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Abstract:



In this article, we put forward the multi-objective matrix game model based on fuzzy payoffs. In order to solve the game model, we first discuss the relationship of two fuzzy numbers via the lower limit[image: there is no content] of the possibility degree. Then, utilizing this relationship, we conclude that the equilibrium solution of this game model and the optimal solution of multicriteria linear optimization problems are of equal value. Finally, to illustrate the effectiveness and correctness of the obtained model, an example is provided.
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1. Introduction


The multicriteria zero sum game is a generalization of the standard zero sum game model. The multicriteria zero sum game is also known as the multi-objective matrix game as it can be represented by multiple payoffs. Along with the collision of distinct decision makers in the social and corporate circumstance, much research in recent years has focused on multiple objective matrix game problems.



The notions of maxmin and minmax values were first used to discuss the multi-objective game model in [1]. Zeleny [2] studied the matrix game based on multiple payoff through notions of compromise solutions and a decomposition of parametric spaces. Ghose et al. [3] proposed the concepts of Pareto-optimal, Pareto saddle points and security levels of the multicriteria matrix game and analyzed the existence of Pareto saddle points of this game problem. Afterwards, the same game model was discussed by Fernandez et al. [4] and they proved that efficient solutions of multicriteria linear optimization problems and Pareto-optimal security strategies (POSS) for each Player are of equal value. Meanwhile, they obtained the set of all POSS through alternative ways.



The fuzzy set theory was initially introduced in 1965 by Zadeh [5]. The fuzziness occurring in the game problems is categorized as the fuzzy game problems. Single objective fuzzy game problems and related problems have attracted a wide range of research [6,7,8,9,10,11]. Therefore, fuzzy games theory has been extensively studied in some fields, such as economics, engineering and management science [12,13,14,15,16,17,18,19]. In order to deal with the fuzzy matrix games problem, a method of robust ranking is formulated by Bhaumik [20]. In terms of fuzzy games problems, Tan et al. [21] presented a concept of the potential function. Furthermore, they also reached a conclusion that the solution of fuzzy games and the marginal value of potential functions are equivalent. In [19], in order to solve the game problem quickly, the gradient iterative algorithm was proposed. Cevikle et al. [22] utilized the fuzzy relation method to find the solution of matrix games in terms of fuzzy goals and fuzzy payoffs. Chakeri et al. [23] used fuzzy logic to determine the priority of the payoff based on the linguistic preference relation and proposed the notion of linguistic Nash equilibrium. Fuzzy preference relation has been widely used in fuzzy game theory [24,25,26,27]. At the same time, they [24] utilize the same method [23] to determine the priority of the payoff based on fuzzy preference relation. In order to deal with this game model, a new approach is put forward. Moreover, Sharifian et al. [28] also applied fuzzy linguistic preference relation to fuzzy game theory.



Although the research on single objective fuzzy matrix games has become increasingly widespread, there are still few conclusions in the multicriteria case. The major contributions in this aspect have been studied in [18,29,30,31,32]. Sakawa et al. [32] discussed the fuzzy multicriteria games model with fuzzy goals according to the theory of maxmin value. In order to solve multiple decision-making problems, a model of fuzzy multiple matrix games is presented by Peldschus et al. [18]. Subsequently, Chen [30] found that the equilibrium solution of multiple matrix games based on fuzzy payoffs is equivalent to the solution of the fuzzy multi-objective attribute decision-making problem. Inspired by [3,4], Aggarwal et al. [29] applied the notions of POSS and security levels of apiece players to research the multicriteria matrix game in terms of fuzzy goals and demonstrated that this game problem and fuzzy multiple objective linear optimization problems are of equal value. Taking elicitation from [29,33,34], we can take inspiration and put forward a new model of the multiple objective matrix game based on fuzzy payoffs according to the lower limit[image: there is no content] of the possibility degree.



The outline of this article is as follows: The background of this paper is introduced in Section 1. Section 2 introduces some basic definitions and recalls some results concerning crisp multi-objective matrix games and the fuzzy numbers. Furthermore, we discuss the relationship of two fuzzy numbers via the lower limit[image: there is no content] of the possibility degree. In Section 3, The multiple objective matrix game model based on fuzzy payoffs is considered. We conclude that the equilibrium solution of this game model and the optimal solution of multi-objective linear optimization problems are of equal value. In Section 4, a small numerical example is given.




