How Neutron Star Observations Point Towards Exotic Matter: Existing Explanations and a Prospective Proposal
Abstract
1. Introduction
2. Hybrid EOS and HS Models
- HQ-HSs, composed of a BPS-BBP crust, a hadronic GPP outer core detailed in Table 1, and an inner core made of quark matter, modeled through both the CCS and non-CSS parametrizations.
- QQ-HSs without a crust composed of an outer quark core modeled with the MIT bag model and an inner core of quark matter described using the CSS parametrization.
- CQQ-HSs, where the BPS-BBP crust outermost layer is added at to the previous QQ-HSs configuration.
3. Results and Discussion
4. Conclusions and Future Perspectives
- The modern picture of astronomical constraints related to compact objects produces strong tensions, and models with some type of exotic matter seem to be favored. In particular, if the current estimations of either XTE J1814-338 or PSR J1231-1411 are confirmed (or not strongly rectified) by future analysis, the need to include some type of exotic matter in the inner core of compact stars might be strongly favored.
- In accordance to previous proposals presented by Lugones et al. [81] and Mariani et al. [84] (and also in line with alternative scenarios recently presented in Refs. [85,86]), we show that SSHSs could lead to an appropriate description of modern astronomical observations of compact objects (even considering the extreme ones). Despite this being true, large values of the speed of sound are needed, and potential issues with the conformal limit of pQCD might arise for long SSHS branches.
- Contrary to the traditional CSS model, the novel non-CSS parametrization proposed in this work is useful for avoiding potential problems with pQCD calculations, but it introduces issues, particularly when explaining the challenging XTE J1814-338 observation.
- The analysis of other recent proposals from the literature—including regular hadronic NSs, the two-family scenario, admixed DM HSs and NSs, and QQ-HSs—shows that, while all leave some room for further refinement or updating, none of them is entirely suitable. Whether considered jointly or separately, XTE J1814-338 and PSR J1231-1411 place stringent constraints on these models.
- Despite these limitations, the other proposed hadronic and hybrid models are in tension with EFT calculations. If these ideas are used in the future, the low-pressure region needs to be adjusted.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| EOS | Totally Stable Configuration | SSHS Configuration | ||||
|---|---|---|---|---|---|---|
| [km] | [MeV/fm3] | [km] | [MeV/fm3] | |||
| HQ | 12.02 | 373.0 | 462.0 | 8.60 | 15.3 | 6338.0 |
| QQ1 | 13.04 | 177.7 | 214.0 | 11.26 | 55.7 | 2198.5 |
| QQ2 | 11.72 | 104.4 | 309.7 | 8.58 | 7.9 | 4620.3 |
| CQQ1 | 12.85 | 758.3 | 309.5 | 9.03 | 23.6 | 4622.7 |
| CQQ2 | 12.57 | 680.7 | 327.0 | 9.06 | 26.1 | 4269.8 |
| EOS | Maximum Mass Configuration | SSHS Terminal Configuration | ||||||
|---|---|---|---|---|---|---|---|---|
| [] | [km] | [MeV/fm3] | [] | [km] | [MeV/fm3] | |||
| HQ | 2.21 | 11.48 | 10.4 | 2892.2 | 1.32 | 8.16 | 13.6 | 7722.5 |
| QQ1 | 2.28 | 14.42 | 21.8 | 1854.0 | 1.21 | 6.61 | 2.7 | 5447.4 |
| QQ2 | 2.20 | 12.00 | 7.8 | 2412.0 | 1.30 | 7.80 | 5.6 | 6094.5 |
| CQQ1 | 2.20 | 12.50 | 23.3 | 2412.0 | 1.30 | 8.20 | 15.6 | 6094.5 |
| CQQ2 | 2.15 | 12.32 | 25.5 | 2390.0 | 1.27 | 7.88 | 13.8 | 6310.2 |
| EOS | SSHS Configuration | SSHS Terminal Configuration | |||||
|---|---|---|---|---|---|---|---|
| [km] | [MeV/fm3] | [] | [km] | [MeV/fm3] | |||
| (CSS) | 8.63 | 15.8 | 6444.3 | 1.26 | 7.79 | 12.3 | 8911.1 |
| 8.72 | 17.3 | 7412.2 | 1.34 | 8.42 | 16.8 | 8836.5 | |
| - | - | - | 1.45 | 9.16 | 21.2 | 9065.9 | |
| - | - | - | 1.51 | 9.45 | 22.6 | 9282.5 | |
