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Abstract: In an attempt to investigate the nature and origin of mantle heterogeneities beneath the
South Mid-Atlantic Ridge (SMAR), we report new whole-rock Sr, Nd, Pb, and Hf isotopic data
from eight basalt samples at four dredge stations along the SMAR between 18◦S and 21◦S. Sr, Nd,
and Pb isotopic data from SMAR mid-ocean ridge basalts (MORBs) at 18–21◦S published by other
researchers were also utilized in this study. The SMAR MORBs at 18–21◦S feature the following ratio
ranges: 87Sr/86Sr = 0.70212 to 0.70410, 143Nd/144Nd = 0.512893 to 0.513177, 206Pb/204Pb = 18.05 to
19.50, 207Pb/204Pb = 15.47 to 15.71, 208Pb/204Pb = 37.87 to 38.64, and 176Hf/177Hf = 0.283001 to 0.283175.
The 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 176Hf/177Hf ratios of these MORBs varied considerably
along the SMAR axis. The variable compositions of the Sr–Nd–Pb–Hf isotopes, combined with
the corresponding whole-rock major and trace elemental abundances reported in previous studies,
suggest that the SMAR MORBs at 18–21◦S were probably derived from a heterogeneous mantle
substrate related to a mixture of depleted mantle (DM) materials with a small amount (but variable
input) of HIMU (high-µ, where µ = 238U/204Pb)- and enriched (EMII)-type materials. The HIMU-type
materials likely originated from the proximal St. Helena plume and may have been transported
through “pipe-like inclined sublithospheric channels” into the SMAR axial zone. The EMII-type
materials possibly originated from a recycled metasomatized oceanic crust that may have been
derived from the early dispersion of other plume heads into the subcontinental asthenosphere prior
to the opening of the South Atlantic Ocean. In addition, the contributions of subducted sediments,
continental crust, and subcontinental lithospheric mantle components to the formation of the SMAR
MORBs at 18–21◦S may be nonexistent or negligible.
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1. Introduction

Basaltic rocks that erupt along mid-ocean ridges (MORs) constitute the dominant volcanic rock
type on the modern Earth (e.g., [1]). It is well established that mid-ocean ridge basalts (MORBs)
originate from the partial melting of shallow-convecting asthenospheric mantle that is characterized
by the significant depletion of incompatible trace elements (i.e., depleted upper mantle); these rocks
are typically referred to as (normal) N-type mid-ocean ridge basalts (N-MORB) [2]. Variations in the
chemical compositions of MORB suites have been interpreted to indicate complex mixing processes
involving mantle heterogeneities that vary greatly in composition (e.g., [3–8], such as HIMU (high-µ,
where µ = 238U/204Pb)-type components [9]), recycled mafic lithologies [10], and subcontinental
lithospheric components (e.g., [2,11]). This mantle heterogeneity varies on different length scales
ranging between ~1 and 1000 km [12–14].

Since the 1960s, mantle plume–ridge interactions have been a focal point in the field of geology
because such interactions could play an important role in the formation of MORBs, whose compositions
tend toward that of the proximal mantle plume (e.g., [6,15–19]). This process is one important reason
why MORBs feature diverse mantle heterogeneities. Previous studies have demonstrated that basalts
from the South Mid-Atlantic Ridge (SMAR; Figure 1a) are excellent examples for clarifying the isotopic
variability of MORB mantle sources and mantle plume–ridge interactions, whose occurrences are
well-documented in relation to the proximal Ascension, Circe, St. Helena, Tristan da Cunha, Gough,
Discovery, and Shona plumes (e.g., [7,9–11,15,20–24]).
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Figure 1. Map of the South Atlantic Mid-Ocean Ridge showing the dredged locations of the basalts
analyzed in this study (map taken from [25]). (a) Map of the Atlantic Mid-Ocean Ridge showing the
study area, (b) Sample location map.

The St. Helena (volcanic) island is located at a latitude of 16◦S and a longitude of 5◦43′W,
nearly 800 km east of the SMAR (Figure 1b), and has an HIMU-type mantle plume origin (e.g., [26]).
Basalts from the SMAR at 18–21◦S are thus suitable for investigating the nature and extent of
heterogeneities in the mantle beneath the SMAR and for constraining their mantle mixing process,
such as the mantle plume–ridge interaction, due to their location adjacent to St. Helena island (Figure 1b).
Based on the Sr–Nd–Pb isotopic analyses of basalts from the SMAR at 18–21◦S, Fontignie and Schilling
proposed that the production of these rocks may be related to a two-stage plume dispersion/melting
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model that includes the earlier dispersion of the St. Helena plume head into the subcontinental
asthenosphere and a later mantle plume–migrating ridge interaction [20]. This hypothesized mantle
plume–ridge interaction beneath the SMAR between 18◦S and 21◦S is further supported by the fact that
the SMAR MORBs at 19–20◦S share some geochemical composition similarities (including Sr–Nd–Pb
isotopes) with the proximal St. Helena plume [9,22]. The results of the seismic tomography support the
existence of a flow channel connecting the SMAR with the St. Helena plume (e.g., [27]). This channel
was previously proposed by [15,22] based on the geochemical component relationships between
SMAR basalts and the St. Helena plume. However, according to the mineralogical, geochemical,
and Sr–Nd isotopic signatures of basalts from the SMAR at 19◦S, Zhang argued that these rocks
were derived from a depleted mantle (DM) source with no mantle plume–ridge interaction [28].
Furthermore, Douglass et al. revealed the presence of so-called LOMU (low-µ) materials in the
convecting mantle beneath the South Atlantic, according to the Sr, Nd, and Pb isotope variability along
the SMAR at 40–55◦S [16,29]. These components present a passive heterogeneity that represents a
delaminated subcontinental lithospheric mantle that dispersed into the upper mantle that was related
to the break-up of Gondwana and the subsequent opening of the South Atlantic Ocean [16]. In addition
to the two-type components derived from the depleted asthenosphere and the St. Helena plume,
our previous study based on whole-rock trace elements indicated that enriched materials derived from
the subcontinental lithosphere mantle may also be involved in the genesis of the basalts from the SMAR
at 18.0–20.6◦S [30]. These conclusions indicate the possibility for Gondwana remnants in the upper
mantle beneath the SMAR within the background section. In summary, (1) there is a plume–ridge
interaction between the SMAR at 18–21◦S and the St. Helena hotspot, that is, the St. Helena plume
affects different segments of the SMAR at 18–21◦S, and (2) the research on the kinds of enriched
components involved in the formation of the SMAR MORBs at 18–21◦S is still incomplete.