2. Preliminaries


In this section, we begin to depict a crisp multiple objective matrix game in [29]. For this, we recall some definitions.



Definition 1.

[3] The set of mixed strategies for Player I is denoted by


Sm={x=(x1,x2,⋯,xm)T∈Rm|∑i=1mxi=1,xi≥0,i=1,2,⋯,m.}



(1)




Similarly, The set of mixed strategies for Player II is denoted by


Sn={y=(y1,y2,⋯,yn)T∈Rn|∑j=1nyj=1,yj≥0,j=1,2,⋯,n.}



(2)




where [image: there is no content] is the transposition of x, [image: there is no content] and [image: there is no content] are m- and n-dimensional Euclidean spaces.





Multiple payoff matrixes of multicriteria matrix games are taken as follows [3]:


A1=a111⋯a1n1⋮⋱⋮am11⋯amn1,⋯,Ar=a11r⋯a1nr⋮⋱⋮am1r⋯amnr.



(3)







In order not to lose generality, we suppose that Player I and Player II are maximized players.



A multiple objective matrix game [image: there is no content] [29] is defined by


[image: there is no content]











Definition 2.

[3] When Player I chooses a mixed strategy [image: there is no content] and Player II chooses a mixed strategy [image: there is no content], a vector


Ex,y,A=xTAy=E1x,y,E2x,y,⋯,Erx,y=xTA1y,xTA2y,⋯,xTAry



(4)




is called an expected payoff of Player I. As the multi-objective game [image: there is no content] is zero-sum, the payoff for Player II is [image: there is no content].





Definition 3.

[image: there is no content] is called a solution of the [image: there is no content] model if


x*Aky≥(Vk)*,∀y∈Sn,










xAky*≤(Vk)*,∀x∈Sm.











Here, [image: there is no content] and [image: there is no content] are called the equilibrium solution for Player I and Player II, respectively. Furthermore, [image: there is no content] are called the values of [image: there is no content]





Given a multi-objective game [image: there is no content], its solution can be obtained by solving the following pair of primal-dual multiple objective linear optimization problems [image: there is no content] and [image: there is no content].


(MOGLP)max(V1,V2,⋯,Vr)suchthat∑i=1m(aij)kxi≥Vk,(k=1,2,⋯,r,j=1,2,⋯,n),∀x∈Sm,∀y∈Sn,(MOGLD)min(W1,W2,⋯,Wr)suchthat∑j=1n(aij)kyj≤Wk,(k=1,2,⋯,r,i=1,2,⋯,m),∀x∈Sm,∀y∈Sn.











The following notations, definitions and results will be needed in the sequel.



We denote [image: there is no content] as the family of all bounded closed intervals in [image: there is no content] [35], that is,


KC={[aL,aR]|aL,aR∈RandaL≤aR}.











A fuzzy set [image: there is no content] of [image: there is no content] is characterized by a membership function [image: there is no content] [5]. For each such fuzzy set [image: there is no content], we denote by [image: there is no content] for any [image: there is no content], its [image: there is no content]-level set. We define the set [image: there is no content] by [image: there is no content], where [image: there is no content] denotes the closure of a crisp set A. A fuzzy number [image: there is no content] is a fuzzy set with non-empty bounded closed level sets [image: there is no content] for all [image: there is no content], where [image: there is no content] denotes a closed interval with the left end point [image: there is no content] and the right end point [image: there is no content] [36]. We denote the class of fuzzy numbers by [image: there is no content].



Definition 4.

[37] Let [image: there is no content] and [image: there is no content] be fuzzy numbers. It is said that [image: there is no content] precedes [image: there is no content][image: there is no content] if [image: there is no content] and [image: there is no content][image: there is no content]





Definition 5.

[5] Let [image: there is no content] be fuzzy numbers, If the membership function [image: there is no content] of the fuzzy number [image: there is no content] is denoted by


ux˜(x)=0,x<a´,x>a`,x−a´a−a´,a´≤x≤a,a`−xa`−a,a<x≤a`.