References
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Özel, F.; Freire, P. Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 2016, 54, 401–440. [Google Scholar] [CrossRef]
- Vidana, I. A short walk through the physics of neutron stars. Eur. Phys. J. Plus 2018, 133, 445. [Google Scholar] [CrossRef]
- Kondratyev, V. Magnetoemission of Magnetars. Phys. Part. Nucl. 2019, 50, 613–615. [Google Scholar] [CrossRef]
- Esposito, P.; Rea, N.; Israel, G.L. Magnetars: A short review and some sparse considerations. In Timing Neutron Stars: Pulsations, Oscillations and Explosions; Springer: Berlin/Heidelberg, Germany, 2020; pp. 97–142. [Google Scholar]
- Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 6131. [Google Scholar] [CrossRef]
- Arzoumanian, Z.; Brazier, A.; Burke-Spolaor, S.; Chamberlin, S.; Chatterjee, S.; Christy, B.; Cordes, J.M.; Cornish, N.J.; Crawford, F.; Cromartie, H.T.; et al. The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars. Astrophys. J. Suppl. Ser. 2018, 235, 37. [Google Scholar] [CrossRef]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2020, 4, 72–76. [Google Scholar] [CrossRef]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620. Astrophys. J. Lett. 2021, 915, L12. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Bogdanov, S.; Ray, P.S.; Ludlam, R.M.; Guillot, S.; Arzoumanian, Z.; Baker, C.L.; Bilous, A.V.; Chakrabarty, D.; et al. A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation. Astrophys. J. Lett. 2019, 887, L21. [Google Scholar] [CrossRef]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Ho, W.C.G.; Lattimer, J.M.; Loewenstein, M.; et al. The Radius of PSR J0740+6620 from NICER and XMM-Newton Data. Astrophys. J. Lett. 2021, 918, L28. [Google Scholar] [CrossRef]
- Riley, T.E.; Watts, A.L.; Ray, P.S.; Bogdanov, S.; Guillot, S.; Morsink, S.M.; Bilous, A.V.; Arzoumanian, Z.; Choudhury, D.; Deneva, J.S.; et al. A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy. Astrophys. J. Lett. 2021, 918, L27. [Google Scholar] [CrossRef]
- Salmi, T.; Deneva, J.S.; Ray, P.S.; Watts, A.L.; Choudhury, D.; Kini, Y.; Vinciguerra, S.; Cromartie, H.T.; Wolff, M.T.; Arzoumanian, Z.; et al. A NICER View of PSR J1231-1411: A Complex Case. Astrophys. J. Lett. 2024, 976, 58. [Google Scholar] [CrossRef]
- Choudhury, D.; Salmi, T.; Vinciguerra, S.; Riley, T.E.; Kini, Y.; Watts, A.L.; Dorsman, B.; Bogdanov, S.; Guillot, S.; Ray, P.S.; et al. A NICER View of the Nearest and Brightest Millisecond Pulsar: PSR J0437–4715. Astrophys. J. Lett. 2024, 971, L20. [Google Scholar] [CrossRef]
- Mauviard, L.; Guillot, S.; Salmi, T.; Choudhury, D.; Dorsman, B.; González-Caniulef, D.; Hoogkamer, M.; Huppenkothen, D.; Kazantsev, C.; Kini, Y.; et al. A NICER view of the 1.4 solar-mass edge-on pulsar PSR J0614–3329. arXiv 2025, arXiv:2506.14883. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Ackley, C.; Adams, R.X.; Adhikari, V.B.; Adya, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Romani, R.W.; Kandel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star. Astrophys. J. Lett. 2022, 934, L17. [Google Scholar] [CrossRef]
- Doroshenko, V.; Suleimanov, V.; Pühlhofer, G.; Santangelo, A. A strangely light neutron star within a supernova remnant. Nat. Astron. 2022, 6, 1444–1451. [Google Scholar] [CrossRef]
- Kini, Y.; Salmi, T.; Vinciguerra, S.; Watts, A.L.; Bilous, A.; Galloway, D.K.; van der Wateren, E.; Khalsa, G.P.; Bogdanov, S.; Buchner, J.; et al. Constraining the properties of the thermonuclear burst oscillation source XTE J1814-338 through pulse profile modelling. MNRAS 2024, 535, 1507–1525. [Google Scholar] [CrossRef]