To describe the mantle heterogeneities in the study area, we analyzed Sr, Nd, Pb, and Hf isotopic
data from eight dredged basalt samples (Figure 1b and Table 1). These samples had porphyritic textures
and were previously analyzed for their mineralogy (olivine and plagioclase) and whole-rock major and
trace elements [30], providing a petrological and geochemical framework with which we can discuss
the Sr–Nd–Pb–Hf isotopic data. This study also included Sr, Nd, and Pb isotopic data from the SMAR
MORBs at 18–21◦S that were previously reported by [9,20,28] (Figure 1b and Table 1).

2. Geological Background

The Mid-Atlantic Ridge (MAR) is a submarine ridge composed of mountain chains lying along
the north–south axis of the Atlantic Ocean. The MAR accounts for approximately 40% of the total
global length of MORs and extends for ~16,000 km along a curvilinear path from the Arctic Ocean to
near the southern tip of Africa (87◦N to 54◦S), and its width (1000–1500 km) accounts for one-third
of the width of the Atlantic Ocean (e.g., [28,31,32]). It is considered a “slow-spreading” ridge due
to its low average spreading rate of ~30 mm yr−1 (e.g., [31,33]). The MAR is divided into the North
MOR and the SMAR and is separated by the near-equatorial Romanche Trench [31,34]. The SMAR is
further divided into many relatively independent sections due to the influences of transform faults.
Basalt constitutes the dominant volcanic rock type in the SMAR, together with local occurrences of
peridotite, pyroxenite, and gabbro [31]. Mineralogical, whole-rock major and trace elemental and
isotopic studies of SMAR basalts revealed that these rocks were generated with complex mixing
processes and that their mantle compositions range widely from being geochemically depleted to
apparently enriched (e.g., [2,9–11,16,20,35–37]).

Many off-ridge and ridge-centered hotspots, including the Ascension, Circe, St. Helena,
Tristan da Cunha, Gough, Discovery, and Shona plumes, occur along the SMAR, and the components
derived from these hotspots have likely played variable roles in the formation of SMAR basalts, such as
plume–ridge interactions (e.g., [7,15,16,22]). St. Helena island (16◦S) in the South Atlantic Ocean occurs
adjacent to the study area (SMAR 18–21◦S) (Figure 1b). This island is situated on a 39-Myr-old oceanic
lithosphere [38] and reaches a height of 823 m above sea level, with a surface area of approximately
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122 km2 [39]. Bathymetric data indicate that St. Helena island, together with other adjacent seamounts,
such as the Bonaparte seamount, constitute part of a scattered but nearly linear volcanic chain (the
St. Helena Chain, Figure 1a) that results from the movement of the oceanic lithosphere above a
mantle hotspot (e.g., [40,41]). Magma sources of volcanic rocks from St. Helena island yield low Rb/Sr,
intermediate Sm/Nd, and high U/Pb parent/daughter ratios, and these rocks represent the HIMU-type
endmember in the oceanic island basalt (OIB) compositional spectrum [42].

3. Analytical Methods

Samples were ground using an agate mortar and pestle to 200 mesh. Whole-rock Sr, Nd, Pb,
and Hf isotopic analyses were performed at Nanjing FocuMS Technology Co., Ltd., China. The general
analytical procedures are as follows:

(1) Rock powders were mixed with 0.5 mL of 60 wt.% HNO3 + 1.0 mL of 40 wt.% HF in high-pressure
PTFE (Poly tetra fluoroethylene) bombs. These bombs were steel-jacketed and subsequently placed in
an oven at 195 ◦C for 3 days. Samples were placed on a hot plate until dry and were subsequently
mixed with 1.5 mL of 0.2 N HBr + 0.5 N HNO3 prior to ion exchange purification. (2) Pb was first
collected using a Biorad AG1–X8 anion exchange column (Bio-Rad Laboratories, Hercules, CA, USA).
Lithophile elements, including Sr, Hf, and rare earth elements (REEs), were initially washed from
the column using a mixture of 0.2 N HBr + 0.5 N HNO3 (collected), and Pb was then eluted
with purified water. During this process, a second anion exchange column was needed to further
purify/separate the Pb fraction because of the impurities within. (3) Sr, Hf, and REEs were separated
using a Biorad AG50W–X8 cation exchange column (Bio-Rad Laboratories, Hercules, CA, USA).
The lithophile elements collected in step (2) were dried and then redissolved in 1.5 N HCl through
heating. High-field-strength elements (HFSEs, e.g., Ti, Zr, and Hf) were first washed out using 1.5 N
HCl (collected); afterward, matrix elements (Na, Mg, K, and Ca) and Rb were separated using 2.0 N HCl
(discarded). Sr fractions were collected using 2.5 N HCl before the REE fractions were finally retrieved
using 6.0 N HCl (collected). (4) Hf was collected on a column using HDEHP(di(2-ethylhexyl)-coated
Teflon powder. The HFSE Hf collected in step (3) was heated until dry and then redissolved in 3.0 N
HCl. Ti was eluted using a mixture of 4.0 N HCl + 0.5 wt.% H2O2. Hf was finally extracted from the
column using 2.0 N HF and collected in a 10 mL PFA (preconditioned perfluoroalkoxy) beaker. (5) The
impure Sr fraction in step (3) was dried and subsequently redissolved in 2.5 N HNO3 and then loaded
into Sr-specific resin. Sr was finally extracted from the column with purified water. The Sr-specific
resin was discarded after each chemical separation. (6) The REE fractions in step (3) were dried,
redissolved in 0.12 N HCl, and loaded into another Ln-specific resin column. Light REEs (LREEs,
e.g., La, Ce, and Pr) were first separated using 0.12 N HCl (discarded); afterward, Nd was collected
using 0.18 N HCl, followed by Sm using 0.4 N HCl. (7) The Sr-, Nd-, Pb-, and Hf-bearing elutions were
gently evaporated until dry and subsequently redissolved in 1.0 mL of 2 wt.% HNO3. These diluted
solutions were introduced into a Nu Plasma II MC–ICP–MS instrument (Wrexham, North Wales, UK)
through an Aridus II desolvating nebulizer system (Teledyne Cetac Technologies, Omaha, NE, USA) to
determine the whole-rock Sr–Nd–Pb–Hf isotopic compositions.

