The Lotsberg Salt Formation in Central Alberta (Canada)—Petrology, Geochemistry, and Fluid Inclusions
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
4. Results
4.1. Petrography of Lotsberg Salt Rocks
Mineral | Raman Bands (cm−1) | References |
---|---|---|
Anatase | 143, 396, 515, 638 | [53,54] |
Anhydrite | 417, 500, 611, 629, 676 1018, 1130, 1160 | [54,55] |
Calcite | 156, 284, 711, 1085, 1435 | [54,55] |
Dolomite | 176, 299, 725, 1097, 1443 | [54] |
Hematite | 223, 290, 409, 609, 1313, | [54] |
Manganite | 358, 388, 528, 555, 620, 651 | [56] |
4.2. Petrology of Carbonates Intercalations in the LSF
4.3. Geochemistry of the Lotsberg Salt Rocks
5. Discussion
5.1. Geological Position and Petrological Features
5.2. Microthermometric Measurements
5.3. Geochemistry
6. Conclusions
- Lack of sulfate facies prior to precipitation of salt rocks as well as a lack of anhydrite accompanying halite. This suggests that halite crystallization took place from solutions significantly impoverished in sulfates.
- Lack of sedimentary structures such as lamination, the occurrence of striped salts, etc., which point to post-depositional transformations and disappearance of primary structures.
- Prevailing in the profile of salt rocks large crystalline halite with crystals exceeding several centimetres, which indicate recrystallization of halite.
- High concentration of rubidium and caesium, indicating deep background waters influence on the salt formations.
- Presence of fluid inclusions, which show high-temperature homogenization.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warren, J.K. Evaporites: Sediments, Resources and Hydrocarbons; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; ISBN 3-540-26011-0. [Google Scholar]
- Lux, K.H. Design of salt caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment. In Underground Gas Storage: Worldwide Experiences and Future Development in the UK and Europe; Evans, D.J., Chadwick, R.A., Eds.; The Geological Society, London, Special Publications: London, UK, 2009; Volume 313, pp. 93–128. [Google Scholar]
- Cała, M.; Cyran, K.; Kowalski, M.; Wilkosz, P. Influence of the anhydrite interbeds on a stability of the storage caverns in the mechelinki salt deposit (Northern Poland). Arch. Min. Sci. 2018, 63, 1007–1025. [Google Scholar] [CrossRef]
- Cyran, K. Insight into a Shape of Salt Storage Caverns. Arch. Min. Sci. 2020, 65, 363–398. [Google Scholar] [CrossRef]
- Kunstman, A.; Poborska-Młynarska, K.; Urbańczyk, K. Solution Mining Salt Deposits Qutline of Recent Development Trends; AGH University of Science and Technology Press: Krakow, Poland, 2007; ISBN 978-83-7464-109-8. [Google Scholar]
- Liu, W.; Li, Y.; Yang, C.; Heng, S.; Wang, B. Analysis of physical and mechanical properties of impure salt rock. In Proceedings of the 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013; pp. 1130–1139. [Google Scholar]
- Zhang, Q.; Liu, J.; Wang, L.; Luo, M.; Liu, H.; Xu, H.; Zou, H. Impurity Effects on the Mechanical Properties and Permeability Characteristics of Salt Rock. Energies 2020, 13, 1366. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xing, W.; Liu, J.; Hou, Z.; Were, P. Influence of water-insoluble content on the short-term strength of bedded rock salt from three locations in China. Environ. Earth Sci. 2015, 73, 6951–6963. [Google Scholar] [CrossRef]
- Cyran, K.; Toboła, T.; Kamiński, P. Effect of petrological features on mechanical properties of rock salt from the LGOM (Legnica-Głogów copper district). Biul. Panstw. Inst. Geol. 2016, 466. [Google Scholar] [CrossRef]
- Borchert, H.; Muir, R.O. Salt Deposits. The Origin, Metamorphism and Deformation of Evaporites; D. Van Nostrand Company, LTD.: London, UK, 1964. [Google Scholar]
- Braitsch, O. Salt Deposits Their Origin and Composition; Springer: New York, NY, USA, 1971. [Google Scholar]
- Warren, J.K. Evaporites. In Their Evolution and Economics; Blackwell Science Ltd.: Oxford, UK, 1999. [Google Scholar]