Then, [image: there is no content] is called a triangular fuzzy number. Furthermore, the triangular fuzzy number [image: there is no content] is presented by [image: there is no content]





Furthermore, the [image: there is no content]-level set of the triangular fuzzy number [image: there is no content] is the closed interval [5]


[x˜]α=[x˜L(α),x˜R(α)]=[(a−a´)α+a´,−(a`−a)α+a`],α∈(0,1].



(5)







Definition 6.

[38] Let [image: there is no content] be fuzzy numbers and bi≥0(i=1,2,⋯,n) be real numbers. Then, [image: there is no content] is a fuzzy number.





We define the new relationship of two fuzzy numbers.



Definition 7.

Let [image: there is no content] and [image: there is no content] be fuzzy numbers. The width of [image: there is no content] and [image: there is no content] respectively are given by


w(x˜)=x˜R(α)−x˜L(α),w(y˜)=y˜R(α)−y˜L(α),α∈[0,1].











We say that [image: there is no content] is possibility a degree of [image: there is no content], where


[image: there is no content]













Definition 8.

Let [image: there is no content] and [image: there is no content] be fuzzy numbers. If [image: there is no content], we say that [image: there is no content] precedes [image: there is no content][image: there is no content] Furthermore, [image: there is no content] is the lower limit of the possibility degree of [image: there is no content] That is, [image: there is no content] precedes [image: there is no content] with the possibility degree not less than [image: there is no content].





Theorem 1.

Let [image: there is no content] and [image: there is no content] be fuzzy numbers. Then [image: there is no content] if and only if [image: there is no content]





Proof. 

Sufficiency: Since [image: there is no content] According to the above Definition 8, we get [image: there is no content]  ☐





Necessity: Since [image: there is no content] Then, By Definition 4, we have


x˜R(α)≤y˜R(α)andx˜L(α)≤y˜L(α)α∈[0,1].











Hence,


x˜R(α)+x˜L(α)2≤y˜R(α)+y˜L(α)2α∈[0,1].










x˜R(α)−y˜L(α)2≤y˜R(α)−x˜L(α)2α∈[0,1].










x˜R(α)−y˜L(α)≤y˜R(α)−y˜L(α)+x˜R(α)−x˜L(α)2α∈[0,1].










x˜R(α)−y˜L(α)y˜R(α)−y˜L(α)+x˜R(α)−x˜L(α)≤12α∈[0,1].











Thus,


min{1,x˜R(α)−y˜L(α)y˜R(α)−y˜L(α)+x˜R(α)−x˜L(α)}≤12α∈[0,1].










max{min{1,x˜R(α)−y˜L(α)y˜R(α)−y˜L(α)+x˜R(α)−x˜L(α)},0}≤12α∈[0,1].










1−max{min{1,x˜R(α)−y˜L(α)y˜R(α)−y˜L(α)+x˜R(α)−x˜L(α)},0}≥12α∈[0,1].











Therefore, by Definition 7, we have that


1−max{min{1,x˜R(α)−y˜L(α)w(y˜)+w(x˜)},0}≥12α∈[0,1].











That is to say,


[image: there is no content]












3. A Generalized Model for a Multi-Objective Fuzzy Matrix Game


[image: there is no content] and [image: there is no content] are given in Section 2. Suppose that the elements of [image: there is no content][image: there is no content] are fuzzy numbers. Let [image: there is no content] and [image: there is no content] be the aspiration levels as fuzzy numbers of Player I and Player II, respectively. Therefore, the multiple objective matrix game based on fuzzy payoffs, denoted by [image: there is no content] can be presented as


[image: there is no content]











Now, we have the following definition to define the solution of [image: there is no content]



Definition 9.

Let [image: there is no content]. If [image: there is no content] and [image: there is no content] satisfy the following the conditions:


(V˜0k)*⪯x*TA˜ky,∀y∈Sn,xA˜ky*⪯(W˜0k)*,∀x∈Sm.








Then, [image: there is no content] is called the equilibrium solution of [image: there is no content]





In order to obtain the equilibrium solution of [image: there is no content] we conclude the following the theorem.



Theorem 2.

Let [image: there is no content] be fixed. [image: there is no content] and [image: there is no content] are optimal solutions of multi-objective linear optimization problems [image: there is no content] and [image: there is no content] if and only if [image: there is no content] is the equilibrium solution of [image: there is no content].