Raw data of isotopic ratios were internally corrected for mass fractionation by normalizing to
86Sr/88Sr = 0.1194 for Sr, 146Nd/144Nd = 0.7219 for Nd, 205Tl/203Tl = 2.3885 for Pb, and 179Hf/177Hf
= 0.7325 for Hf using the exponential law. The following international isotopic standards were
used for quality: NIST SRM 987 for Sr, JNdi-1 for Nd, NIST SRM 981 for Pb, and Alfa-Hf for Hf.
The geochemical reference materials of USGS AGV-2 (andesite), BCR-2 (basalt), RGM-2 (rhyolite),
and STM-2 (syenite) were used as quality controls for the Sr–Nd–Pb isotopes, along with those of USGS
AGV-2 (andesite), BCR-2 (basalt), BHVO-2 (basalt), and STM-2 (syenite) for Hf isotopes. These isotopic
results are consistent with previous publications and are within analytical uncertainty (Supplementary
Table S1; [43,44]). The Sr, Nd, Pb, and Hf isotopic data of the SMAR basalt samples are listed in Table 1.
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Table 1. Sr, Nd, Pb, and Hf isotope ratios in dredged basalts from the Southern Mid-Atlantic Ridge (18–21◦S).

Sample Latitude
(◦S)

Longitude
(◦W)

Depths
(m)

87Sr/86Sr
± 2 SE

143Nd/144Nd
± 2 SE

εNd(t)
208Pb/204Pb
± 2 SE

207Pb/204Pb
± 2 SE

206Pb/204Pb
± 2 SE

176Hf/177Hf ±
2 SE

εHf(t) ∆Sr ∆8/4Pb Source

SA1A 18.04 12.85 3312 0.702516 ± 4 0.513139 ± 2 9.8 38.4175 ± 13 15.6137 ± 5 18.7678 ± 5 0.2831397 ± 2 13.0 25.16 10.03

This paper

SA1B 18.04 12.85 3312 0.702491 ± 3 0.513147 ± 2 9.9 38.3223 ± 13 15.5984 ± 5 18.5982 ± 6 0.2830365 ± 2 9.4 24.91 21.01
SA2A 18.02 12.92 3386 0.702567 ± 3 0.513123 ± 3 9.5 38.5225 ± 12 15.7089 ± 4 19.5033 ± 4 0.2831724 ± 2 14.2 25.67 −68.40
SA2B 18.02 12.92 3386 0.702517 ± 4 0.513148 ± 2 9.9 38.3612 ± 11 15.6453 ± 4 18.8627 ± 3 0.2831754 ± 2 14.3 25.17 −7.08
SA3A 20.57 11.65 3302 0.702553 ± 4 0.513113 ± 2 9.3 38.4306 ± 12 15.6487 ± 4 18.6470 ± 4 0.2831554 ± 1 13.6 25.53 25.93
SA3B 20.57 11.65 3302 0.702689 ± 5 0.513096 ± 2 8.9 38.4903 ± 13 15.6450 ± 4 18.8954 ± 5 0.2831281 ± 1 12.6 26.89 1.87
SA4A 18.71 12.67 2386 0.703213 ± 5 0.513064 ± 2 8.3 38.6411 ± 16 15.6517 ± 5 18.8388 ± 5 0.2830007 ± 2 8.1 32.13 23.80
SA4B 18.71 12.67 2386 0.702898 ± 4 0.513046 ± 2 8.0 38.6338 ± 12 15.6442 ± 4 18.8872 ± 4 0.2831143 ± 2 12.1 28.98 17.22

S029-TVG23 19.50 11.99 2700 0.70299 0.513116 9.3 29.90

Zhang [28]

S032-TVG26 19.42 12.00 2407 0.70286 0.513127 9.5 28.60
S033-TVG27 19.40 11.97 2475 0.70291 0.513125 9.5 29.10
S035-TVG28 19.41 11.93 2590 0.70291 0.513098 9.0 29.10
S039-TVG31 19.50 11.98 2652 0.70312 0.513117 9.3 31.20
S028-TVG22 19.57 11.98 2699 0.7034 0.513019 7.4 34.00
S031-TVG25 19.46 11.96 2530 0.70301 0.513017 7.4 30.10
S030-TVG24 19.53 11.94 2825 0.70301 0.513108 9.2 30.10
S036-TVG29 19.38 11.94 2796 0.7028 0.513144 9.9 28.00
S037-TVG30 19.34 11.93 2546 0.703 0.513071 8.4 30.00
S042-TVG33 19.34 11.93 2638 0.70288 0.513177 10.5 28.80
S043-TVG34 19.34 11.93 2477 0.7029 0.513153 10.0 29.00
S044-TVG35 19.34 11.93 2486 0.70282 0.513148 9.9 28.20

I1050/8 20.00 12.07 2400–2100 0.702967 0.513097 9.0 38.395 15.534 19.022 24.11 −22.96

Skolotnev
et al. [9]

I1050/10 20.00 12.07 2400–2100 0.702604 0.512971 6.5 38.075 15.579 18.155 24.53 49.86
I1049/21 20.00 11.78 2800-2200 0.703027 0.512893 5.0 37.903 15.483 18.384 23.97 4.97
I1051/3 20.20 11.84 3500–3200 0.702502 0.513016 7.4 37.874 15.548 18.046 22.14 42.94
I1052/6 20.40 11.70 3200–3100 0.702912 0.512939 5.9 38.149 15.467 18.412 24.13 26.19

EN061
22D-1G 18.38 12.84 3675 0.702411 ± 26 0.513154 ± 3 38.091 ± 15 15.546 ± 6 18.727 ± 7 29.67 −17.69

Fontignie and
Schilling [20] and
Hanan et al. [22]

EN061
23D-1G 18.98 12.30 3537 0.702453 ± 36 0.513075 ± 2 38.291 ± 58 15.563 ± 24 18.786 ± 28 26.04 −4.83

EN063
1D-6G 20.79 11.60 3460 0.702397 ± 9 0.513073 ± 8 37.969 ± 70 15.511 ± 24 18.533 ± 23 30.27 −6.44

2IID
26D-2G 19.99 11.88 3560 0.702214 ± 6 0.513118 ± 3 37.937 ± 17 15.505 ± 8 18.542 ± 8 25.02 −10.73

EN061
25D-1G 20.32 11.71 3270 0.702413 ± 7 0.513089 ± 3 37.960 ± 38 15.523 ± 13 18.523 ± 13 29.12 −6.13

Note: ∆Sr = [(87Sr/86Sr)DS − 0.7] × 104; ∆8/4Pb = [(208Pb/204Pb)DS − (208Pb/204Pb)NHRL] × 102; NHRL—Northern Hemisphere Reference Line; DS—the magnitude of the isotopic anomaly of
any given data set [45].
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4. Results