- Warren, J.K. Evaporites A Geological Compendium; Springer: Cham Heidelberg, Germany; New York, NY, USA, 2016; ISBN 9783319135113. [Google Scholar]
- Wachowiak, J.; Toboła, T. Phase transitions in the borate minerals from the Kłodawa salt dome (Central Poland) as indicators of temperature processes in salt diapirs. Geol. Q. 2014, 58, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Toboła, T.; Wachowiak, J. Evidence of high-temperature rock salt transformations in areas of occurrence of borate minerals (Zechstein, Kłodawa salt dome, Poland). Geol. Q. 2018, 62, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Toboła, T. Inclusions in anhydrite crystals from blue halite veins in the Kłodawa Salt Dome (Zechstein, Poland). Geol. Q. 2016, 60, 572–585. [Google Scholar] [CrossRef] [Green Version]
- Toboła, T.; Botor, D. Raman spectroscopy of organic matter and rare minerals in the Kłodawa Salt Dome (Central Poland) cap-rock and Triassic cover—Indicators of hydrothermal solution migration. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118121. [Google Scholar] [CrossRef]
- Toboła, T. Raman spectroscopy of organic, solid and fluid inclusions in the Oldest Halite of LGOM area (SW Poland). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 381–392. [Google Scholar] [CrossRef]
- Stewart, F.H. Marine Evaporites. In Data of Geochemistry; Fleischer, M., Ed.; Geological Survey Professional Paper 440-Y; United States Government Printing Office: Washington, DC, USA, 1963; p. 52. [Google Scholar]
- Baar, C.A. Bromine Investigations on Eastern Canada Salt Deposits. In Proceedings of the Second Symposium on Salt; Rau, J.L., Ed.; The Northern Ohio Geological Society: Cleveland, OH, USA, 1966; Volume 1, pp. 276–292. [Google Scholar]
- Raup, O.B.; Hite, R.J. Bromine Distribution in Marine Halite Rocks. In Marine Evaporites; Dean, W.E., Schreiber, B.C., Eds.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1978; pp. 105–123. [Google Scholar]
- Herrman, A.G.; Knake, D.; Schneider, J.; Peters, H. Geochemistry of Modern Seawater and Brines from Salt Pans: Main Components and Bromine Distribution. Contrib. Mineral. Petrol. 1973, 40, 1–24. [Google Scholar] [CrossRef]
- Holser, W.T. Bromide geochemistry of salt rocks. In Proceedings of the Second Symposium on Salt, Volume 1; Rau, J.R., Ed.; The Northern Ohio Geological Society: Cleveland, OH, USA; 1966; Volume 75, pp. 248–275. [Google Scholar]
- Holser, W.T. Trace elements and isotopes in evaporites. In Reviews in Mineralogy; Burns, R.G., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1979; Volume 6, pp. 295–346. [Google Scholar]
- Kühn, R. Geochemistry of German potash deposits. In Saline Deposits; Mattox, R.B., Ed.; Special Papers no. 88; The Geological Society of America, INC.: Boulder, CO, USA, 1968; pp. 427–504. [Google Scholar]
- Holser, W.T.; Wardlaw, N.C.; Watson, D.W. Bromide in salt rocks: Extraordinarily low content in the Low Elk Point salt, Canada. Geol. Saline Depos. 1972, 7, 183–190. [Google Scholar]
- Valiashko, M.G. Geochemistry of Bromine in the Processes of Salt Deposition and the Use of the Bromine Content as a Genetic and Prospecting Criterion. Reprinted from Geochemistry, 6, 570–589 (1956). In Marine Evaporites: Origin, Diagenesis and Geochemistry; Kirkland, D.W., Evans, R., Eds.; Dowden, Hutchinson & Ross, Inc.: Stroudsburg, PE, USA, 1973; pp. 313–332. ISBN 0-87933-043-0. [Google Scholar]
- Zak, I. Sedimentology and Bromine Geochemistry of Marine and Continental Evaporites in the Dead Sea Basin. In Fourth Symposium on Salts; Coogan, A., Ed.; Northern Ohio Geological Society: Cleveland, OH, USA, 1974; Volume 1, pp. 349–361. [Google Scholar]
- Dean, W.E.; Anderson, R.Y. Trace and Minor Elements Variations in the Permian Castile Formation, Delevare Basin, Texas and New Mexico, Revealed by Varve Calibration. In Proceedings of the Fourth Symposium on Salt; Coogan, A.H., Ed.; Northern Ohio, Geol. Soc.: Cleveland, OH, USA, 1974; Volume 1, pp. 275–286. [Google Scholar]