- Drischler, C.; Han, S.; Lattimer, J.M.; Prakash, M.; Reddy, S.; Zhao, T. Limiting masses and radii of neutron stars and their implications. Phys. Rev. C 2021, 103, 045808. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Alford, J.; Halpern, J. Do central compact objects have carbon atmospheres? Astrophys. J. 2023, 944, 36. [Google Scholar] [CrossRef]
- Malik, T.; Cartaxo, J.; Providência, C. Observational constraints on neutron star matter equation of state. J. Subat. Part. Cosmol. 2025, 4, 100086. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Reitze, D.; Adhikari, R.X.; Ballmer, S.; Barish, B.; Barsotti, L.; Billingsley, G.; Brown, D.A.; Chen, Y.; Coyne, D.; Eisenstein, R.; et al. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO. arXiv 2019, arXiv:1907.04833. [Google Scholar] [CrossRef]
- Lück, H.; Smith, J.; Punturo, M. Third-Generation Gravitational-Wave Observatories. In Handbook of Gravitational Wave Astronomy; Bambi, C., Katsanevas, S., Kokkotas, K.D., Eds.; Springer: Singapore, 2020; pp. 1–18. [Google Scholar] [CrossRef]
- Bombaci, I. The hyperon puzzle in neutron stars. In Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015), Sendai, Japan, 7–12 September 2015; p. 101002. [Google Scholar]
- Ye, J.T.; Wang, R.; Wang, S.P.; Chen, L.W. High-density Symmetry Energy: A Key to the Solution of the Hyperon Puzzle. Astrophys. J. Lett. 2025, 985, 238. [Google Scholar] [CrossRef]
- Halasz, M.A.; Jackson, A.D.; Shrock, R.E.; Stephanov, M.A.; Verbaarschot, J.J.M. Phase diagram of QCD. Phys. Rev. D 1998, 58, 096007. [Google Scholar] [CrossRef]
- Stephanov, M. QCD phase diagram: An overview. In Proceedings of the XXIVth International Symposium on Lattice Field Theory, Tucson, AZ, USA, 23–28 December 2006; p. 24.1. [Google Scholar] [CrossRef]
- Guenther, J.N. Overview of the QCD phase diagram—Recent progress from the lattice. arXiv 2020, arXiv:2010.15503. [Google Scholar] [CrossRef]
- Chen, J.H.; Dong, X.; He, X.H.; Huang, H.Z.; Liu, F.; Luo, X.F.; Ma, Y.G.; Ruan, L.J.; Shao, M.; Shi, S.S.; et al. Properties of the QCD matter: Review of selected results from the relativistic heavy ion collider beam energy scan (RHIC BES) program. Nucl. Sci. Tech. 2024, 35, 214. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, F.; Liu, Y.x. Revisiting the first-order QCD phase transition in dense strong interaction matter. arXiv 2025, arXiv:2509.02974. [Google Scholar] [CrossRef]
- Glendenning, N.K.; Weber, F. Nuclear Solid Crust on Rotating Strange Quark Stars. Astrophys. J. Lett. 1992, 400, 647. [Google Scholar] [CrossRef]
- Heiselberg, H.; Hjorth-Jensen, M. Phase Transitions in Neutron Stars and Maximum Masses. Astrophys. J. Lett. 1999, 525, L45–L48. [Google Scholar] [CrossRef]
- Reddy, S.; Bertsch, G.; Prakash, M. First order phase transitions in neutron star matter: Droplets and coherent neutrino scattering. Phys. Lett. B 2000, 475, 1–8. [Google Scholar] [CrossRef]
- Chamel, N.; Fantina, A.F.; Pearson, J.M.; Goriely, S. Phase transitions in dense matter and the maximum mass of neutron stars. Astron. Astrophys. 2013, 553, A22. [Google Scholar] [CrossRef]
- Komoltsev, O. First-order phase transitions in the cores of neutron stars. Phys. Rev. D 2024, 110, L071502. [Google Scholar] [CrossRef]
- Schäfer, T.; Wilczek, F. Continuity of Quark and Hadron Matter. Phys. Rev. Lett. 1999, 82, 3956–3959. [Google Scholar] [CrossRef]
- Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron–quark crossover and massive hybrid stars. Prog. Theor. Exp. Phys. 2013, 2013, 073D01. [Google Scholar] [CrossRef]
- Hirono, Y.; Tanizaki, Y. Quark-Hadron Continuity beyond the Ginzburg-Landau Paradigm. Phys. Rev. Lett. 2019, 122, 212001. [Google Scholar] [CrossRef]