The MORBs from the SMAR between 18–21◦S exhibited a relatively wide range of whole-rock
Sr, Nd, Pb, and Hf isotopic compositions (Table 1). These rocks yielded 206Pb/204Pb = 18.05–19.50,
207Pb/204Pb = 15.47–15.71, and 208Pb/204Pb = 37.87–38.64, along with 87Sr/86Sr = 0.702214–0.703400,
143Nd/144Nd = 0.512893–0.513177, and 176Hf/177Hf = 0.283001–0.283175. The corresponding εNd(t)
and εHf(t) values were +5.0 to +10.5 and +8.1 to +14.1, respectively. The Sr, Nd, Pb, and Hf isotopic
data of these MORBs fell into the range of Atlantic MORB on a variety of correlation diagrams:
87Sr/86Sr versus 143Nd/144Nd (Figure 2a), 206Pb/204Pb versus 208Pb/204Pb (Figure 2b), 206Pb/204Pb
versus 207Pb/204Pb (Figure 2c), 206Pb/204Pb versus 87Sr/86Sr (Figure 3a), 206Pb/204Pb versus 143Nd/144Nd
(Figure 3b), 143Nd/144Nd versus 176Hf/ 177Hf (Figure 4a), and 206Pb/204Pb versus 176Hf/177Hf (Figure 4b).
Furthermore, as shown in Figure 2b,c, the basalts formed a roughly parallel trend to the Northern
Hemisphere Reference Line (NHRL [45]) but roughly plot above this line with relatively high 208Pb/204Pb
and 207Pb/204Pb ratios at a moderate 206Pb/204Pb ratio. In addition, these rocks yielded 87Sr/86Sr =

0.702214–0.703400 (<0.7050), ∆Sr = 22.14–34.00 (<50), and ∆8/4Pb = –68.40 to 49.86 (<60) (the equations
of ∆Sr and ∆8/4Pb are presented in Table 1 [45]), which are different from the typical Dupal anomaly in
the Southern Hemisphere [45,46]. This feature was further supported by the fact that these MORBs
plotted far from the field of Dupal OIBs on the 206Pb/204Pb versus 208Pb/204Pb diagram (Figure 2b).
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magmatic rock values are from http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html. The Atlantic 
sediment values are from [48–50]. The LOMU (low-μ) endmember values are from [11]. The 1.5 Ga 
pelagic sediment values are from [51]. The modern and 1.5 Ga global subduction sediment (GLOSS) 
values are from [52]. The dredged glass S18-60/1 from the SMAR at ~54.5°S is from [11]. DMM—
depleted MORB mantle, EM—enriched mantle, HIMU—high μ, OIB—oceanic island basalt. 

Figure 2. 87Sr/86Sr versus 143Nd/144Nd (a), 206Pb/204Pb versus 208Pb/204Pb (b), and 206Pb/204Pb versus
207Pb/204Pb diagrams (c) (after [42,47] and references therein) of the basalts from the South Mid-Atlantic
Ridge (SMAR) at 18–21◦S. The Atlantic mid-ocean ridge basalt (MORB) and the St. Helena magmatic
rock values are from http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html. The Atlantic sediment
values are from [48–50]. The LOMU (low-µ) endmember values are from [11]. The 1.5 Ga pelagic
sediment values are from [51]. The modern and 1.5 Ga global subduction sediment (GLOSS) values are
from [52]. The dredged glass S18-60/1 from the SMAR at ~54.5◦S is from [11]. DMM—depleted MORB
mantle, EM—enriched mantle, HIMU—high µ, OIB—oceanic island basalt.
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(after [42,47,54] and references therein) of the basalts from the SMAR at 18–21◦S. The Atlantic MORB
and the St. Helena igneous rock values are from http://georoc.mpch-mainz.gwdg.de/georoc/Entry.
html. Symbols are the same as in Figure 2.

The latitudinal variations in the Sr–Nd–Pb–Hf isotope ratios are displayed in Figure 5, showing that
the 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 176Hf/177Hf ratios of the MORBs from the SMAR at
18–21◦S varied considerably along the SMAR axis. It is clear that these ratios were different from
those of the depleted MORB mantle (DMM; 87Sr/86Sr = 0.7020–0.7024, 143Nd/144Nd = 0.5131–0.5133,
206Pb/204Pb = 15.5–17.8, and 176Hf/177Hf = 0.2831–0.2835 [42]) and the average MORB (87Sr/86Sr =

0.702819, 143Nd/144Nd = 0.513074, 206Pb/204Pb = 18.412, and 176Hf/177Hf = 0.283 [55]) (Figure 5).
These characteristics, combined with those of the SMAR MORBs at 18–21◦S, plotted far from the
DM/DMM endmember in Figures 2 and 3, suggesting that these rocks were not simply derived from a
DM source.

http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html
http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html
http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html
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Figure 5. Comparison of the latitudinal variations in 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb,
and 176Hf/177Hf in the basalts from the SMAR at 18–21◦S. The DMM values are from [42]. The green
dotted line represents the average MORB isotopic composition from [55], with 87Sr/86Sr = 0.702819
(n = 272), 143Nd/144Nd = 0.513074 (n = 272), 206Pb/204Pb = 18.412 (n = 245), and 176Hf/177Hf = 0.283
(n = 138). Symbols are the same as in Figure 2. In Figure 5, the basalts from the SMAR at 18–21◦S have
broad ranges of 87Sr/86Sr (a), 143Nd/144Nd (b), and 176Hf/177Hf (d) ratios relative to those of the DMM
and the average MORB and yield 206Pb/204Pb ratios mostly higher than those of the DMM and the
average MORB (c).

5. Discussion

5.1. MORBs from the SMAR at 18–21◦S Originated from a Heterogeneous Mantle Source

MORBs are derived from decompression melting of the upper mantle, but this melting process
can be complex and generates diverse geochemical characteristics [56]. Incompatible trace elements
and Sr–Nd–Pb–Hf isotopes are powerful tools for determining the mantle sources involved in the
genesis of MORBs. Previous studies indicated that the SMAR MORBs at 18–21◦S show N-MORB- and
enriched-type mid-ocean ridge basalt (E-MORB)-like geochemical compositions that suggest a complex
magma source in this area [9,28,30]. The diverse radiogenic isotopic compositions observed in MORBs
are usually ascribed to chemical heterogeneity in the mantle [56]. The MORBs from the SMAR at
18–21◦S originated from the mixing of depleted and enriched source components, which are shown on
the 87Sr/86Sr versus 143Nd/144Nd diagram (Figure 2a). In agreement with the Nd–Sr isotope correlation,
the covariations of 206Pb/204Pb versus 208Pb/204Pb, 206Pb/204Pb versus 207Pb/204Pb, 206Pb/204Pb versus
87Sr/86Sr, and 206Pb/204Pb versus 143Nd/144Nd (Figure 2b,c and Figure 3) confirmed the mixing of
depleted and enriched materials. These signatures revealed that the SMAR MORBs at 18–21◦S did not
originate from a DM source but from a heterogeneous mantle source. Although these basalts extended
from depleted to enriched endmembers in these plots, most of the basalts feature N-MORB-like
geochemical characteristics (Figure 6) [9,28,30], meaning they were mainly derived from a DM source
with some contributions of enriched components.