- Dean, W.E. Trace and Minor Elements IN Evaporites. In Marine evaporates; Dean, W.E., Schreiber, B.C., Eds.; Tulsa, SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1987; pp. 86–104. ISBN 9781565762336. [Google Scholar]
- Hryniv, S.M. Peryt, T. Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydrites of West Poland. Chem. Erde 2010, 70, 137–147. [Google Scholar] [CrossRef]
- Rabin, M.; Kukiałka, P. Lotsberg Salt Formation Solution mined Cavern for SAGD Solid Waste disposal, Cold Lake, Alberta. In Proceedings of the GeoConvention 2013, Integration, Calgary, AB, Canada, 6–12 May 2013; pp. 1–6. [Google Scholar]
- Kukiałka, P. Kawerny solne w prowincji Alberta, Zachodnia Kanada. Przegląd Solny 2015, 11, 83–90. [Google Scholar]
- Kukiałka, P. Złoża soli kamiennej w prowincji Alberta, Zachodnia Kanada. Przegląd Solny 2014, 10, 132–138. [Google Scholar]
- Kukiałka, P.; Toboła, T. Petrologiczna i geochemiczna charakterystyka soli kamiennych formacji Lotsberg w środkowej Albercie (Kanada). Przegląd Solny 2018, 14, 77–87. [Google Scholar]
- Wardlaw, N.C.; Watson, D.W. Middle Devonian Salt Formations and Their Bromide Content, Elk Point Area, Alberta. Can. J. Earth Sci. 1966, 3, 263–278. [Google Scholar] [CrossRef]
- Hamilton, W.N. Salt in East-Central Alberta; Bulletin no. 29L; Research Council of Alberta: Edmonton, AB, Canada, 1971. [Google Scholar]
- Meijer Drees, N.C. Evaporitic Deposits of Western Canada; Geological Survey of Canada: Ottawa, ON, Canada, 1986; ISBN 0660120259. [Google Scholar]
- Meijer Drees, N.C. Devonian Elk Point Group of the Western Canada Sedimentary Basin. In Geological Atlas of the Western Canada Sedimentary Basin; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1994; pp. 129–147. [Google Scholar]
- Grobe, M. Distribution and Thickness of Slat Within the Devonian Elk Point Group, Western Canada Sedimentary Basin; Alberta Energy and Utilities Board, Alberta Geological Survey: Edmonton, AB, Canada, 2000. [Google Scholar]
- Grobe, M. Distribution and Thickness of Salt-Bearing Units within the Devonian Elk Point Group Ð a Useful Supplement to the Geological Atlas of the Western Canada Sedimentary Basin Matthias Grobe; Alberta Energy and Utilities Board, Alberta Geological Survey: Edmonton, AB, Canada, 1988; Volume 4. [Google Scholar]
- Glass, D.J. (Ed.) Lexicon of Canadian Stratigraphy; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1997; Volume 4, ISBN 0-920230-23-7. [Google Scholar]
- Goldstein, R.H.; Reynolds, J.T. Systematics of Fluid Inclusions. In Diagenetic Minerals; Society for Sedimentary Geology: Tulsa, OK, USA, 1994; ISBN 1-56576-008-5. [Google Scholar]
- Vanko, D.A.; Bach, W. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: Recognition and effects of stretching and the low-temperature formation of gypsum. Chem. Geol. 2005, 223, 35–45. [Google Scholar] [CrossRef]
- Roberts, S.M.; Spencer, R.J. Paleotemperatures preserved in fluid inclusions in halite. Geochmica Cosmochmica Acta 1995, 59, 3929–3942. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Aoya, M.; Kouketsu, Y.; Endo, S.; Shimizu, H.; Mizukami, T.; Nakamura, D.; Wallis, S. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. J. Metamorph. Geol. 2010, 28, 895–914. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Mizukami, T.; Mori, H.; Endo, S.; Aoya, M.; Hara, H.; Nakamura, D.; Wallis, S. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc 2014, 23, 33–50. [Google Scholar] [CrossRef]
- Lünsdorf, N.K.; Dunkl, I.; Schmidt, B.C.; Rantitsch, G.; von Eynatten, H. Towards a Higher Comparability of Geothermometric Data obtained by Raman Spectroscopy of Carbonaceous Material. Part I: Evaluation of Biasing Factors. Geostand. Geoanal. Res. 2014, 38, 73–94. [Google Scholar] [CrossRef]
