Image Enhancement for Surveillance Video of Coal Mining Face Based on Single-Scale Retinex Algorithm Combined with Bilateral Filtering
Abstract
:1. Introduction
2. The Proposed Image Enhancement Algorithm
2.1. Basic Principle of Single-Scale Retinex and Discussion
2.2. The Bilateral Filtering Algorithm
2.3. The Hybrid Image Enhancement Algorithm
Algorithm 1 |
ImageEhance (InputImg, σ, S1, σd, σr, S2, OutputImg) |
For x = 1 to M do // |
For y = 1 to N do // |
illusionImg(x,y) = Gussianblur(InputImg, S1, x,y)//Perform Gaussian filtering |
End |
End |
For x = 1 to M do // |
For y = 1 to N do // |
DenoiseImg(x,y) = Bilateralblur(InputImg, S2,x,y) |
End |
End |
logReflectImg = log(DenoiseImg)-log(illusionImg) |
OutputImg = Nomorlize(logReflectImg, 0, 255) |
3. Simulation Examples
3.1. Preperations
3.2. Parameters Selection of Proposed Method
3.2.1. Selection of Parameter S1
3.2.2. Selection of Parameter S2
3.2.3. Selection of Parameter σr
3.3. Results Analysis
3.3.1. De-Noising Effect Analysis
3.3.2. Image Enhancement Effect Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, H.; Lee, S.; Kim, Y.; Lee, S.; Lee, D.; Ju, J.; Myung, H. Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system. Expert Syst. Appl. 2016, 45, 131–141. [Google Scholar] [CrossRef]
- Woo, P. 4K video-laryngoscopy and video-stroboscopy: Preliminary findings. Ann. Otol. Rhinol. Larynqol. 2016, 125, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Konig, A.; Crispim, C.F.; Covella, A.G.U.; Bremond, F.; Derreumaux, A.; Bensadoun, G.; David, R.; Verhey, F.; Aalten, P.; Robert, P. Ecological assessment of autonomy in instrumental activities of daily living in dementia patients by the means of an automatic video monitoring system. Front. Aging Neurosci. 2015, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.; Wei, X.; White, P. Methods for removing glare in digital endoscope images. Surg. Endosc. 2011, 25, 3898–3905. [Google Scholar] [CrossRef] [PubMed]
- Hasikin, K.; Isa, N.A.M. Adaptive fuzzy intensity measure enhancement technique for non-uniform illumination and low-contrast images. Signal Image Video Process. 2015, 9, 1419–1442. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zheng, Z.; Zhang, M. High-frame-rate video denoising for ultra-low illumination. KSII Trans. Internet Inf. Syst. 2014, 8, 4170–4188. [Google Scholar]
- Chiang, J.Y.; Chen, Y.C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 2011, 21, 1756–1769. [Google Scholar] [CrossRef] [PubMed]
- Land, E.H.; Mccann, J.J. Lightness and Retinex theory. J. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Jang, I.H.; Kim, M.H.; Kim, M.C. Color image enhancement based on single-scale Retinex with a JND-based nonlinear filter. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; IEEEXplore: Washington, DC, USA, 2007. [Google Scholar]
- Zhang, G.; Sun, D.; Yan, P.; Zhao, H.; Li, Z. A LDCT image contrast enhancement algorithm based on single-scale Retinex theory. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 10–12 December 2008; IEEE Computer Society: Washington, DC, USA, 2008. [Google Scholar]
- Provenzi, E.; Fierro, M.; Rizzi, A.; De Carli, L.; Gadia, D.; Marini, D. Random spray Retinex: A new Retinex implementation to investigate the local properties of the model. IEEE Trans. Image Process. 2007, 16, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Gianini, G.; Rizzi, A.; Damiani, E. A Retinex model based on absorbing Markov chains. Inf. Sci. 2016, 327, 149–174. [Google Scholar] [CrossRef]
- Tajeripour, F.; Fekri-Ershad, S. Developing a novel approach for stone porosity computing using modified local binary patterns and single scale Retinex. Arab. J. Sci. Eng. 2013, 39, 875–889. [Google Scholar] [CrossRef]
- Xie, S.J.; Lu, Y.; Yoon, S.; Yang, J.; Park, D.S. Intensity variation normalization for finger vein recognition using guided filter based singe scale Retinex. Sensors 2015, 15, 17089–17105. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kuwahara, Y.; Kojima, A.; Kurosawa, T. An adaptive multi-scale Retinex algorithm realizing high color quality and high-speed processing. J. Imaging Sci. Technol. 2005, 49, 486–497. [Google Scholar]
- Xiao, J.; Peng, H.; Zhang, Y.; Tu, C.; Li, Q. Fast image enhancement based on color space fusion. Color Res. Appl. 2016, 41, 22–31. [Google Scholar] [CrossRef]
- Fu, X.; Liao, Y.; Zeng, D.; Huang, Y.; Zhang, X.P.; Ding, X. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 2015, 24, 4965–4977. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Bae, Y.; Ra, J.B. Contrast-enhanced fusion of multi sensor images using subband-decomposed multiscale Retinex. IEEE Trans. Image Process. 2012, 21, 3479–3490. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Shih, J.L.; Lien, C.C.; Han, C.C. Adaptive multiscale Retinex for image contrast enhancement. In Proceedings of the 2013 International Conference on Signal-Image Technology & Internet-based Systems, Kyoto, Japan, 2–5 December 2013; IEEEXplore: Washington, DC, USA, 2013. [Google Scholar]