- Brandes, L.; Weise, W.; Kaiser, N. Evidence against a strong first-order phase transition in neutron star cores: Impact of new data. Phys. Rev. D 2023, 108, 094014. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Fukushima, K.; Hotokezaka, K.; Kyutoku, K. Signature of hadron-quark crossover in binary-neutron-star mergers. Phys. Rev. D 2025, 111, 063054. [Google Scholar] [CrossRef]
- Fukushima, K. QCD Phase Diagram and Astrophysical Implications. arXiv 2025, arXiv:2501.01907. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Fukushima, K.; Hidaka, Y.; McLerran, L. New state of matter between the hadronic phase and the quark-gluon plasma? Phys. Rev. D 2025, 112, 074006. [Google Scholar] [CrossRef]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef] [PubMed]
- Orsaria, M.G.; Malfatti, G.; Mariani, M.; Ranea-Sandoval, I.F.; García, F.; Spinella, W.M.; Contrera, G.A.; Lugones, G.; Weber, F. Phase transitions in neutron stars and their links to gravitational waves. J. Phys. G Nucl. Part. Phys. 2019, 46, 073002. [Google Scholar]
- Dexheimer, V.A.; Schramm, S. A novel approach to modeling hybrid stars. Phys. Rev. C 2010, 81, 045201. [Google Scholar] [CrossRef]
- Kumar, R.; Wang, Y.; Camacho, N.C.; Kumar, A.; Noronha-Hostler, J.; Dexheimer, V. Modern nuclear and astrophysical constraints of dense matter in a redefined chiral approach. Phys. Rev. D 2024, 109, 074008. [Google Scholar] [CrossRef]
- Celi, M.O.; Mariani, M.; Kumar, R.; Bashkanov, M.; Orsaria, M.G.; Pastore, A.; Ranea-Sandoval, I.F.; Dexheimer, V. Exploring the role of d* hexaquarks on quark deconfinement and hybrid stars. Phys. Rev. D 2025, 112, 023027. [Google Scholar] [CrossRef]
- Logoteta, D.; Bombaci, I.; Perego, A. Isoentropic equations of state of β-stable hadronic matter with a quark phase transition. Eur. Phys. J. A 2022, 58, 55. [Google Scholar] [CrossRef]
- Constantinou, C.; Zhao, T.; Han, S.; Prakash, M. Framework for phase transitions between the Maxwell and Gibbs constructions. Phys. Rev. D 2023, 107, 074013. [Google Scholar] [CrossRef]
- Ju, M.; Hu, J.; Shen, H. Hadron-quark pasta phase in massive neutron stars. Astrophys. J. 2021, 923, 250. [Google Scholar] [CrossRef]
- Mariani, M.; Lugones, G. Quark-hadron pasta phase in neutron stars: The role of medium-dependent surface and curvature tensions. Phys. Rev. D 2024, 109, 063022. [Google Scholar] [CrossRef]
- Pinto, M.B.; Koch, V.; Randrup, J. Surface tension of quark matter in a geometrical approach. Phys. Rev. C—Nucl. Phys. 2012, 86, 025203. [Google Scholar] [CrossRef]
- Mintz, B.W.; Stiele, R.; Ramos, R.O.; Schaffner-Bielich, J. Phase diagram and surface tension in the three-flavor Polyakov-quark-meson model. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2013, 87, 036004. [Google Scholar] [CrossRef]
- Pereira, J.P.; Flores, C.V.; Lugones, G. Phase transition effects on the dynamical stability of hybrid neutron stars. Astrophys. J. 2018, 860, 12. [Google Scholar] [CrossRef]
- Arbanil, J.D.; Malheiro, M. Equilibrium and stability of charged strange quark stars. Phys. Rev. D 2015, 92, 084009. [Google Scholar] [CrossRef]
- Mohanty, S.R.; Ghosh, S.; Kumar, B. Unstable anisotropic neutron stars: Probing the limits of gravitational collapse. Phys. Rev. D 2024, 109, 123039. [Google Scholar] [CrossRef]
- Kain, B. Radial oscillations and stability of multiple-fluid compact stars. Phys. Rev. D 2020, 102, 023001. [Google Scholar] [CrossRef]
- Caballero, D.A.; Ripley, J.; Yunes, N. Radial mode stability of two-fluid neutron stars. Phys. Rev. D 2024, 110, 103038. [Google Scholar] [CrossRef]
- Pereira, J.P.; Bejger, M.; Tonetto, L.; Lugones, G.; Haensel, P.; Zdunik, J.L.; Sieniawska, M. Probing elastic quark phases in hybrid stars with radius measurements. Astrophys. J. 2021, 910, 145. [Google Scholar] [CrossRef]