- Lünsdorf, N.K.; Lünsdorf, J.O. Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting. Int. J. Coal Geol. 2016, 160–161, 51–62. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. Rev. Mineral. Vol. 12 Fluid Inclusions. Mineral. Soc. Am. 1984, 12, 1–644. [Google Scholar]
- Goldstein, R.H. Petrographic Analysis of Fluid Inclusions. In Fluid Inclusions: Analysis and Interpreation. Short Course Series; Samson, I.M., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada: Quebec, QC, Canada, 2001; Volume 32. [Google Scholar]
- Andò, S.; Garzanti, E. Raman spectroscopy in heavy-mineral studies. Geol. Soc. Spec. Publ. 2013, 386, 395–412. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- White, S.N. Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals. Chem. Geol. 2009, 259, 240–252. [Google Scholar] [CrossRef]
- Bernard, M.-C. Electrochromic Reactions in Manganese Oxides. J. Electrochem. Soc. 1993, 140, 3065–3070. [Google Scholar] [CrossRef]
- Holser, W.T. Mineralogy of evaporites. In Reviews in Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 1979; Volume 6, pp. 211–294. [Google Scholar]
- Sonnenfeldüü, P. The color of rock salt—A review. Sediment. Geol. 1995, 94, 267–276. [Google Scholar] [CrossRef]
- Heflik, W.; Natkaniec-Nowak, L.; Toboła, T. Microscopic investigation of blue salts. In Blue halite of the Kłodawa Salt Dome; Toboła, T., Natkaniec-Nowak, L., Eds.; AGH University of Science and Technology Press: Kraków, Poland, 2008; pp. 56–69, (In Polish with English summary). [Google Scholar]
- Zelek, S.M.; Stadnicka, K.M.; Toboła, T.; Natkaniec-Nowak, L. Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineral. Petrol. 2014, 108. [Google Scholar] [CrossRef] [Green Version]
- Shlichta, P.J. Growth, Deformation, and Defect Structure of Salt Crystals. In Saline Deposits; Mattox, R., Ed.; Special Papers no. 88; The Geological Society of America, INC.: Boulder, CO, USA, 1968; pp. 597–617. [Google Scholar]
- Carter, N.L.; Hansen, F.D. Creep of rocksalt. Tectonophysics 1983, 92, 275–333. [Google Scholar] [CrossRef]
- Nicholson, K.; Hein, J.R.; Bühn, B.; Dasgupta, S. (Eds.) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits; Special Publication No. 119; The Geological Society London: London, UK, 1997; ISBN 1897799748. [Google Scholar]
- Dasgupta, S.; Roy, S.; Fukuoka, M. Depositional Models for Manganese Oxide and Carbonate Deposits of the Precambrian Sausar Group, India. Econ. Geol. 1992, 87, 1412–1418. [Google Scholar] [CrossRef]
- Ciobotǎ, V.; Salama, W.; Tarcea, N.; Rösch, P.; Elaref, M.M.; Gaupp, R.; Popp, J. Identification of minerals and organic materials in Middle Eocene ironstones from the Bahariya Depression in the Western Desert of Egypt by means of micro-Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 405–410. [Google Scholar] [CrossRef]
- Baioumy, H.M.; Khedr, M.Z.; Ahmed, A.H. Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt. Ore Geol. Rev. 2013, 53, 63–76. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Jones, A.P.; Kah, L. Carbon mineralogy and crystal chemistry. Rev. Mineral. Geochem. 2013, 75, 7–46. [Google Scholar] [CrossRef]
- Burns, R.G.; Burns, V.M. Manganese Oxides. In Reviews in Mineralogy; Burns, R.G., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1979; pp. 1–46. [Google Scholar]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Taitel-Goldman, N.; Ezersky, V.; Mogilyanski, D. High-resolution transmission electron microscopy study of Fe-Mn oxides in the hydrothermal sediments of the Red Sea deeps system. Clays Clay Miner. 2009, 57, 465–475. [Google Scholar] [CrossRef]
- Taitel-Goldman, N. Crystallization of Fe and Mn Oxides-Hydroxides in Saline and Hypersaline Environments and In Vitro. In Advanced Topics in Crystallization; Mastai, Y., Ed.; IntechOpen: London, UK, 2015; pp. 323–339. ISBN 978-953-51-4224-9. [Google Scholar]
- Roedder, E. The fluids in salt. Am. Mineral. 1984, 69, 413–439. [Google Scholar]
