Minerals 2019, 9, 659. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q. Petrogeochemical Characteristics Comparison and Implication for Magmatic Processes of the MORBs between SAR and SWIR. Master’s Thesis, Ocean University of China, Qingdao, China, 2015. [Google Scholar]
- Encyclopædia Britannica. Mid-Atlantic Ridge. 2020. Available online: https://www.britannica.com/place/Mid-Atlantic-Ridge (accessed on 8 August 2018).
- Murton, B.J.; Rona, P.A. Carlsberg ridge and Mid–Atlantic ridge: Comparison of slow spreading Centre analogues. Deep Sea Res. Part II 2015, 121, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Guo, S.S.; Pang, K.L.; Luo, Z.H. Fungi associated with chimney and sulfide samples from a South Mid–Atlantic Ridge hydrothermal site: Distribution, diversity and abundance. Deep Sea Res. Part. I 2017, 123, 48–55. [Google Scholar] [CrossRef]
- Moreira, M.; Staudacher, T.; Sarda, P.; Schilling, J.G.; Allégre, C.J. A primitive plume neon component in MORB: The Shona–Ridge anomaly, South Atlantic (51–52° S). Earth Planet. Sci. Lett. 1995, 133, 367–377. [Google Scholar] [CrossRef]
- Sarda, P.; Moreira, M.; Staudacher, T.; Schilling, J.G.; Allégre, C.J. Rare gas systematics on the southernmost Mid–Atlantic Ridge: Constraints on the lower mantle and the Dupal source. J. Geophys. Res. Solid Earth 2000, 105, 5973–5996. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Maas, R.; Sushchevskaya, N.M.; Norman, M.D.; Cartwright, I.; Peyve, A.A. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology 2001, 29, 243. [Google Scholar] [CrossRef]
- Cande, S.C.; Kent, D.V. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. Solid Earth 1992, 97, 13917–13951. [Google Scholar] [CrossRef]
- Kawabata, H.; Hanyu, T. Magmatic processes for producing the variations from ankaramites to phenocryst–poor basalts: An example from St. Helena Island. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 5–8 December 2005. [Google Scholar]
- Morgan, W.J. Convection plumes on the lower mantle. Nature 1971, 230, 42–43. [Google Scholar] [CrossRef]
- Emery, K.O.; Uchupi, E. The Geology of the Atlantic Ocean. Geol. Foeren. Stockholm Foerh. 1984, 108, 197–198. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; De Jong, J.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.; et al. High–precision isotopic characterization of USGS reference materials by TIMS and MC–ICP–MS. Geochem. Geophys. Geosyst. 2006, 7, 139–149. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Hanano, D.; Silva, I.N.; Barling, J.; Pretorius, W.; Maerschalk, C.; Mattielli, N. Hf isotope compositions of U.S. Geological Survey reference materials. Geochem. Geophys. Geosyst. 2007, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.R. A large–scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Hart, S.R. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth Planet. Sci. Lett. 1988, 90, 273–296. [Google Scholar] [CrossRef]
- Choi, S.H.; Mukasa, S.B.; Kwon, S.T.; Andronikov, A.V. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem. Geol. 2006, 232, 134–151. [Google Scholar] [CrossRef]
- Sun, S.S. Lead isotopic study of young volcanic rocks from mid–ocean ridges, ocean islands and island arcs. Phil. Trans. R. Soc. Lond. 1980, A297, 409–445. [Google Scholar] [CrossRef]
- Hoernle, K.A.; Tilton, G.R. Sr–Nd–Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: Applications to magma genesis and evolution. Schweiz. Mineral. Petrogr. Mitt. 1991, 71, 3–18. [Google Scholar] [CrossRef]