(MOCLP1)max[(V˜01)L(α)+(V˜01)R(α),⋯,(V˜0r)L(α))+(V˜0r)R(α)]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a˜ijk)L(α)+(a˜ijk)R(α)]xi,0≤α≤1,∀x∈Sm,∀,(k=1,2,⋯,r;j=1,2,⋯,n).(MOCLD1)min[(W˜01)L(α)+(W˜01)R(α),⋯,(W˜0r)L(α)+(W˜0r)R(α)]suchthat∑j=1n[(a˜ijk)L(α)+(a˜ijk)R(α)]yj≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀y∈Sn,(k=1,2,⋯,r;i=1,2,⋯,m).













Proof. 

By utilizing Definition 9, we obtain that [image: there is no content] is the equilibrium solution of [image: there is no content] if and only if [image: there is no content] is the optimal solution of multiple objective fuzzy optimization problems [image: there is no content] and [image: there is no content]. ☐







(MOFP1)Findx∈SmsuchthatV˜0k⪯(xTA˜ky),∀y∈Sn,(MOFD1)Findy∈Snsuchthat(xTA˜ky)⪯W˜0k,∀x∈Sm,(k=1,2,⋯,r).








Furthermore, by Theorem 1, the problems [image: there is no content] and [image: there is no content] respectively are equivalent to


(MOP1)Findx∈Smsuchthatp(V˜0k⪯(xTA˜ky))≥12,∀y∈Sn,(MOD1)Findy∈Snsuchthatp((xTA˜ky)⪯W˜0k)≥12,∀x∈Sm,(k=1,2,⋯,r).











By Definition 7, the problems [image: there is no content] and [image: there is no content] can be rewritten as [image: there is no content] and [image: there is no content] respectively.


(MOP2)max[((V˜01)L(α),⋯,(V˜0r)L(α)),((V˜01)R(α),⋯,(V˜0r)R(α))]suchthat1−max{min{1,(V˜0k)R(α)−(xTA˜Lk(α)y)(V˜0k)R(α)−(V˜0k)L(α)+xT(A˜Rk(α)−A˜Lk(α))y},0}≥12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).(MOD2)min[((W˜01)L(α),⋯,(W˜0r)L(α)),((W˜01)R(α),⋯,(W˜0r)R(α))]suchthat1−max{min{1,(xTA˜Rk(α)y)−(W˜0k)L(α)xT(A˜Rk(α)−A˜Lk(α))y+(W˜0k)R(α)−(W˜0k)L(α)},0}≥12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).








That is equivalent to


(MOP3)max[((V˜01)L(α),⋯,(V˜0r)L(α)),((V˜01)R(α),⋯,(V˜0r)R(α))]suchthatmax{min{1,(V˜0k)R(α)−(xTA˜Lk(α)y)(V˜0k)R(α)−(V˜0k)L(α)+xT(A˜Rk(α)−A˜Lk(α))y},0}≤12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).(MOD3)min[((W˜01)L(α),⋯,(W˜0r)L(α)),((W˜01)R(α),⋯,(W˜0r)R(α))]suchthatmax{min{1,(xTA˜Rk(α)y)−(W˜0k)L(α)xT(A˜Rk(α)−A˜Lk(α))y+(W˜0k)R(α)−(W˜0k)L(α)},0}≤12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).








That is to say,


(MOP4)max[((V˜01)L(α),⋯,(V˜0r)L(α)),((V˜01)R(α),⋯,(V˜0r)R(α))]suchthat(V˜0k)R(α)−(xTA˜Lk(α)y)(V˜0k)R(α)−(V˜0k)L(α)+(xTA˜Rk(α)y)−(xTA˜Lk(α)y)≤12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).(MOD4)min[((W˜01)L(α),⋯,(W˜0r)L(α)),((W˜01)R(α),⋯,(W˜0r)R(α))]suchthat(xTA˜Rk(α)y)−(W˜0k)L(α)xT(A˜Rk(α)−A˜Lk(α))y+(W˜0k)R(α)−(W˜0k)L(α)≤12,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).








