Solving Multi-Objective Matrix Games with Fuzzy Payoffs through the Lower Limit of the Possibility Degree
Abstract
:1. Introduction
2. Preliminaries
3. A Generalized Model for a Multi-Objective Fuzzy Matrix Game
4. Example
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blackwell, D. An analog of the minimax theorem for vector payoffs. Pac. J. Math. 1956, 6, 1–8. [Google Scholar] [CrossRef]
- Zeleny, M. Games with multiple payoffs. Int. J. Game Theory 1975, 4, 179–191. [Google Scholar] [CrossRef]
- Ghose, D.; Prasad, U.R. Solution concepts in two-person multicriteria games. J. Optim. Theory Appl. 1989, 63, 167–189. [Google Scholar] [CrossRef]
- Fernández, F.R.; Puerto, J. Vector linear programming in zero-sum multicriteria matrix games. J. Optim. Theory Appl. 1996, 89, 115–127. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Bector, C.R.; Chandra, S.; Vidyottama, V. Matrix games with fuzzy goals and fuzzy linear programming duality. Fuzzy Optim. Decis. Mak. 2004, 3, 255–269. [Google Scholar] [CrossRef]
- Bector, C.R.; Chandra, S. Fuzzy Mathematical Programming and Fuzzy Matrix Games; Springer: Berlin, Germany, 2005. [Google Scholar]
- Chen, B.S.; Tseng, C.S.; Uang, H.J. Fuzzy differential games for nonlinear stochastic systems: Suboptimal approach. IEEE Trans. Fuzzy Syst. 2002, 10, 222–233. [Google Scholar] [CrossRef]
- Garagic, D.; Cruz, J.B., Jr. An Approach to Fuzzy Noncooperative Nash Games. J. Optim. Theory Appl. 2003, 118, 475–491. [Google Scholar] [CrossRef]
- Vijay, V.; Chandra, S.; Bector, C.R. Matrix games with fuzzy goals and fuzzy payoffs. Omega 2005, 33, 425–429. [Google Scholar] [CrossRef]
- Žilinskas, J.; Bector, C.R.; Chandra, S. Fuzzy Mathematical Programming and Fuzzy Matrix Games. Interfaces 2007, 37, 388–389. [Google Scholar]
- Baumgarten, C. Old Game, New Rules: Rethinking the Form of Physics. Symmetry 2016, 8, 30. [Google Scholar] [CrossRef]
- Byun, S.S.; Gil, J.M. Fair Dynamic Spectrum Allocation Using Modified Game Theory for Resource-Constrained Cognitive Wireless Sensor Networks. Symmetry 2017, 9, 73. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W.; Zhang, J. Zero-sum matrix game with payoffs of Dempster-Shafer belief structures and its applications on sensors. Sensors 2017, 17, 922. [Google Scholar] [CrossRef] [PubMed]
- Khanzadi, M.; Turskis, Z.; Ghodrati, A.G.; Chalekaee, A. A model of discrete zero-sum two-person matrix games with grey numbers to solve dispute resolution problems in construction. J. Civ. Eng. Manag. 2017, 23, 824–835. [Google Scholar] [CrossRef]
- Medineckiene, M.; Zavadskas, E.K.; Turskis, Z. Dwelling selection by applying fuzzy game theory. Arch. Civ. Mech. Eng. 2011, 11, 681–697. [Google Scholar] [CrossRef]
- Park, Y.; Hyun, S. Characterizations of Network Structures Using Eigenmode Analysis. Symmetry 2015, 7, 962–975. [Google Scholar]
- Peldschus, F.; Zavadskas, E.K. Fuzzy matrix games multi-criteria model for decision-making in engineering. Informatica 2005, 16, 107–120. [Google Scholar]
- Ye, F.; Dai, J.; Li, Y. Game Algorithm for Resource Allocation Based on Intelligent Gradient in HetNet. Symmetry 2017, 9, 34. [Google Scholar] [CrossRef]
- Bhaumik, A.; Roy, S.K.; Li, D.F. Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J. Intell. Fuzzy Syst. 2017, 33, 327–336. [Google Scholar] [CrossRef]
- Tan, C.; Jiang, Z.Z.; Chen, X.; Ip, W.H. A Banzhaf function for a fuzzy game. IEEE Trans. Fuzzy Syst. 2014, 22, 1489–1502. [Google Scholar] [CrossRef]
- Cevikel, A.C.; Ahlatcioğlu, M. Solutions for fuzzy matrix games. Comput. Math. Appl. 2010, 60, 399–410. [Google Scholar] [CrossRef]