- Hoernle, K.A.J. Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): Implications for crustal recycling and assimilation. J. Petrol. 1998, 39, 859–880. [Google Scholar] [CrossRef]
- Rehkamper, M.; Hofmann, A.W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 1997, 147, 93–106. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Rollinson, H. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical: London, UK, 1993; p. 240. ISBN 0582218632. [Google Scholar]
- Salters, V.J.M.; White, W.M. Hf isotope constraints on mantle evolution. Chem. Geol. 1998, 145, 447–460. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Everard, J.L.; Crawford, A.J.; Varne, R.; Eggins, S.M.; Lanyon, A.R. Enriched End-member of Primitive MORB Melts: Petrology and Geochemistry of Glasses from Macquarie Island (SW Pacific). J. Petrol. 2000, 41, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, P.J.; le Roex, A.L.; Schilling, J.G.; Shimizu, N.; Perkins, W.W.; Pearce, N.J.G. Mantle heterogeneity beneath the Southern Mid–Atlantic Ridge: Trace element evidence for contamination of ambient asthenosphere mantle. Earth Planet. Sci. Lett. 2002, 203, 479–499. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 528–548. [Google Scholar] [CrossRef]
- Tatsumoto, M.; Nakamura, Y. DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geochem. Cosmochem. Acta 1991, 55, 3697–3708. [Google Scholar] [CrossRef]
- Weaver, B.L. Trace element evidence for the origin of ocean–island basalts. Geology 1991, 19, 123–126. [Google Scholar] [CrossRef]
- Chauvel, C.; Hofmann, A.W.; Vidal, P. HIMU–EM: The French Polynesian connection. Earth Planet. Sci. Lett. 1992, 110, 99–119. [Google Scholar] [CrossRef]
- Hauri, E.H.; Shimizu, N.; Dieu, J.J.; Hart, S.R. Evidence for hotspot–related carbonatite metasomatism in the oceanic upper mantle. Nature 1993, 365, 221–227. [Google Scholar] [CrossRef]
- Willbold, M.; Stracke, A. Upper and lower continental crust in the sources of ocean island basalts—isotopic and chemical constraints. Geochim. Cosmochim. Acta 2006, 70, A702. [Google Scholar] [CrossRef]
- Chauvel, C.; Lewin, E.; Carpentier, M.; Arndt, N.T.; Marini, J.C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 2008, 1, 64–67. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A.; Hendry, G.L.; Parry, S.J. An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach. Philos. Trans. R. Soc. A Math. Phys. Sci. 1984, 310, 549–590. [Google Scholar] [CrossRef]
- Alibert, C. Mineralogy and geochemistry of a basalt from Site 738: Implications for the tectonic history of the southernmost part of the Kerguelen Plateau. In Proceedings of the Ocean Drilling Program, Scientific Results; Barron, J., Larsen, B., Eds.; Publications Distribution Center: Texas, TX, USA, 1991; Volume 119, pp. 293–297. ISBN 978-000-884-588-9. [Google Scholar]
- Mahoney, J.J.; Jones, W.B.; Frey, F.A.; Salters, V.J.M.; Pyle, D.G.; Davies, H.L. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean. Chem. Geol. 1995, 120, 315–345. [Google Scholar] [CrossRef]
