# Pseudospin Symmetry as a Bridge between Hadrons and Nuclei

## Abstract

**:**

## 1. Introduction

## 2. Symmetries of the Dirac Hamiltonian

#### 2.1. Spin Symmetry: A Symmetry of the Dirac Hamiltonian

#### 2.2. Pseudospin Symmetry: A Symmetry of the Dirac Hamiltonian

## 3. Consequences of Relativistic Pseudospin Symmetry

## 4. Anti-nucleon in a Nuclear Environment

## 5. QCD Sum Rules

## 6. Quark Models with Spin and Pseudospin Symmetries

## 7. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Arima, A.; Harvey, M.; Shimizu, K. The empirical p-n interactions and atomic masses. Phys. Lett. B
**1969**, 30. [Google Scholar] [CrossRef] - Hecht, K.T.; Adler, A. Generalized seniority for favored J≠0 pairs in mixed configurations. Nucl. Phys. A
**1969**, 137, 129–143. [Google Scholar] [CrossRef] - Sorlin, O.; Porquet, M.G. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys.
**2008**, 61, 602–673. [Google Scholar] [CrossRef] [Green Version] - Bohr, A.; Hamamoto, I.; Mottelson, B.R. Pseudospin in rotating nuclear potentials. Phys. Scr.
**1982**, 26. [Google Scholar] [CrossRef] - Ginocchio, J.N. Pseudospin as a relativistic symmetry. Phys. Rev. Lett.
**1997**, 78. [Google Scholar] [CrossRef] - Ginocchio, J.N. Relativistic symmetries in nuclei and hadrons. Phys. Rep.
**2005**, 414, 165–261. [Google Scholar] [CrossRef] - Liang, H.; Meng, J.; Zhou, S.G. Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep.
**2015**, 570, 1–84. [Google Scholar] [CrossRef] - Bell, J.S.; Ruegg, H. Dirac equations with an exact higher symmetry. Nucl. Phys. B
**1975**, 98, 151–153. [Google Scholar] [CrossRef] - Page, P.R.; Goldman, T.; Ginocchio, J.N. Relativistic symmetry Suppresses quark spin-orbit splitting. Phys. Rev. Lett.
**2001**, 86. [Google Scholar] [CrossRef] [PubMed] - Ginocchio, J.N. A relativistic symmetry in nuclei. Phys. Rep.
**1999**, 315, 231–240. [Google Scholar] [CrossRef] - Ginocchio, J.N.; Leviatan, A. On the relativistic foundations of pseudospin symmetry in nuclei. Phys. Lett. B
**1998**, 425, 1–5. [Google Scholar] [CrossRef] - Blokhin, A.L.; Bahri, C.; Draayer, J.P. Origin of pseudospin symmetry. Phys. Rev. Lett.
**1995**, 74. [Google Scholar] [CrossRef] [PubMed] - Cohen, T.D.; Furnstahl, R.J.; Griegel, D.K.; Jin, X. QCD sum rules and applications to nuclear physics. Prog. Part. Nucl. Phys.
**1995**, 35, 221–298. [Google Scholar] [CrossRef] - Ginocchio, J.N.; Madland, D.G. Pseudospin symmetry and relativistic single-nucleon wave functions. Phys. Rev. C
**1998**, 57. [Google Scholar] [CrossRef] - Meng, J.; Sugawara-Tanabe, K.; Yamaji, S.; Ring, P.; Arima, A. Pseudospin symmetry in relativistic mean field theory. Phys. Rev. C
**1998**, 58. [Google Scholar] [CrossRef] - Sugawara-Tanabe, K.; Yamaji, S.; Arima, A. Spin symmetry and pseudospin symmetry in the relativistic mean field with a deformed potential. Phys. Rev. C
**2002**, 65. [Google Scholar] [CrossRef] - Ginocchio, J.N.; Leviatan, A.; Meng, J.; Zhou, S.G. Test of pseudospin symmetry in deformed nuclei. Phys. Rev. C
**2004**, 69. [Google Scholar] [CrossRef] - Ginocchio, J.N. Pseudospin symmetry and relativistic mean field eigenfunctions. Phys. Rev. C
**2002**, 66. [Google Scholar] [CrossRef] - Ginocchio, J.N. Implications of pseudospin symmetry on relativistic magnetic properties and Gamow-Teller transitions in nuclei. Phys. Rev. C
**1999**, 59. [Google Scholar] [CrossRef] - Von Neumann-Cosel, P.; Ginocchio, J.N. l-forbidden M1 transitions and pseudospin symmetry. Phys. Rev. C
**2000**, 62. [Google Scholar] [CrossRef] - Hagberg, E.; Alexander, T.K.; Neeson, I.; Koslowsky, V.T.; Ball, G.C.; Dyck, G.R.; Forster, J.S.; Hardy, J.C.; Leslie, J.R.; Mak, H.B.; et al. Confirmation of the l-forbidden Gamow-Teller decay branch of
^{39}Ca. Nucl. Phys. A**1994**, 571, 555. [Google Scholar] [CrossRef] - Zhou, S.G.; Meng, J.; Ring, P. Spin symmetry in the antinucleon spectrum. Phys. Rev. Lett.
**2003**, 91. [Google Scholar] [CrossRef] [PubMed] - Ginocchio, J.N. U(3) and pseudo-U(3) symmetry of the relativistic harmonic oscillator. Phys. Rev. Lett.
**2005**, 95. [Google Scholar] [CrossRef] [PubMed] - Martin, A.; Birsa, R.; Bos, K.; Bradamante, F.; Bugg, D.V.; Torre-Colautti, S.D.; Hall, J.R.; Heer, E.; Hess, R.; Kluyver, J.C.; et al. Polarization at small angles in antiproton-carbon elastic scattering at lear energies. Nucl. Phys. A
**1988**, 487, 563–590. [Google Scholar] [CrossRef] - Gasser, J.; Leutwyler, H.; Saino, M.E. Sigma-term update. Phys. Lett. B
**1991**, 253, 252–259. [Google Scholar] [CrossRef] - Saino, M.E. Pion-nucleon sigma-term–A review. In Proceedings of the Ninth International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon, Washington, DC, USA, 26–31 July 2001.
- Gell-Mann, M.; Oakes, R.J.; Renner, B. Behavior of Current Divergences under SU3 × SU3. Phys. Rev.
**1968**, 175. [Google Scholar] [CrossRef] - Kosyakov, B.P.; Popov, E.Y.; Vronskii, M.A. The bag and the string: Are they opposed? Phys. Lett. B
**2015**, 77, 28–33. [Google Scholar] [CrossRef]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ginocchio, J.N.
Pseudospin Symmetry as a Bridge between Hadrons and Nuclei. *Symmetry* **2016**, *8*, 16.
https://doi.org/10.3390/sym8030016

**AMA Style**

Ginocchio JN.
Pseudospin Symmetry as a Bridge between Hadrons and Nuclei. *Symmetry*. 2016; 8(3):16.
https://doi.org/10.3390/sym8030016

**Chicago/Turabian Style**

Ginocchio, Joseph N.
2016. "Pseudospin Symmetry as a Bridge between Hadrons and Nuclei" *Symmetry* 8, no. 3: 16.
https://doi.org/10.3390/sym8030016