- Canullan-Pascual, M.O.; Lugones, G.; Orsaria, M.G.; Ranea-Sandoval, I.F. Neutron star stability beyond the mass peak: Assessing the role of out-of-equilibrium perturbations. Astrophys. J. 2025, 989, 135. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G. Can very compact and very massive neutron stars both exist? Phys. Rev. D 2014, 89, 043014. [Google Scholar] [CrossRef]
- Di Clemente, F.; Drago, A.; Pagliara, G. Is the Compact Object Associated with HESS J1731-347 a Strange Quark Star? A Possible Astrophysical Scenario for Its Formation. Astrophys. J. Lett. 2024, 967, 159. [Google Scholar] [CrossRef]
- Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. The scenario of two families of compact stars. Part 1. Equations of state, mass-radius relations and binary systems. Eur. Phys. J. A 2016, 52, 40. [Google Scholar] [CrossRef]
- Drago, A.; Pagliara, G. The scenario of two families of compact stars: Part 2: Transition from hadronic to quark matter and explosive phenomena. Eur. Phys. J. A 2016, 52, 41. [Google Scholar] [CrossRef]
- Abgaryan, V.; Alvarez-Castillo, D.; Ayriyan, A.; Blaschke, D.; Grigorian, H. Two novel approaches to the Hadron-Quark mixed phase in compact stars. Universe 2018, 4, 94. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Orsaria, M.G.; Malfatti, G.; Curin, D.; Mariani, M.; Contrera, G.A.; Guilera, O.M. Effects of hadron-quark phase transitions in hybrid stars within the NJL model. Symmetry 2019, 11, 425. [Google Scholar] [CrossRef]
- Carlomagno, J.P.; Contrera, G.A.; Grunfeld, A.G.; Blaschke, D. Thermal twin stars within a hybrid equation of state based on a nonlocal chiral quark model compatible with modern astrophysical observations. Phys. Rev. D 2024, 109, 043050. [Google Scholar] [CrossRef]
- Alvarez-Castillo, D.; Blaschke, D.; Grunfeld, A.G.; Pagura, V. Third family of compact stars within a nonlocal chiral quark model equation of state. Phys. Rev. D 2019, 99, 063010. [Google Scholar] [CrossRef]
- Pal, S.; Chaudhuri, G. Can a Hybrid Star with Constant Sound Speed Parameterization Explain the New NICER Mass–Radius Measurements? Astrophys. J. 2025, 991, 158. [Google Scholar] [CrossRef]
- Alford, M.; Sedrakian, A. Compact Stars with Sequential QCD Phase Transitions. Phys. Rev. Lett. 2017, 119, 161104. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Ranea-Sandoval, I.F.; Mariani, M.; Orsaria, M.G.; Malfatti, G.; Guilera, O.M. Hybrid stars with sequential phase transitions: The emergence of the g2 mode. J. Cosmol. Astropart. Phys. 2021, 2021, 009. [Google Scholar] [CrossRef]
- Li, J.J.; Sedrakian, A.; Alford, M. Relativistic hybrid stars with sequential first-order phase transitions in light of multimessenger constraints. Astrophys. J. 2023, 944, 206. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; Lazzari, L. Impact of slow conversions on hybrid stars with sequential QCD phase transitions. Eur. Phys. J. C 2022, 82, 288. [Google Scholar] [CrossRef]
- Lugones, G.; Mariani, M.; Ranea-Sandoval, I.F. A model-agnostic analysis of hybrid stars with reactive interfaces. J. Cosmol. Astropart. Phys. 2023, 2023, 028. [Google Scholar] [CrossRef]
- Rau, P.B.; Salaben, G.G. Nonequilibrium effects on stability of hybrid stars with first-order phase transitions. Phys. Rev. D 2023, 108, 103035. [Google Scholar] [CrossRef]
- Rau, P.B.; Sedrakian, A. Two first-order phase transitions in hybrid compact stars: Higher-order multiplet stars, reaction modes, and intermediate conversion speeds. Phys. Rev. D 2023, 107, 103042. [Google Scholar] [CrossRef]
- Mariani, M.; Ranea-Sandoval, I.F.; Lugones, G.; Orsaria, M.G. Could a slow stable hybrid star explain the central compact object in HESS J1731-347? Phys. Rev. D 2024, 110, 043026. [Google Scholar] [CrossRef]
- Laskos-Patkos, P.; Moustakidis, C.C. XTE J1814-338: A potential hybrid star candidate. Phys. Rev. D 2025, 111, 063058. [Google Scholar] [CrossRef]