- Frey, F.A.; Mcnaughton, N.J.; Nelson, D.R.; de Laeter, J.R.; Duncan, R.A. Petrogenesis of the Bunbury Basalt, Western Australia: Interaction between the Kerguelen plume and Gondwana lithosphere? J. Afr. Earth Sci. 1996, 26, 519–522. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. The role of lower crustal recycling in continent formation. Geochim. Cosmochim. Acta 2003, 67, 1–10. [Google Scholar]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 2005, 46, 921–944. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; Mclennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Mahoney, J.; LeRoex, A.P.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid–ocean ridge basalt: Isotope systematics of the central southwest Indian Ridge (17°–50° E). J. Geophys. Res. Solid Earth 1992, 97, 19771–19790. [Google Scholar] [CrossRef]
- Fitton, J.G. The OIB paradox. Spec. Pap. Geol. Soc. Am. 2007, 430, 387–412. [Google Scholar] [CrossRef] [Green Version]
- Weaver, B. St. Helena Revisited: Characteristics and Origin of the Type HIMU OIB. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 11–15 December 2006. [Google Scholar]
- Niu, Y.L.; Collerson, K.D.; Batiza, R. Origin of enriched–type mid–ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′ N. J. Geophys. Res. Solid Earth 1999, 104, 7076–7087. [Google Scholar] [CrossRef] [Green Version]
- Ito, G.; Lin, J.; Graham, D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys. 2003, 41, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Su, Y. Global MORB Chemistry Compilation at the Segment Scale. Ph.D. Thesis, Columbia University, New York, NY, USA, 2003. [Google Scholar]
- White, W.M.; Duncan, R.A. Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. Geophys. Monogr. 1996, 95, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. Treatise Geochem. 2004, 2, 1–44. [Google Scholar] [CrossRef]
- Hart, S.R.; Hauri, E.H.; Oschmann, L.A.; Whitehead, J.A. Mantle plumes and entrainment: Isotopic evidence. Science 1992, 256, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Ito, G.; Lin, J.; Gable, C.W. Interaction of mantle plumes and migrating mid–ocean ridges: Implications for the Galapagos plume–ridge system. J. Geophys. Res. 1997, 102, 15403–15417. [Google Scholar] [CrossRef]
- Bourdon, B.; Langmuir, C.H.; Zindler, A. Ridge–hotspot interaction along the Mid–Atlantic Ridge between 37°30′ and 40°30′ N: The U–Th disequilibrium evidence. Earth Planet. Sci. Lett. 1996, 142, 175–189. [Google Scholar] [CrossRef]
- Montagner, J.P.; Stutzmann, E.; Sicilia, D.; Sebai, A.; Beucler, E.; Silveira, G.; Cara, M.; Debayle, E.; Leveque, J.J. Plume-Ridge Lithospheric Interactions: Cases of Afar (Africa). In Proceedings of the EGS—AGU—EUG Joint Assembly Meeting, Nice, France, 6–11 April 2003. [Google Scholar]
- Villagomez, D.R.; Toomey, D.R.; Geist, D.J.; Hooft, E.E.E.; Solomon, S.C. Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nat. Geosci. 2014, 7, 151–156. [Google Scholar] [CrossRef]
- French, S.W.; Bomanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 2015, 525, 95–113. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Tanimoto, T.; Stolper, E.M. S–wave velocity, basalt chemistry and bathymetry along the Mid–Atlantic Ridge. Phys. Earth Planet. Inter. 1994, 84, 79–93. [Google Scholar] [CrossRef]
- Celli, N.L.; Lebedev, S.; Schaeffer, A.J.; Ravenna, M.; Gaina, C. The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophys. J. Int. 2020, 221, 178–204. [Google Scholar] [CrossRef]
- Ribe, N.M. The dynamics of plume–ridge interaction, 2, Off–ridge plumes. J. Geophys. Res. 1996, 101, 16195–16204. [Google Scholar] [CrossRef]
- Guan, Y.L.; Shi, X.F.; Yan, Q.S.; Wei, X.; Zhang, Y.; Xia, X.P.; Zhou, H.D. Implications of the melting depth and temperature of the Atlantic mid–ocean ridge basalts. Acta Oceanol. Sin. 2019, 38, 35–42. [Google Scholar] [CrossRef]