5.2. Mixing Components in the MORBs from the SMAR at 18–21◦S

The chemical heterogeneity within the derived MORBs is assumed to be a result of plume–ridge
interactions [2,15,22]. The South Atlantic upper mantle appears to contain an ambient large ion lithophile
element (LILE)-depleted upper mantle. This geochemical profile (including radioisotopes) may have
been triggered by broad contamination of the depleted upper mantle (e.g., [7,16]). Several mechanisms
for this are proposed: (1) dispersion of solid residue from prior partial melting of a mantle plume
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head, where this could relate to melting before the break-up of Gondwana and consist of recycled
metasomatized oceanic crust, pelagic sediments, and harzburgite matrix; (2) dispersion of delaminated
continental materials (sub-Gondwanan lithosphere or lower crustal blocks) during the break-up of
Gondwana and opening of the Atlantic; (3) dispersion of supra-subduction mantle wedge components
that were previously altered by subduction zone-related fluids or melts over an ancient subduction
zone; (4) a transition zone from the normal North Atlantic/Pacific-type MORB source to the Dupal-type
upper mantle source (e.g., [7,11,16,20,36,37,45,57]).
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Figure 6. Chondrite-normalized REE (a–e) and primitive mantle-normalized multielement (b–f)
diagrams of the basalts from the SMAR at 18–21◦S. The chondrite and primitive mantle normalization
data are from [58]. (e,f) according to Skolotnev et al. [9], the formation of the group 1 basalts resembles
that of the depleted OIB associated with the melting of a mantle substrate dominated by DMM-type
components and the group 2 basalts were derived from a heterogeneous mantle substrate that was
linked to the mixing of DM components with HIMU-type components, which are possibly related to
the spreading of mantle material of the St. Helena plume.

On the 87Sr/86Sr versus 143Nd/144Nd diagram (Figure 2a), the MORBs from the SMAR at 18–21◦S
had a relatively large variation in these isotopic ratios, which possibly required some form of mixing of
three isotopically distinct mantle endmembers that included DM, HIMU, and enriched mantle (EM)
reservoirs. In particular, some samples were plotted into and around the HIMU field in this diagram.
Plots involving Pb isotopes are quite accurate in determining the roles played by EM and HIMU
reservoirs because the rocks derived from these sources yield very different isotopic features from
N-MORB. On the 206Pb/204Pb versus 208Pb/204Pb diagram (Figure 2b), an apparent mixing array can be
identified that starts from the DMM endmember and points in the direction of an HIMU-type source.
On the 206Pb/204Pb versus 207Pb/204Pb diagram (Figure 2c), the MORB data trend does not pass through
the HIMU field but confirmed the mixing of the three isotopically distinct mantle reservoirs of DMM,
HIMU, and EM. In addition, the 206Pb/204Pb versus 87Sr/86Sr and 206Pb/204Pb versus 143Nd/144Nd
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diagrams (Figure 3) further indicated the mixing of the components of depleted and enriched (HIMU
+ EM) endmembers. Thus, the Sr–Nd–Pb–Hf isotopes strongly supported a three-component (DM
+ HIMU + EM) mantle-mixing model for the genesis of the MORBs from the SMAR at 18–21◦S.
This inference is consistent with our previous conclusion that the SMAR MORBs at 18.0–20.6◦S were
likely derived from a DM source with the contribution of enriched materials based on analyses of the
corresponding whole-rock major and trace element compositions [30].

5.2.1. EM-Type Components

In Figures 2, 3 and 4b, the Sr–Nd–Pb–Hf isotopes indicate that EMII-type (with few or no
EMI-type) components were possibly involved in the origin of the MORBs from the SMAR at 18–21◦S.
These features indicate that enriched materials, such as subducted (pelagic or terrigenous) sediments,
metasomatized oceanic crust, continental crust, or metasomatized mantle, may have been involved in
the genesis of these rocks (e.g., [42,53,59–63]).

Pb isotopic systematics can be used to test the model of marine sediment addition. In Figure 2b,c,
some samples of the SA 1–4 series in this study fell into the field of Atlantic sediments that were close to
or near the modern global subduction sediment (GLOSS) field due to their relatively high 208Pb/204Pb
and 207Pb/204Pb ratios for a given 206Pb/204Pb value. These signatures suggest that marine sediments
influenced the geochemical profile of these rocks. Several lines of evidence demonstrate that only
minor amounts of oceanic sediment could have contributed to the generation of SMAR MORBs at
18–21◦S: (1) The MORBs plot far from the 1.5 Ga pelagic sediment and GLOSS fields in Figure 2b,c.
(2) Their low 87Sr/86Sr ratios (0.702214–0.703400) but high 143Nd/144Nd ratios (0.512893–0.513177),
176Hf/177Hf ratios (0.283001–0.283175), and εNd(t) (5.0–10.5) and εHf(t) (8.1–14.3) values (Table 1) were
different from those of the 1.5 Ga, modern GLOSS and 1.5 Ga pelagic sediments (Table 2). (3) These
MORBs yielded much lower (Th/Nb)PM (the subscript “PM” indicates normalization to the primitive
mantle value) ratios (0.33–1.58) [28,30]) than the average GLOSS value (6.5) [52]. (4) The majority of
these MORBs were extremely depleted in Ba, as shown in Figure 6. Coincidentally, in addition to
the two SA 3 series samples (with weak negative Nb–Ta anomalies; Figure 6), which plotted slightly
above the mantle array due to their relatively high Th/Yb ratios for a given Nb/Yb, the other SMAR
MORBs at 18–21◦S plotted within the MORB array field on the Nb/Yb versus Th/Yb diagram (not
shown) [30], confirming the negligible role of subduction components (e.g., sediments) in the genesis
of these MORBs.

Table 2. Sr, Nd, Pb, and Hf isotopes of three endmember components.