- Zhang, C.; Pretel, J.M.Z.; Xu, R. Slow Stable Self-bound Hybrid Star Can Relieve All Tensions. arXiv 2025, arXiv:2507.01371. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, T.; Yan, Y.; Yuan, W.L.; Zhang, C.; Zhou, E. Hybrid Quark Stars with Quark-Quark Phase Transitions. arXiv 2025, arXiv:2507.00776. [Google Scholar] [CrossRef]
- Sagun, V.; Giangrandi, E.; Dietrich, T.; Ivanytskyi, O.; Negreiros, R.; Providência, C. What Is the Nature of the HESS J1731-347 Compact Object? Astrophys. J. Lett. 2023, 958, 49. [Google Scholar] [CrossRef]
- Alford, M.; Bowers, J.A.; Rajagopal, K. Crystalline color superconductivity. Phys. Rev. D 2001, 63, 074016. [Google Scholar] [CrossRef]
- Alford, M. Color-superconducting quark matter. Annu. Rev. Nucl. Part. Sci. 2001, 51, 131–160. [Google Scholar] [CrossRef]
- Ruester, S.B.; Werth, V.; Buballa, M.; Shovkovy, I.A.; Rischke, D.H. Phase diagram of neutral quark matter: Self-consistent treatment of quark masses. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2005, 72, 034004. [Google Scholar] [CrossRef]
- Miralda-Escude, J.; Haensel, P.; Paczynski, B. Thermal Structure of Accreting Neutron Stars and Strange Stars. Astrophys. J. Lett. 1990, 362, 572. [Google Scholar] [CrossRef]
- O’Boyle, M.F.; Markakis, C.; Stergioulas, N.; Read, J.S. Parametrized equation of state for neutron star matter with continuous sound speed. Phys. Rev. D 2020, 102, 083027. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C.; Sutherland, P. The Ground State of Matter at High Densities: Equation of State and Stellar Models. Astrophys. J. Lett. 1971, 170, 299. [Google Scholar] [CrossRef]
- Baym, G.; Bethe, H.A.; Pethick, C.J. Neutron star matter. Nucl. Phys. A 1971, 175, 225–271. [Google Scholar] [CrossRef]
- Johnson, K. The MIT bag model. Acta Phys. Pol. B 1975, 6, 8. [Google Scholar]
- Buballa, M. NJL-model analysis of dense quark matter. Phys. Rep. 2005, 407, 205–376. [Google Scholar] [CrossRef]
- Orsaria, M.; Rodrigues, H.; Weber, F.; Contrera, G. Quark deconfinement in high-mass neutron stars. Phys. Rev. C 2014, 89, 015806. [Google Scholar] [CrossRef]
- Malfatti, G.; Orsaria, M.G.; Ranea-Sandoval, I.F.; Contrera, G.A.; Weber, F. Delta baryons and diquark formation in the cores of neutron stars. Phys. Rev. D 2020, 102, 063008. [Google Scholar] [CrossRef]
- Plumari, S.; Burgio, G.; Greco, V.; Zappala, D. Quark matter in neutron stars within the field correlator method. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2013, 88, 083005. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Han, S.; Orsaria, M.G.; Contrera, G.A.; Weber, F.; Alford, M.G. Constant-sound-speed parametrization for Nambu-Jona-Lasinio models of quark matter in hybrid stars. Phys. Rev. C 2016, 93, 045812. [Google Scholar] [CrossRef]
- Mariani, M.; Orsaria, M.; Vucetich, H. Constant entropy hybrid stars: A first approximation of cooling evolution. Astron. Astrophys. 2017, 601, A21. [Google Scholar] [CrossRef]
- Celi, M.O.; Mariani, M.; Orsaria, M.G.; Ranea-Sandoval, I.F.; Lugones, G. Towards a unified hadron-quark equation of state for neutron stars within the relativistic mean-field model. Phys. Rev. D 2025, 112, 123001. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, C.; Zong, H.S. Nonstrange quark stars from an NJL model with proper-time regularization. Phys. Rev. D 2019, 100, 123003. [Google Scholar] [CrossRef]
- Li, C.M.; Zuo, S.Y.; Zhao, Y.P.; Mu, H.J.; Huang, Y.F. Study of nonstrange quark stars within a modified NJL model. Phys. Rev. D 2022, 106, 116009. [Google Scholar] [CrossRef]
- Lopes, L.L.; Biesdorf, C.; Menezes, D.P. Modified MIT bag Models—Part I: Thermodynamic consistency, stability windows and symmetry group. Phys. Scr. 2021, 96, 065303. [Google Scholar] [CrossRef]