- Chakeri, A.; Habibi, J.; Heshmat, Y. Fuzzy type-2 Nash equilibrium. In Proceedings of the 2008 International Conference on Computational Intelligence for Modelling Control and Automation, Vienna, Austria, 10–12 December 2008; pp. 398–402. [Google Scholar]
- Chakeri, A.; Dariani, A.N.; Lucas, C. How can fuzzy logic determine game equilibriums better? In Proceedings of the 4th International IEEE Conference on Intelligent Systems(IS’08), Varna, Bulgaria, 6–8 September 2008; pp. 251–256. [Google Scholar]
- Chakeri, A.; Sadati, N.; Sharifian, S. Fuzzy Nash equilibrium in fuzzy games using ranking fuzzy numbers. In Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (FUZZ), Barcelona, Spain, 18–23 July 2010; pp. 1–5. [Google Scholar]
- Chakeri, A.; Sheikholeslam, F. Fuzzy Nash equilibriums in crisp and fuzzy games. IEEE Trans. Fuzzy Syst. 2013, 21, 171–176. [Google Scholar] [CrossRef]
- Chakeri, A.; Sadati, N.; Dumont, G.A. Nash Equilibrium Strategies in Fuzzy Games. In Game Theory Relaunched; InTech: Rijeka, Croatia, 2013. [Google Scholar] [CrossRef]
- Sharifian, S.; Chakeri, A.; Sheikholeslam, F. Linguisitc representation of Nash equilibriums in fuzzy games. In Proceedings of the IEEE 2010 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Toronto, ON, Canada, 12–14 July 2010; pp. 1–6. [Google Scholar]
- Aggarwal, A.; Khan, I. Solving multi-objective fuzzy matrix games via multi-objective linear programming approach. Kybernetika 2016, 52, 153–168. [Google Scholar] [CrossRef]
- Chen, Y.W.; Larbani, M. Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst. 2006, 157, 34–51. [Google Scholar] [CrossRef]
- Li, D.; Cheng, C. Fuzzy multiobjective programming methods for fuzzy constrained matrix games with fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2002, 10, 385–400. [Google Scholar] [CrossRef]
- Sakawa, M.; Nishizaki, I. Max-min solutions for fuzzy multiobjective matrix games. Fuzzy Sets Syst. 1994, 67, 53–69. [Google Scholar] [CrossRef]
- Qiu, D.; Dong, R.; Chen, S.; Li, A. On an Optimization Method Based on Z-Numbers and the Multi-Objective Evolutionary Algorithm. Intell. Autom. Soft Comput. 2017, 1–4. [Google Scholar] [CrossRef]
- Sun, J.; Gong, D.; Sun, X. Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree. Chin. J. Electron. 2013, 22, 269–272. [Google Scholar]
- Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. Fuzzy Sets Syst. 1990, 35, 241–249. [Google Scholar] [CrossRef]
- Dubois, D.J. Fuzzy Sets and Systems: Theory and Applications; Academic Press: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Osuna-Gómez, R.; Chalco-Cano, Y.; Rufián-Lizana, A.; Hernández-Jiménez, B. Necessary and sufficient conditions for fuzzy optimality problems. Fuzzy Sets Syst. 2016, 296, 112–123. [Google Scholar]
- Li, L.; Liu, S.; Zhang, J. On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings. Fuzzy Sets Syst. 2015, 280, 107–132. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, D.; Xing, Y.; Chen, S. Solving Multi-Objective Matrix Games with Fuzzy Payoffs through the Lower Limit of the Possibility Degree. Symmetry 2017, 9, 130. https://doi.org/10.3390/sym9080130
Qiu D, Xing Y, Chen S. Solving Multi-Objective Matrix Games with Fuzzy Payoffs through the Lower Limit of the Possibility Degree. Symmetry. 2017; 9(8):130. https://doi.org/10.3390/sym9080130
Chicago/Turabian StyleQiu, Dong, Yumei Xing, and Shuqiao Chen. 2017. "Solving Multi-Objective Matrix Games with Fuzzy Payoffs through the Lower Limit of the Possibility Degree" Symmetry 9, no. 8: 130. https://doi.org/10.3390/sym9080130