- Toboła, T. The influence of tectonics on petrological characteristics of anhydrite and anhydrite-halite intercalations in the Oldest Halite (Na1) (Zechstein, Upper Permian) of the Bądzów area (SW poland). Geol. Q. 2014, 58, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Hardie, L.A.; Lowenstein, T.K.; Spencer, R.J. The Problem of Distinguishing Between Primary and Secondary Features in Evaporites. In Sixth International Symposium on Salt; Salt Institute: La Jolla, CA, USA, 1983; pp. 11–39. [Google Scholar]
- den Brok, B.; Zahid, M.; Passchier, C.W. Stress induced grain boundary migration in very soluble brittle salt. J. Struct. Geol. 1999, 21, 147–151. [Google Scholar] [CrossRef]
- den Brok, B.; Zahid, M.; Passchier, C.W. Pressure solution compaction of sodium chlorate and implications for pressure solution in NaCl. Tectonophysics 1999, 307, 297–312. [Google Scholar] [CrossRef]
- den Brok, B.; Zahid, M.; Passchier, C. Cataclastic solution creep of very soluble brittle salt as a rock analogue. Earth Planet. Sci. Lett. 1998, 163, 83–95. [Google Scholar] [CrossRef]
- Adams, L.H.; Williamson, E.D.; Johnston, J. The determination of the compressibility of solids at high pressures. J. Am. Chem. Soc. 1919, 41, 12–42. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.H.; Williamson, E.D. On the compressibility of minerals and rocks at high pressures. J. Franklin Inst. 1923, 195, 475–529. [Google Scholar] [CrossRef]
- Richards, T.W.; Jones, G. The Compressibilities of the Chlorides, Bromides, and Iodides of Sodium, Potassium, Silver and Thallium. J. Am. Chem. Soc. 1909, 32, 158–191. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid inclusions in Minerals: Methods and Applications; De Vivo, B., Frezzotti, M.L., Eds.; Virginia Tech: Blacksburg, VA, USA, 1994; pp. 117–130. [Google Scholar]
- Diamond, L.W. Systematics of H2O Inclusions. Fluid Inclusions Anal. Interpreation 2003, 32, 55–80. [Google Scholar]
- McCaffrey, M.A.; Lazar, B.; Holland, H.D. The Evaporation Path of Seawater and the Coprecipitation of Br- and K + With Halite. J. Sediment. Petrol. 1987, 57, 928–937. [Google Scholar]
- Hite, R.J. Evaporite Deposits of the Khorat Plateau, Northeastern Thailand. In Fourth Symposium on Salt; Coogan, A.H., Ed.; Northern Ohio, Geol. Soc.: Cleveland, OH, USA, 1974; Volume 1, pp. 135–146. [Google Scholar]
- Tomassi-Morawiec, H.; Czapowski, G.; Bornemann, O.; Schramm, M.; Misiek, G. Wzorcowe profile bromowe dla solnych utworów cechsztynu w Polsce. Gospod. Surowcami Miner. 2009, 25, 75–143. [Google Scholar]
- Toboła, T. Study of potassium and magnesium contents in salt deposit Bochnia (Southern Poland). Prz. Geol. 2000, 48, 688–693. [Google Scholar]
- Wilamowski, A. Chloritization and polytypism of biotite in the Łomnica granite, Karkonosze Massif, Sudetes, Poland: Stable isotope evidence. Chem. Geol. 2002, 182, 529–547. [Google Scholar] [CrossRef]
- Fritz, P.; Frape, S.K. Saline groundwaters in the Canadian Shield—A first overview. Chem. Geol. 1982, 36, 179–190. [Google Scholar] [CrossRef]
- Frape, S.K.; Fritz, P.; McNutt, R.H. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim. Cosmochim. Acta 1984, 48, 1617–1627. [Google Scholar] [CrossRef]
- Zherebtsova, I.K.; Volkova, N.N. Experimental study of behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk–Sivash brine. Geochem. Int. 1966, 7, 656–670. [Google Scholar]
- Schock, H.H.; Puchelt, H. Rubidium and cesium distribution in salt minerals-I. Experimental investigations. Geochim. Cosmochim. Acta 1971, 35, 307–317. [Google Scholar] [CrossRef]
- Shamaev, V.I.; Chudinovskich, T.V. Determination of Cesium in Seawater by Radiochemical Methods. Anal. Chim. Acta 1982, 139, 177–186. [Google Scholar] [CrossRef]
- Stowe, K. Ocean Science; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Norton, J.J. Lithium, Cesium, and Rubidium—The Rare Alkali Metals; United States Mineral Resources: Washington, DC, USA, 1973; pp. 365–378.