- Ju, M.; Chu, P.; Wu, X.; Liu, H. Hess J1731-347 is likely a quark star based on the density-dependent vMIT bag model. Eur. Phys. J. C 2025, 85, 40. [Google Scholar] [CrossRef]
- Alford, M.; Braby, M.; Paris, M.; Reddy, S. Hybrid stars that masquerade as neutron stars. Astrophys. J. 2005, 629, 969. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Excluded volume effects in the quark-mass density-dependent model: Implications for the equation of state and compact star structure. Phys. Rev. D 2024, 109, 063025. [Google Scholar] [CrossRef]
- Benić, S. Heavy hybrid stars from multi-quark interactions. Eur. Phys. J. A 2014, 50, 111. [Google Scholar] [CrossRef]
- Bedaque, P.; Steiner, A.W. Sound Velocity Bound and Neutron Stars. Phys. Rev. Lett. 2015, 114, 031103. [Google Scholar] [CrossRef]
- Otto, K.; Oertel, M.; Schaefer, B.J. Hybrid and quark star matter based on a nonperturbative equation of state. Phys. Rev. D 2020, 101, 103021. [Google Scholar] [CrossRef]
- Rather, I.A.; Kumar, A.; Das, H.C.; Imran, M.; Usmani, A.; Patra, S.K. Constraining bag constant for hybrid neutron stars. Int. J. Mod. Phys. E 2020, 29, 2050044. [Google Scholar] [CrossRef]
- Mitra, G.; Sahoo, H.S.; Mishra, R.; Panda, P.K. Hybrid stars in a relativistic quark model. Phys. Rev. C 2022, 105, 045802. [Google Scholar] [CrossRef]
- Karimi, R.; Moshfegh, H. Hybrid stars within the framework of the Sigma-Omega-Rho model combined with the MIT and NJL models. Nucl. Phys. A 2023, 1037, 122684. [Google Scholar] [CrossRef]
- Song, X.Y. Compact stars as hideouts for color-spin-locked quark matter: Implications for powering high-energy electromagnetic emissions. Phys. Rev. D 2025, 111, 063018. [Google Scholar] [CrossRef]
- Alford, M.G.; Han, S.; Prakash, M. Generic conditions for stable hybrid stars. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2013, 88, 083013. [Google Scholar]
- Ivanytskyi, O.; Blaschke, D.B. Recovering the Conformal Limit of Color Superconducting Quark Matter within a Confining Density Functional Approach. Particles 2022, 5, 514–534. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Strange Quark Stars: The Role of Excluded Volume Effects. Universe 2024, 10, 233. [Google Scholar] [CrossRef]
- Traversi, S.; Char, P.; Pagliara, G.; Drago, A. Speed of sound in dense matter and two families of compact stars. Astron. Astrophys. 2022, 660, A62. [Google Scholar] [CrossRef]
- Gorda, T.; Komoltsev, O.; Kurkela, A.; Mazeliauskas, A. Bayesian uncertainty quantification of perturbative QCD input to the neutron-star equation of state. J. High Energy Phys. 2023, 2023, 2. [Google Scholar] [CrossRef]
- Komoltsev, O.; Somasundaram, R.; Gorda, T.; Kurkela, A.; Margueron, J.; Tews, I. Equation of state at neutron-star densities and beyond from perturbative QCD. Phys. Rev. D 2024, 109, 094030. [Google Scholar] [CrossRef]
- Hippert, M.; Noronha, J.; Romatschke, P. Upper bound on the speed of sound in nuclear matter from transport. Phys. Lett. B 2025, 860, 139184. [Google Scholar] [CrossRef]
- Kojo, T. QCD equations of state and speed of sound in neutron stars. AAPPS Bull. 2021, 31, 11. [Google Scholar] [CrossRef]
- Lugones, G.; Grunfeld, A.G. Phase Conversions in Neutron Stars: Implications for Stellar Stability and Gravitational Wave Astrophysics. Universe 2021, 7, 493. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Mariani, M.; Celi, M.O.; Rodríguez, M.C.; Tonetto, L. Asteroseismology using quadrupolar f -modes revisited: Breaking of universal relationships in the slow hadron-quark conversion scenario. Phys. Rev. D 2023, 107, 123028. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Guilera, O.M.; Mariani, M.; Lugones, G. Breaking of universal relationships of axial w I modes in hybrid stars: Rapid and slow hadron-quark conversion scenarios. Phys. Rev. D 2022, 106, 043025. [Google Scholar] [CrossRef]