By arranging the models [image: there is no content] and [image: there is no content], we have


(MOP5)max[((V˜01)L(α),⋯,(V˜0r)L(α)),((V˜01)R(α),⋯,(V˜0r)R(α))]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤xT(A˜Rk(α)+A˜Lk(α))y,0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).(MOD5)min[((W˜01)L(α),⋯,(W˜0r)L(α)),((W˜01)R(α),⋯,(W˜0r)R(α))]suchthatxT(A˜Rk(α)+A˜Lk(α))y≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀x∈Sm,∀y∈Sn,(k=1,2,⋯,r).








Since [image: there is no content] and [image: there is no content] are convex polytopes. Furthermore, the problems [image: there is no content] and [image: there is no content] are crisp multiple objective linear optimization problems; it is sufficient to consider only the extreme points of [image: there is no content] and [image: there is no content]. Thus, the problems [image: there is no content] and [image: there is no content] can be converted into


(MOCLP)max[((V˜01)L(α),⋯,(V˜0r)L(α)),((V˜01)R(α),⋯,(V˜0r)R(α))]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a˜ijk)L(α)+(a˜ijk)R(α)]xi,0≤α≤1,∀x∈Sm,(k=1,2,⋯,r;j=1,2,⋯,n).(MOCLD)min[((W˜01)L(α),⋯,(W˜0r)L(α)),((W˜01)R(α),⋯,(W˜0r)R(α))]suchthat∑j=1n[(a˜ijk)L(α)+(a˜ijk)R(α)]yj≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀y∈Sn,(k=1,2,⋯,r;i=1,2,⋯,m).








That is equal to


(MOCLP1)max[(V˜01)L(α)+(V˜01)R(α),⋯,(V˜0r)L(α))+(V˜0r)R(α)]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a˜ijk)L(α)+(a˜ijk)R(α)]xi,0≤α≤1,∀x∈Sm,(k=1,2,⋯,r;j=1,2,⋯,n).(MOCLD1)min[(W˜01)L(α)+(W˜01)R(α),⋯,(W˜0r)L(α)+(W˜0r)R(α)]suchthat∑j=1n[(a˜ijk)L(α)+(a˜ijk)R(α)]yj≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀y∈Sn,(k=1,2,⋯,r;i=1,2,⋯,m).











Remark 1.

When the elements of [image: there is no content], [image: there is no content] and [image: there is no content][image: there is no content] are crisp numbers, the [image: there is no content] model reduces the [image: there is no content] model, and the optimization problems [image: there is no content] and [image: there is no content] become the optimization problems [image: there is no content] and [image: there is no content]





Theorem 3.

Let [image: there is no content] be fixed. If [image: there is no content] and [image: there is no content] are the optimal solutions of [image: there is no content] and [image: there is no content], then,


[image: there is no content]













Proof. 

By Theorem 2, we obtain


(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a˜ijk)L(α)+(a˜ijk)R(α)]xi



(6)




and


∑j=1n[(a˜ijk)L(α)+(a˜ijk)R(α)]yj≤(W˜0k)L(α)+(W˜0k)R(α)



(7)







Since [image: there is no content] we have


(V˜0k)L(α)+(V˜0k)R(α)=∑j=1n[(V˜0k)L(α)+(V˜0k)R(α)]yj≤∑j=1n∑i=1m[(a˜ijk)L(α)+(a˜ijk)R(α)]xiyj



(8)






∑i=1m∑j=1n[(a˜ijk)L(α)+(a˜ijk)R(α)]xiyj≤∑i=1m[(W˜0k)L(α)+(W˜0k)R(α)]xi=(W˜0k)L(α)+(W˜0k)R(α)



(9)







Therefore, observe that


[image: there is no content]











Then,


[image: there is no content]











☐





Theorem 4.

Let [image: there is no content] be fixed. If the elements of [image: there is no content][image: there is no content] are triangular fuzzy numbers, then [image: there is no content] and [image: there is no content] are the optimal solutions of [image: there is no content] and [image: there is no content] if and only if [image: there is no content] is the equilibrium solution of [image: there is no content].


(MOCLP2)max[(V˜01)L(α)+(V˜01)R(α),⋯,(V˜0r)L(α))+(V˜0r)R(α)]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a´ijk+a`ijk)(1−α)+2αaijk]xi0≤α≤1,∀x∈Sm,(k=1,2,⋯,r;j=1,2,⋯,n).(MOCLD2)min[(W˜01)L(α)+(W˜01)R(α),⋯,(W˜0r)L(α)+(W˜0r)R(α)]suchthat∑j=1n[(a´ijk+a`ijk)(1−α)+2αaijk]yj≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀y∈Sn,(k=1,2,⋯,r;i=1,2,⋯,m).