Sample Modern GLOSS 1.5 Ga Pelagic Sediments 1.5 Ga GLOSS
87Sr/86Sr 0.71730 0.7203 0.713587

143Nd/144Nd 0.51218 0.5117 0.511977
εNd(t) −8.9

206Pb/204Pb 18.913 16.7 17.69
207Pb/204Pb 15.673 15.44 15.52
208Pb/204Pb 38.899 36.8
176Hf/177Hf 0.282829 0.2826 0.282228
εHf(t) +2 (±3)

Note: The modern GLOSS values are from [52,64]. The 1.5 Ga pelagic sediment values are from [51]. The 1.5 Ga
GLOSS values are from [7,52].

According to previous studies, some MORB samples from the SMAR at 18–21◦S (e.g., SA 3 series)
displayed a depletion of Nb and/or Ta compared to neighboring elements on the chondrite-normalized
REE and primitive mantle-normalized multielement diagrams (Figure 6). These features may
suggest contamination by a continental crust or a subcontinental lithospheric mantle [65–68].
Crustal components are characterized by the enrichment of LILEs and LREEs and the depletion
of Nb, Ta, and Ti [69]. Minor crustal involvement in magmas can result in Nb–Ta depletions and
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Zr–Hf enrichments compared to neighboring elements [70]. As shown in Figure 6, there were no
obviously positive Zr–Hf or negative Ti anomalies. These characteristics, combined with the fact
that most MORB samples were marked by LREE-depleted patterns, the apparent depletion of Ba
and the lack of negative Nb–Ta compared to neighboring elements (Figure 6) supported negligible
crustal involvement. Furthermore, the continental crust is enriched in Th with high Th/La ratios of
~0.30 [71] and Th/Ce ratios of ~0.15 [72], in contrast to mantle-derived magmas, which record values
of ~0.12 and 0.02–0.05, respectively [58]. The MORBs from the SMAR at 18–21◦S showed weak to
apparent negative Th anomalies (Figure 6) and yielded significantly lower Th/La (0.03–0.11) and Th/Ce
(0.01–0.05) ratios, resembling mantle-derived melts, further revealing the negligible or nonexistent
occurrence of continental crustal addition.

Previous studies proposed the existence of a LOMU component dispersed in the South Atlantic
convecting asthenospheric mantle, where this component in MORBs is possibly a feature of the South
Atlantic [16,29]. The LOMU component is marked by low 206Pb/204Pb, 208Pb/204Pb, and 143Nd/144Nd
ratios, high 87Sr/86Sr ratios, and variable 207Pb/204Pb ratios, and represents a delaminated subcontinental
lithospheric mantle due to the impact of a mantle plume during the break-up of Gondwana [16,73].
Douglass and Schilling reported the Sr–Nd–Pb isotopes of the LOMU material with 87Sr/86Sr =

0.71000, 143Nd/144Nd = 0.51125, 206Pb/204Pb = 16.50, 207Pb/204Pb = 15.70, and 208Pb/204Pb = 38.50 [11].
The MORBs from the SMAR at 18–21◦S displayed low 87Sr/86Sr ratios (0.702214–0.703400) but high
143Nd/144Nd (0.512893–0.513177) ratios (Table 1), which were different from the LOMU component.
Again, these rocks yielded 206Pb/204Pb = 18.05–19.50, 207Pb/204Pb = 15.47–15.71, and 208Pb/204Pb =

37.87–38.64 (Table 1), which plotted far from the LOMU field on the 206Pb/204Pb versus 208Pb/204Pb
(Figure 2b) and 206Pb/204Pb versus 207Pb/204Pb (Figure 2c) diagrams. In addition, Kamenetsky et al. [37]
proposed that the Sr–Nd–Pb isotopic ratios of dredged glass S18-60/1 from the SMAR near the Bouvet
Triple Junction at ~54.5◦S closely resemble those of the LOMU component with 87Sr/86Sr = 0.712090,
143Nd/144Nd = 0.511663, 206Pb/204Pb = 17.188, 207Pb/204Pb = 15.701, and 208Pb/204Pb = 38.766 [11].
This glass was possibly derived from lower crustal fragments stranded in the upper mantle during
the break-up of Gondwana and the opening of the Atlantic [37]. The SMAR MORBs at 18–21◦S had
87Sr/86Sr ratios of 0.702214–0.703400 and 143Nd/144Nd ratios of 0.512893–0.513177 (Table 1), which were
different from those of glass S18-60/1 and also plotted far from the glass S18-60/1 field in Figure 2b,c
due to their relatively low 207Pb/204Pb (15.47–15.71) and 208Pb/204Pb (37.87–38.64) ratios for given
06Pb/204Pb ratios (18.05–19.50) (Table 1). From these results, we concluded that no or only negligible
amounts of LOMU-type materials (sub-Gondwanan lithosphere or lower crustal blocks) were involved
in the genesis of the MORBs from the SMAR at 18–21◦S.

According to previous studies, we note that some MORB samples from the SMAR at 18–21◦S have
the following features [9,28,30]: (1) selectively depleted in trace (e.g., Ba, Th, Nb, and Ta) and heavy
REE (HREE, e.g., Yb and Lu) elements compared to N-MORBs on chondrite-normalized REE and
primitive mantle-normalized multielement diagrams (Figure 6), and (2) apparent depletion of Rb, Ba,
and Th compared to U, along with the remarkable depletion of K (Figure 6). Together with the MORBs
from the SMAR at 18–21◦S yielding low 87Sr/86Sr ratios (0.702491–0.703400) and positive εNd(t) (+5.0
to +10.5) and εHf(t) (+8.1 to +14.1) values (Table 1) and the discussion for EM-type components above,
these signatures revealed that the small amounts of EMII-type materials contributed to the genesis
of MORBs from the SMAR at 18–21◦S and may be derived from a recycled metasomatized oceanic
crust. This inference may be supported by the fact that recycled mafic lithologies were involved in the
production of MORBs at 5–11◦S along the SMAR based on U–Th–Ra disequilibria data [10].

5.2.2. HIMU-Type Components

As shown in Figure 6, some MORB samples (e.g., SA 4 series samples and group 2 samples from
the SMAR at 20◦S reported by Skolotnev et al. [9]) from the SMAR at 18–21◦S featured positive Nb–Ta
anomalies compared to N-MORBs. These signatures, together with the group 2 MORBs from the
SMAR at 20◦S, exhibited E-MORB-like geochemical compositions (Figure 6) [9], and some MORB
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samples plotted into and around the Iceland array zone in Figure 7 [74], indicating the possible role of
a mantle plume in the genesis of these rocks.
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deficiency or excess in Nb relative to the lower line) separates the parallel Icelandic (∆Nb > 0) and
N-type mid-ocean ridge basalts (N-MORB; ∆Nb < 0). Symbols are the same as in Figure 2.