- Ito, G.; Lin, J. Oceanic spreading center–hotspot interactions: Constraints from along–isochron bathymetric and gravity anomalies. Geology 1995, 23, 657–660. [Google Scholar] [CrossRef]
- Maia, M.; Ackermand, D.; Dehghani, G.A.; Gente, P.; Hekinian, R.; Naar, D.; Connor, J.O.; Perrot, K.; Morgan, J.P.; Ramillien, G.; et al. The Pacific–Antarctic Ridge–Foundation hotspot interaction: A case study of a ridge approaching a hotspot. Mar. Geol. 2000, 167, 61–84. [Google Scholar] [CrossRef]
- Hekinian, R.; Stoffers, P.; Ackermand, D.; Réveillon, S.; Maia, M.; Bohn, M. Ridge–hotspot interaction: The Pacific–Antarctic Ridge and the foundation seamounts. Mar. Geol. 1999, 160, 199–223. [Google Scholar] [CrossRef]
- Yang, A.Y.; Zhao, T.P.; Zhou, M.F.; Deng, X.G. Isotopically enriched N-MORB: A new geochemical signature of off–axis plume–ridge interaction—A case study at 50°28′ E, Southwest Indian Ridge. J. Geophys. Res. Solid Earth 2017, 122, 191–213. [Google Scholar] [CrossRef]
- Morgan, W.J. Rodriguez, Darwin, Amsterdam, …, a second type of hotspot island. J. Geophys. Res. 1978, 83, 5355–5360. [Google Scholar] [CrossRef]
- Yasuda, A.; Fujii, T. Ascending subducted oceanic crust entrained within mantle plumes. Geophys. Res. Lett. 1998, 25, 1561–1564. [Google Scholar] [CrossRef]
- Li, M.M.; Mcnamara, A.K.; Garnero, E.J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 2014, 7, 366–370. [Google Scholar] [CrossRef]
Sample | Latitude (°S) | Longitude (°W) | Depths (m) | 87Sr/86Sr ± 2 SE | 143Nd/144Nd ± 2 SE | εNd(t) | 208Pb/204Pb ± 2 SE | 207Pb/204Pb ± 2 SE | 206Pb/204Pb ± 2 SE | 176Hf/177Hf ± 2 SE | εHf(t) | ΔSr | Δ8/4Pb | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA1A | 18.04 | 12.85 | 3312 | 0.702516 ± 4 | 0.513139 ± 2 | 9.8 | 38.4175 ± 13 | 15.6137 ± 5 | 18.7678 ± 5 | 0.2831397 ± 2 | 13.0 | 25.16 | 10.03 | This paper |
SA1B | 18.04 | 12.85 | 3312 | 0.702491 ± 3 | 0.513147 ± 2 | 9.9 | 38.3223 ± 13 | 15.5984 ± 5 | 18.5982 ± 6 | 0.2830365 ± 2 | 9.4 | 24.91 | 21.01 | |
SA2A | 18.02 | 12.92 | 3386 | 0.702567 ± 3 | 0.513123 ± 3 | 9.5 | 38.5225 ± 12 | 15.7089 ± 4 | 19.5033 ± 4 | 0.2831724 ± 2 | 14.2 | 25.67 | −68.40 | |
SA2B | 18.02 | 12.92 | 3386 | 0.702517 ± 4 | 0.513148 ± 2 | 9.9 | 38.3612 ± 11 | 15.6453 ± 4 | 18.8627 ± 3 | 0.2831754 ± 2 | 14.3 | 25.17 | −7.08 | |
SA3A | 20.57 | 11.65 | 3302 | 0.702553 ± 4 | 0.513113 ± 2 | 9.3 | 38.4306 ± 12 | 15.6487 ± 4 | 18.6470 ± 4 | 0.2831554 ± 1 | 13.6 | 25.53 | 25.93 | |
SA3B | 20.57 | 11.65 | 3302 | 0.702689 ± 5 | 0.513096 ± 2 | 8.9 | 38.4903 ± 13 | 15.6450 ± 4 | 18.8954 ± 5 | 0.2831281 ± 1 | 12.6 | 26.89 | 1.87 | |
SA4A | 18.71 | 12.67 | 2386 | 0.703213 ± 5 | 0.513064 ± 2 | 8.3 | 38.6411 ± 16 | 15.6517 ± 5 | 18.8388 ± 5 | 0.2830007 ± 2 | 8.1 | 32.13 | 23.80 | |
SA4B | 18.71 | 12.67 | 2386 | 0.702898 ± 4 | 0.513046 ± 2 | 8.0 | 38.6338 ± 12 | 15.6442 ± 4 | 18.8872 ± 4 | 0.2831143 ± 2 | 12.1 | 28.98 | 17.22 | |
S029-TVG23 | 19.50 | 11.99 | 2700 | 0.70299 | 0.513116 | 9.3 | 29.90 | Zhang [28] | ||||||
S032-TVG26 | 19.42 | 12.00 | 2407 | 0.70286 | 0.513127 | 9.5 | 28.60 | |||||||
S033-TVG27 | 19.40 | 11.97 | 2475 | 0.70291 | 0.513125 | 9.5 | 29.10 | |||||||
S035-TVG28 | 19.41 | 11.93 | 2590 | 0.70291 | 0.513098 | 9.0 | 29.10 | |||||||
S039-TVG31 | 19.50 | 11.98 | 2652 | 0.70312 | 0.513117 | 9.3 | 31.20 | |||||||
S028-TVG22 | 19.57 | 11.98 | 2699 | 0.7034 | 0.513019 | 7.4 | 34.00 | |||||||
S031-TVG25 | 19.46 | 11.96 | 2530 | 0.70301 | 0.513017 | 7.4 | 30.10 | |||||||