- Shukri, D.S.M.; Asmuni, H.; Othman, R.M.; Hassan, R. An improved multiscale Retinex algorithm for motion-blurred iris images to minimize the intra-individual variations. Pattern Recogn. Lett. 2013, 34, 1071–1077. [Google Scholar] [CrossRef]
- Wang, Y.K.; Huang, W.B. A CUDA-enabled parallel algorithm for accelerating Retinex. J. Real-Time Image Process. 2014, 9, 407–425. [Google Scholar] [CrossRef]
- Banic, N.; Loncaric, S. Smart light random memory sprays Retinex: A fast Retinex implementation for high-quality brightness adjustment and color correction. J. Opt. Soc. Am. A 2015, 32, 2136–2147. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, A.M.; Agaian, S.S.; Gonzales, A.M. Fast Fourier transform-based Retinex and alpha-rooting color image enhancement. In Proceedings of the Conference on Mobile Multimedia/Image Processing, Security and Applications, Baltimore, MD, USA, 20–21 April 2015; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Zhou, G.; Fang, H.; Yan, L.; Zhang, T.; Hu, J. Removal of stripe noise with spatially adaptive unidirectional total variation. Optik—Int. J. Light Electron Opt. 2014, 125, 2756–2762. [Google Scholar] [CrossRef]
- Zhou, G.; Fang, H.; Lu, C.; Wang, S.; Zuo, Z.; Hu, J. Robust destriping of MODIS and hyperspectral data using a hybrid unidirectional total variation model. Optik—Int. J. Light Electron Opt. 2015, 126, 838–845. [Google Scholar] [CrossRef]
- Cao, B.; Du, Y.; Xu, D.; Li, H.; Liu, Q. An improved histogram matching algorithm for the removal of striping noise in optical remote sensing imagery. Optik—Int. J. Light Electron Opt. 2015, 126, 4723–4730. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, H. A novel nonuniformity correction algorithm based on speeded up robust features extraction. Infrared Phys. Technol. 2015, 73, 281–285. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, W.; Zhang, H.; Zhang, L. A piece-wise approach to removing the nonlinear and irregular stripes in MODIS data. Int. J. Remote Sens. 2014, 35, 44–53. [Google Scholar] [CrossRef]
- Bouali, M.; Sato, O.; Polito, P. An algorithm to improve the detection of ocean fronts from whiskbroom scanner images. Remote Sens. Lett. 2015, 6, 942–951. [Google Scholar] [CrossRef]
- Rogass, C.; Mielke, C.; Scheffler, D.; Boesche, N.K.; Lausch, A.; Lubitz, C.; Brell, M.; Spengler, D.; Eisele, A.; Segl, K.; et al. Reduction of uncorrelated striping noise—Applications for hyperspectralpushbroom acquisitions. Remote Sens. 2014, 6, 11082–11106. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846. [Google Scholar]
- He, Y.L.; Zheng, Y.J.; Zhao, Y.N.; Ren, Y.J.; Lian, J.; Gee, J. Retinal Image denoising via bilateral filter with a spatial kernel of optimally oriented line spread function. Comput. Math. Methods Med. 2017, 2017, 1769834. [Google Scholar] [CrossRef] [PubMed]
- Papari, G.; Idowu, N.; Varslot, T. Fast bilateral filtering for denoising large 3D images. IEEE Trans. Image Process. 2017, 26, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround Retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gunturk, B.K. Multi resolution bilateral filtering for image denoising. IEEE Trans. Image Process. 2008, 17, 2324–2333. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.Y.; Huang, D.J.; Wang, X.; Yu, M. Overview on image quality assessment methods. J. Electron. Inf. Technol. 2010, 32, 219–226. [Google Scholar] [CrossRef]
- Firestone, L.; Cook, K.; Culp, K.; Talsania, N.; Preston, K., Jr. Comparison of autofocus methods for automated microscopy. Cytometry 1991, 12, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.X.; Chen, Q.; Sun, Q.S.; Xia, D.S. Single-scale Retinex image enhancement based on bilateral filtering. Microelectron. Comput. 2009, 26, 99–102. [Google Scholar]
- Li, Y.D.; Wang, H.D.; Zhu, M.Q. Application of improved single scale Retinex algorithm in mine images. Coal Mine Mach. 2015, 36, 282–284. [Google Scholar]
Methods | Image (a) | Image (b) | Image (c) | Image (d) |
---|---|---|---|---|
SSR | 54.84 | 56.78 | 53.67 | 55.67 |
SSR-BF | 54.13 | 56.17 | 53.11 | 55.07 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Wang, Z.; Xu, R.; Tan, C.; Liu,, X.; Xu, J. Image Enhancement for Surveillance Video of Coal Mining Face Based on Single-Scale Retinex Algorithm Combined with Bilateral Filtering. Symmetry 2017, 9, 93. https://doi.org/10.3390/sym9060093
Si L, Wang Z, Xu R, Tan C, Liu, X, Xu J. Image Enhancement for Surveillance Video of Coal Mining Face Based on Single-Scale Retinex Algorithm Combined with Bilateral Filtering. Symmetry. 2017; 9(6):93. https://doi.org/10.3390/sym9060093
Chicago/Turabian StyleSi, Lei, Zhongbin Wang, Rongxin Xu, Chao Tan, Xinhua Liu,, and Jing Xu. 2017. "Image Enhancement for Surveillance Video of Coal Mining Face Based on Single-Scale Retinex Algorithm Combined with Bilateral Filtering" Symmetry 9, no. 6: 93. https://doi.org/10.3390/sym9060093