St. Helena island, which is adjacent to the SMAR at 18–21◦S, is a HIMU-type hotspot oceanic
island in the South Atlantic Ocean [75]. Previous studies proposed that components derived from
the St. Helena hotspot played an important role in the production of South Atlantic MORBs based
on the Sr–Nd–Pb–He isotopes (e.g., [6,9,20,22]). Figures 2–4 depict the isotopic compositional fields
of magmatic rocks from St. Helena island. Although the MORBs from the SMAR at 18–21◦S
differed in the Sr–Nd–Pb–Hf isotopes from the St. Helena magmatic rocks, these rocks showed
a clear isotopic trend toward the St. Helena igneous rocks on the 87Sr/86Sr versus 143Nd/144Nd,
206Pb/204Pb versus 208Pb/204Pb, 206Pb/204Pb versus 207Pb/204Pb, 206Pb/204Pb versus 87Sr/86Sr, 206Pb/204Pb
versus 143Nd/144Nd, 143Nd/144Nd versus 176Hf/ 177Hf, and 206Pb/204Pb versus 176Hf/177Hf diagrams
(Figures 2–4). These features are consistent with the SMAR MORBs at 18–21◦S, which show a similar
trend toward St. Helena igneous rocks on the Nb/Yb versus Th/Yb and La/Sm versus Sm/Yb diagrams
(not shown) [30]. Therefore, the Sr–Nd–Pb–Hf isotopic compositions of the MORBs from the SMAR at
18–21◦S confirmed the probable influence of components derived from the St. Helena plume in their
diagenetic processes but with small and varying degrees of contributions for rocks at different locations.

On the basis of the geochemical compositions discussed above, we concluded that three types of
sources were possibly involved in the genesis of the SMAR MORBs at 18–21◦S: (1) depleted mantle,
(2) EMII-type materials derived from recycled metasomatized oceanic crust, and (3) HIMU-type
components derived from the St. Helena hotspot. To further estimate the involved endmembers
and their relative proportions, several quantitative trace element and isotope mixing models were
used in this study (Figure 8). Quantitative modeling indicates that the compositions of the SMAR
MORBs at 18–21◦S can be produced mainly by the melting of a mantle source consisting of >80%
depleted mantle materials combined with small quantities of St. Helena hotspot components (Figure 8).
The contribution of EMII-type components could be minor with no input of LOMU-type materials
(Figure 8).
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Figure 8. Diagrams of Sm versus Sm/Yb (a), 206Pb/204Pb versus 87Sr/86Sr (b), and 206Pb/204Pb versus
143Nd/144Nd (c). The calculated binary mixing lines are shown between the DM, HIMU, EMII, and a
LOMU component. The endmember compositions used are shown in Table 3. The numbers on the
mixing lines indicate the percentage contribution of the DM components. Symbols are the same as in
Figure 2.

5.3. Geodynamic Model

As a mantle plume ascends into the asthenosphere, the ambient subridge mantle upwelling allows
the plume components to flow laterally below the lithosphere and melt due to decompression, and the
distance of this lateral flow can exceed thousands of kilometers [76]. The geochemical similarities
between MORBs and proximal mantle plumes provide evidence that rising components derived from
the latter are dynamically entrained and dispersed into the asthenosphere mantle and facilitate the
MOR accretion process [15,20,22]. A plume–ridge interaction hypothesis was proposed assuming
that regular spatial gradations of Sr–Nd–Pb isotopes in basalts along the MOR axis are associated
with mixtures comprising different proportions of a mantle plume and ambient asthenosphere [5,15].
The plume–ridge interaction can account for geochemical and geophysical anomalies along 15–20% of
the global MOR system [77].
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Table 3. Trace element (ppm) and isotope compositions of mixing model components.

Sample DMM HIMU EMII LOMU

Sr 7.664 508.95 543.1 143
Nd 0.581 47.18 33.66 9.0
Pb 0.018 3.92 3.92 0.91
Sm 0.239 8.798 7.12 3.6
Yb 0.365 2.757 1.72 1.06

s87Sr/86Sr 0.70230 0.70288 0.7078 0.71209
143Nd/144Nd 0.513250 0.51291 0.51258 0.511663
206Pb/204Pb 17.72 20.8 19.00 17.188

Note: The DMM data is from [26,78]; the HIMU (St. Helena alkali basalts) is from [11] (isotope) and [26] (trace
element, N = 32); the EMII data is from [79] (trace element; Tahaa, Society Islands, alkali basalt sample 73-190,
recommended by [80]) and [81] (isotope); the LOMU (Glass S18-60/1) data is from [37].

Plumes can affect broad regions of oceanic plates, especially slow-spreading plates [82].
The Atlantic Ocean is a slow-spreading plate where hotspot signatures are identified at ridges
as far as 1400 km away from plume sources [82]. The extents of geochemical anomalies in MORBs
provide intuitive indicators of the nature and scale of plume–ridge interactions [83]. Previous studies
have shown that regional variations in Sr–Nd–Pb–He isotopic ratios in the SMAR MORBs at 12–24◦S are
due to the broad radial dispersion of materials derived from the St. Helena plume into the asthenosphere
(e.g., [6,9,20,22]). At one time, the off-ridge St. Helena plume intersected with the SMAR spreading
axis [15]. As a good marker of the deformation process and mantle flow pattern, seismic anisotropy
reveals that the plume–ridge interaction below the lithosphere can occur over distances larger than
1000 km through sublithospheric channels [84]. For example, based on the results of seismic tomography
(a low-velocity anomaly), Villagomez et al. proposed a connection between the Galápagos plume
in the eastern Pacific Ocean and the nearby MOR [85]. In the South Atlantic, seismic tomographic
data (combining accurate wavefield computations with the information contained in whole seismic
waveforms) indicate that the St. Helena plume spread above the 1000 km horizon at a depth shallower
than 250 km with the western mantle flow toward the SMAR [86]. According to high-resolution seismic
tomography, other researchers proposed that an inclined sublithospheric channel (slow-spreading
zone) likely developed at a shallow depth (~200 km) in the upper mantle that connects the nearby
St. Helena plume zone to the westward migrating SMAR [15,27,87]. Coincidentally, the latest waveform
tomography results combined with the volcanic ages of the St. Helena Chain and the Cameroon
Volcanic Line (CVL, which is a series of oceanic seamounts and continental intrusive centers; Figure 1a)
confirm the presence of a continuous and strong low-velocity anomaly between the St. Helena
Chain–CVL and the SMAR ([88] and references therein). A lithospheric corridor could exist that allows
for the hot asthenosphere to flow from the St. Helena Chain–CVL to the MAR following the gradient
of the oceanic lithosphere–asthenosphere boundary [88]. Therefore, a mantle plume–ridge interaction
model reflecting dominantly binary mixing between the depleted asthenosphere and the St. Helena
hotspot sources probably played an important role in the genesis of the nearby SMAR MORBs.