- Kretz, R.; Loop, J.; Hartree, R. Petrology and Li-Be-B geochemistry of muscovite-biotite granite and associated pegmatite near Yellowknife, Canada. Contrib. Mineral. Petrol. 1989, 102, 174–190. [Google Scholar] [CrossRef]
- Černý, P.; Chapman, R.; Teertstra, D.K.; Novák, M. Rubidium- and cesium-dominant micas in granitic pegmatites. Am. Mineral. 2003, 88, 1832–1835. [Google Scholar] [CrossRef]
- Michard, G. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem. Geol. 1990, 89, 117–134. [Google Scholar] [CrossRef]
- Hall, A.; Jarvis, K.E.; Walsh, J.N. The variation of cesium and 37 other elements in the Sardinian granite batholith, and the significance of cesium for granite petrogenesis. Contrib. Mineral. Petrol. 1993, 114, 160–170. [Google Scholar] [CrossRef]
- Drake, H.; Tullborg, E.L.; Annersten, H. Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures. Appl. Geochem. 2008, 23, 1898–1920. [Google Scholar] [CrossRef] [Green Version]
- Loges, A.; Wagner, T.; Kirnbauer, T.; Göb, S.; Bau, M.; Berner, Z.; Markl, G. Source and origin of active and fossil thermal spring systems, northern Upper Rhine Graben, Germany. Appl. Geochem. 2012, 27, 1153–1169. [Google Scholar] [CrossRef]
- Mathurin, A.; Drake, H.; Tullborg, E.; Berger, T.; Peltola, P.; Kalinowski, B.E.; Åström, M.E. High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock—Influence of groundwater origin and secondary minerals. Geochim. Cosmochim. Acta 2014, 132, 187–213. [Google Scholar] [CrossRef]
Parameters | PIW (wt%) | Br (ppm) | Ba (ppm) | Ca (ppm) | Cs (ppm) | K (ppm) | Li (ppm) | Mg (ppm) | Mn (ppm) | Rb (ppm) | Cl/Br |
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | <0.01 | 0.67 | 3.63 | 104.20 | 5.07 | 165.84 | 0.04 | 25.96 | 0.10 | <0.01 | 4.75 |
Max. | 18.34 | 12.74 | 126.60 | 2525.39 | 211.22 | 3651.34 | 0.58 | 176.89 | 1.59 | 3.13 | 90.44 |
Average | 0.96 | 3.10 | 31.60 | 772.90 | 56.99 | 1060.33 | 0.18 | 64.85 | 0.63 | 0.93 | 28.54 |
S.D. | 2.32 | 2.34 | 25.37 | 465.06 | 44.75 | 853.93 | 0.15 | 35.07 | 0.38 | 0.86 | 16.11 |
CV (%) | 242.27 | 75.44 | 80.27 | 60.17 | 78.53 | 80.53 | 83.96 | 54.08 | 60.59 | 92.49 | 56.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toboła, T.; Kukiałka, P. The Lotsberg Salt Formation in Central Alberta (Canada)—Petrology, Geochemistry, and Fluid Inclusions. Minerals 2020, 10, 868. https://doi.org/10.3390/min10100868
Toboła T, Kukiałka P. The Lotsberg Salt Formation in Central Alberta (Canada)—Petrology, Geochemistry, and Fluid Inclusions. Minerals. 2020; 10(10):868. https://doi.org/10.3390/min10100868
Chicago/Turabian StyleToboła, Tomasz, and Piotr Kukiałka. 2020. "The Lotsberg Salt Formation in Central Alberta (Canada)—Petrology, Geochemistry, and Fluid Inclusions" Minerals 10, no. 10: 868. https://doi.org/10.3390/min10100868
APA StyleToboła, T., & Kukiałka, P. (2020). The Lotsberg Salt Formation in Central Alberta (Canada)—Petrology, Geochemistry, and Fluid Inclusions. Minerals, 10(10), 868. https://doi.org/10.3390/min10100868