Proof. 

Since the elements of [image: there is no content][image: there is no content] are triangular fuzzy numbers, using (5), we have


[a˜ijk]α=[(a˜ijk)L(α),(a˜ijk)R(α)]=[(aijk−a´ijk)α+a´ijk,−(a`ijk−aijk)α+a`ijk],α∈(0,1].











Hence,


[image: there is no content]











By utilizing Theorem 2, we have that [image: there is no content] and [image: there is no content] are optimal solutions of [image: there is no content] and [image: there is no content] if and only if [image: there is no content] is the equilibrium solution of [image: there is no content].


(MOCLP2)max[(V˜01)L(α)+(V˜01)R(α),⋯,(V˜0r)L(α))+(V˜0r)R(α)]suchthat(V˜0k)L(α)+(V˜0k)R(α)≤∑i=1m[(a´ijk+a`ijk)(1−α)+2αaijk]xi0≤α≤1,∀x∈Sm,(k=1,2,⋯,r;j=1,2⋯,n).(MOCLD2)min[(W˜01)L(α)+(W˜01)R(α),⋯,(W˜0r)L(α)+(W˜0r)R(α)]suchthat∑j=1n[(a´ijk+a`ijk)(1−α)+2αaijk]yj≤(W˜0k)L(α)+(W˜0k)R(α),0≤α≤1,∀y∈Sn,(k=1,2,⋯,r;i=1,2⋯,m).











☐






4. Example


In order to illustrate the effectiveness and correctness of the obtained model, we consider multiple payoffs of the multiple objective matrix game based on fuzzy payoffs [image: there is no content] that are taken as


[image: there is no content]








and


[image: there is no content]











In order to solve the game for a given [image: there is no content], by Theorem 4, we have to solve the following problems [image: there is no content] and [image: there is no content].


(MOCLP3)max[(V˜01)L(α)+(V˜01)R(α),(V˜02)L(α))+(V˜02)R(α)]suchthat(V˜01)L(α)+(V˜01)R(α)≤6x1+(7.7+0.3α)x2(V˜01)L(α)+(V˜01)R(α)≤(15.95+0.05α)x1+(2.1−0.1α)x2(V˜02)L(α)+(V˜02)R(α)≤(10.3−0.3α)x1+(12.15−0.15α)x2(V˜02)L(α)+(V˜02)R(α)≤(4.55−0.55α)x1+(1.95+0.05α)x20≤α≤1,x1+x2=1,x1≥0,x2≥0,(k=1,2,⋯,r).(MOCLD3)min[(W˜01)L(α)+(W˜01)R(α),(W˜02)L(α)+(W˜02)R(α)]suchthat6y1+(15.95+0.05α)y2≤(W˜01)L(α)+(W˜01)R(α),(7.7+0.3α)y1+(2.1−0.1α)y2≤(W˜01)L(α)+(W˜01)R(α),(10.3−0.3α)y1+(4.55−0.55α)y2≤(W˜02)L(α)+(W˜02)R(α),(12.15−0.15α)y1+(1.95+0.05α)y2≤(W˜02)L(α)+(W˜02)R(α),0≤α≤1,y1+y2=1,y1≥0,y2≥0,(k=1,2,⋯,r).











By solving the above problems [image: there is no content] and [image: there is no content], particularly, let [image: there is no content], then we can obtain that [image: there is no content] is the optimal solution of [image: there is no content] and [image: there is no content], [image: there is no content] is optimal solution of [image: there is no content] By Theorem 4, we have that [image: there is no content] is the equilibrium solution of [image: there is no content]




5. Conclusions


In this paper, we proposed the multicriteria matrix game model based on fuzzy payoffs. In order to solve the game model, we first discussed the relationship of two fuzzy numbers via the lower limit[image: there is no content] of the possibility degree. Then, utilizing this relationship, we conclude that the equilibrium solution of this game model and optimal solutions of a pair of multiple objective linear optimization problems are of equal value. We will use other more effective methods to study the matrix game in the future.
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