S030-TVG24 | 19.53 | 11.94 | 2825 | 0.70301 | 0.513108 | 9.2 | 30.10 | |||||||
S036-TVG29 | 19.38 | 11.94 | 2796 | 0.7028 | 0.513144 | 9.9 | 28.00 | |||||||
S037-TVG30 | 19.34 | 11.93 | 2546 | 0.703 | 0.513071 | 8.4 | 30.00 | |||||||
S042-TVG33 | 19.34 | 11.93 | 2638 | 0.70288 | 0.513177 | 10.5 | 28.80 | |||||||
S043-TVG34 | 19.34 | 11.93 | 2477 | 0.7029 | 0.513153 | 10.0 | 29.00 | |||||||
S044-TVG35 | 19.34 | 11.93 | 2486 | 0.70282 | 0.513148 | 9.9 | 28.20 | |||||||
I1050/8 | 20.00 | 12.07 | 2400–2100 | 0.702967 | 0.513097 | 9.0 | 38.395 | 15.534 | 19.022 | 24.11 | −22.96 | Skolotnev et al. [9] | ||
I1050/10 | 20.00 | 12.07 | 2400–2100 | 0.702604 | 0.512971 | 6.5 | 38.075 | 15.579 | 18.155 | 24.53 | 49.86 | |||
I1049/21 | 20.00 | 11.78 | 2800-2200 | 0.703027 | 0.512893 | 5.0 | 37.903 | 15.483 | 18.384 | 23.97 | 4.97 | |||
I1051/3 | 20.20 | 11.84 | 3500–3200 | 0.702502 | 0.513016 | 7.4 | 37.874 | 15.548 | 18.046 | 22.14 | 42.94 | |||
I1052/6 | 20.40 | 11.70 | 3200–3100 | 0.702912 | 0.512939 | 5.9 | 38.149 | 15.467 | 18.412 | 24.13 | 26.19 | |||
EN061 22D-1G | 18.38 | 12.84 | 3675 | 0.702411 ± 26 | 0.513154 ± 3 | 38.091 ± 15 | 15.546 ± 6 | 18.727 ± 7 | 29.67 | −17.69 | Fontignie and Schilling [20] and Hanan et al. [22] | |||
EN061 23D-1G | 18.98 | 12.30 | 3537 | 0.702453 ± 36 | 0.513075 ± 2 | 38.291 ± 58 | 15.563 ± 24 | 18.786 ± 28 | 26.04 | −4.83 | ||||
EN063 1D-6G | 20.79 | 11.60 | 3460 | 0.702397 ± 9 | 0.513073 ± 8 | 37.969 ± 70 | 15.511 ± 24 | 18.533 ± 23 | 30.27 | −6.44 | ||||
2IID 26D-2G | 19.99 | 11.88 | 3560 | 0.702214 ± 6 | 0.513118 ± 3 | 37.937 ± 17 | 15.505 ± 8 | 18.542 ± 8 | 25.02 | −10.73 | ||||
EN061 25D-1G | 20.32 | 11.71 | 3270 | 0.702413 ± 7 | 0.513089 ± 3 | 37.960 ± 38 | 15.523 ± 13 | 18.523 ± 13 | 29.12 | −6.13 |
Sample | Modern GLOSS | 1.5 Ga Pelagic Sediments | 1.5 Ga GLOSS |
---|---|---|---|
87Sr/86Sr | 0.71730 | 0.7203 | 0.713587 |
143Nd/144Nd | 0.51218 | 0.5117 | 0.511977 |
εNd(t) | −8.9 | ||
206Pb/204Pb | 18.913 | 16.7 | 17.69 |
207Pb/204Pb | 15.673 | 15.44 | 15.52 |
208Pb/204Pb | 38.899 | 36.8 | |
176Hf/177Hf | 0.282829 | 0.2826 | 0.282228 |
εHf(t) | +2 (±3) |
Sample | DMM | HIMU | EMII | LOMU |
---|---|---|---|---|
Sr | 7.664 | 508.95 | 543.1 | 143 |
Nd | 0.581 | 47.18 | 33.66 | 9.0 |
Pb | 0.018 | 3.92 | 3.92 | 0.91 |
Sm | 0.239 | 8.798 | 7.12 | 3.6 |
Yb | 0.365 | 2.757 | 1.72 | 1.06 |
s87Sr/86Sr | 0.70230 | 0.70288 | 0.7078 | 0.71209 |
143Nd/144Nd | 0.513250 | 0.51291 | 0.51258 | 0.511663 |
206Pb/204Pb | 17.72 | 20.8 | 19.00 | 17.188 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Zhang, X.; Sun, Z.; Liu, J.; Li, W.; Ma, Y.; Liu, W.; Xia, B.; Guan, Y. Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S. Minerals 2020, 10, 1010. https://doi.org/10.3390/min10111010
Zhong Y, Zhang X, Sun Z, Liu J, Li W, Ma Y, Liu W, Xia B, Guan Y. Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S. Minerals. 2020; 10(11):1010. https://doi.org/10.3390/min10111010
Chicago/Turabian StyleZhong, Yun, Xu Zhang, Zhilei Sun, Jinnan Liu, Wei Li, Yaoliang Ma, Weiliang Liu, Bin Xia, and Yao Guan. 2020. "Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S" Minerals 10, no. 11: 1010. https://doi.org/10.3390/min10111010
APA StyleZhong, Y., Zhang, X., Sun, Z., Liu, J., Li, W., Ma, Y., Liu, W., Xia, B., & Guan, Y. (2020). Sr–Nd–Pb–Hf Isotopic Constraints on the Mantle Heterogeneities beneath the South Mid-Atlantic Ridge at 18–21°S. Minerals, 10(11), 1010. https://doi.org/10.3390/min10111010