Although geophysical and geochemical studies indicate that plume–ridge separation distances can
exceed 1000 km [89], the ascending off-axis plume effects did not cover all the MOR segments, and the
ridge segments without plume effects did not yield any abnormalities in trace element or isotopic
compositions [90]. One of the important parameters of the plume–ridge interaction is the distance
(D) between them, where the plume effects are the highest at on-axis hotspots and decrease with an
increasing plume–ridge separation distance, as indicated by the large variable geochemical signatures
of related lavas [91]. For example, a plume–ridge interaction exists between the Pacific–Antarctic
Ridge (PAR) and the Foundation hotspot [92]. Geochemical studies indicate that basalts (volcanic
cones) that developed between the PAR and the Foundation Seamounts yield E-MORB-like and
transitional MORB-like (T-MORB) features, but the amount of basalt alkalinity decreases toward the
PAR axis (more T-MORB) [93]. In addition, Yang et al. found that isotopically-enriched N-MORBs
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occurred on the Southwest Indian Ridge (SWIR) at 50◦28’E [94]. These rocks were produced with
the involvement of Crozet plume components, and the enriched materials may have experienced
decompression melting (low-degree) to become depleted in incompatible elements, but their isotopic
compositions did not obviously change during the upslope flow of the Crozet plume to the ridge [94].
Notably, isotopically enriched N-MORBs mainly occur at slower-spreading ridges with a large
plume–ridge distance (~1000 km) [94]. Nevertheless, the changes in the trace element and isotopic
compositions of MORBs mostly depend on the geochemical diversity in their mantle source regions [90].
It is usually accepted that plumes can flow along and toward MORs in a pancake- or pipe-like
channel [77]. For example, some off-axis plumes located at appreciable distances, including the
Easter-Salas y Gomez and Galápagos plumes, are considered to interact with their nearby MORs
through pipeline-like flows (channels) along the base of the lithosphere [95]. The plume effect differs
between a “pipe-like channel” plume and a “pancake-like channel” plume. An off-ridge plume with a
“pancake-like channel” can affect the ambient mantle nondirectionally, but the range of influence of an
off-ridge plume with a pipe-like channel is selective and can be limited or even insignificant when
considering the impact of the channel direction [90].

The MORBs from the SMAR at 18–21◦S were located near St. Helena island (~800 km; Figure 1b).
The discussion in Section 5.2 revealed their likely origin from a DM source with the involvement of
minor St. Helena hotspot components and minor EMII-type components that came from recycled
metasomatized oceanic crust. This inference indicates that the asthenosphere beneath the SMAR at
18–21◦S was likely contaminated by the St. Helena plume. Moreover, the MORBs from the SMAR at
18–21◦S showed E-MORB- to N-MORB-like geochemical characteristics (dominated by N-MORB-like
rocks; Figure 6) with different Sr–Nd–Pb isotopic compositions extending from depleted to enriched
endmembers (Figures 2–5). According to the discussions above, we ascribed these geochemical
phenomena to the shape of the plume flow toward the SMAR insomuch as the SMAR MORBs at
18–21◦S may have been formed through pipe-like channels. This means that the HIMU-type materials
derived from the St. Helena hotspot and injected into the depleted asthenosphere beneath the axial
SMAR at 18–21◦S were possibly transported through so-called pipe-like inclined sublithospheric
channels into the SMAR axial zone. Namely, the SMAR MORBs at 18–21◦S may have formed from a
plume–ridge interaction model with pipeline-like plume flows along the base of the lithosphere toward
the SMAR but with different proportions of components (referring mainly to DM and St. Helena
HIMU-type plume components) in their source regions.

Previous studies have shown that recycled subducted oceanic crust can be entrained in upwelling
mantle plumes [26,96,97]. As mentioned above, HIMU is a mantle reservoir that is considered to have
been formed by subduction and the subsequent storage of an ancient oceanic crust and lithosphere
in the mantle (e.g., [54,64]). Kawabata et al. proposed that the primary magmas of the St. Helena
plume may have originated from the partial melting of a DM source with the addition of a small melt
quantity that was derived from recycled ancient subducted oceanic crust [26]. The calculation for
the recycled crust involved in the genesis of St. Helena basalts yields 87Sr/86Sr = 0.7017–0.7042 and
206Pb/204Pb = 21.7–73.9 [26]. These ratios are different from those (87Sr/86Sr > 0.707 and 206Pb/204Pb =

18.5–19.5) of the EMII endmember reported by [42,81]. This means that the minor involved EMII-type
components that originated from recycled metasomatized oceanic crust in the genesis of the SMAR
MORBs at 18–21◦S may not have been derived from the St. Helena plume. The contribution of recycled
metasomatized oceanic crust components (EMII-type materials) to the formation of the SMAR MORBs
at 18–21◦S was possibly related to the early dispersion of other plume heads into the subcontinental
asthenosphere prior to the opening of the South Atlantic Ocean [6,20], where they were then sampled
by MORB-related magmatism, which is represented by the SMAR MORBs at 18–21◦S.

6. Conclusions

The isotope compositions of the SMAR MORBs at 18–21◦S indicate that these rocks originated
from a heterogeneous mantle substrate related to a mixture of DM components (>80%) with a small but
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variable amount of HIMU- and EMII-type components. The HIMU-type components likely originated
from the adjacent St. Helena hotspot. The SMAR MORBs at 18–21◦S were potentially formed by
plume–ridge interactions with pipeline-like mantle flows that were derived from the St. Helena
plume along the base of the lithosphere toward the SMAR. The EMII-type components may have been
derived from recycled metasomatized oceanic crust and possibly originated from the early dispersion
of other plume heads into the subcontinental asthenosphere prior to the opening of the South Atlantic
Ocean. In addition, the contributions from subducted sediments, continental crust, and subcontinental
lithospheric mantle materials to the genesis of the SMAR MORBs at 18–21◦S may have been nonexistent
or negligible.
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