- Mariani, M.; Albertus, C.; Alessandroni, M.d.R.; Orsaria, M.G.; Pérez-García, M.Á.; Ranea-Sandoval, I.F. Constraining self-interacting fermionic dark matter in admixed neutron stars using multimessenger astronomy. MNRAS 2024, 527, 6795–6806. [Google Scholar] [CrossRef]
- Menezes, D.P.; Melrose, D.B. Strange Star Equations of State Revisited. PASA 2005, 22, 292–297. [Google Scholar] [CrossRef]
- Christian, J.E.; Zacchi, A.; Schaffner-Bielich, J. Classifications of twin star solutions for a constant speed of sound parameterized equation of state. Eur. Phys. J. A 2018, 54, 28. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Orsaria, M.G.; Han, S.; Weber, F.; Spinella, W.M. Color superconductivity in compact stellar hybrid configurations. Phys. Rev. C 2017, 96, 065807. [Google Scholar] [CrossRef]
- Tonetto, L.; Lugones, G. Discontinuity gravity modes in hybrid stars: Assessing the role of rapid and slow phase conversions. Phys. Rev. D 2020, 101, 123029. [Google Scholar] [CrossRef]
- Rather, I.A.; Marquez, K.D.; Backes, B.C.; Panotopoulos, G.; Lopes, I. Radial oscillations of hybrid stars and neutron stars including delta baryons: The effect of a slow quark phase transition. J. Cosmol. Astropart. Phys. 2024, 2024, 130. [Google Scholar] [CrossRef]
- Mariani, M.; Orsaria, M.G.; Ranea-Sandoval, I.F.; Lugones, G. Magnetized hybrid stars: Effects of slow and rapid phase transitions at the quark–hadron interface. Mon. Not. R. Astron. Soc. 2019, 489, 4261–4277. [Google Scholar] [CrossRef]
- Lenzi, C.; Lugones, G.; Vasquez, C. Hybrid stars with reactive interfaces: Analysis within the Nambu–Jona-Lasinio model. Phys. Rev. D 2023, 107, 083025. [Google Scholar] [CrossRef]
- Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S. Constraint on the maximum mass of neutron stars using GW170817 event. Phys. Rev. D 2019, 100, 023015. [Google Scholar] [CrossRef]
- Fortin, M.; Providência, C.; Raduta, A.R.; Gulminelli, F.; Zdunik, J.; Haensel, P.; Bejger, M. Neutron star radii and crusts: Uncertainties and unified equations of state. Phys. Rev. C 2016, 94, 035804. [Google Scholar] [CrossRef]
- Canullán-Pascual, M.O.; Mariani, M.; Ranea-Sandoval, I.F.; Orsaria, M.G.; Weber, F. Consistent Crust-Core Interpolation and Its Effect on Non-radial Neutron Star Oscillations. Astron. Nachrichten 2025, 346, e20240150. [Google Scholar] [CrossRef]
- Shirke, S.; Maiti, R.; Chatterjee, D. PSR J0614-3329: A NICER case for Strange Quark Stars. arXiv 2025, arXiv:2508.02652. [Google Scholar] [CrossRef]
- Sotani, H.; Tominaga, K.; Maeda, K.i. Density discontinuity of a neutron star and gravitational waves. Phys. Rev. D 2001, 65, 024010. [Google Scholar] [CrossRef]
- Miniutti, G.; Pons, J.; Berti, E.; Gualtieri, L.; Ferrari, V. Non-radial oscillation modes as a probe of density discontinuities in neutron stars. Mon. Not. R. Astron. Soc. 2003, 338, 389–400. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Guilera, O.M.; Mariani, M.; Orsaria, M.G. Oscillation modes of hybrid stars within the relativistic Cowling approximation. J. Cosmol. Astropart. Phys. 2018, 2018, 031. [Google Scholar] [CrossRef]
- Ranea-Sandoval, I.F.; Mariani, M.; Lugones, G.; Guilera, O.M. Constraining mass, radius, and tidal deformability of compact stars with axial wI modes: New universal relations including slow stable hybrid stars. Mon. Not. R. Astron. Soc. 2023, 519, 3194–3200. [Google Scholar] [CrossRef]
- Li, A.; Watts, A.L.; Zhang, G.; Guillot, S.; Xu, Y.; Santangelo, A.; Zane, S.; Feng, H.; Zhang, S.N.; Ge, M.; et al. Dense matter in neutron stars with eXTP. Sci. China Phys. Mech. Astron. 2025, 68, 119503. [Google Scholar]
- Majczyna, A.; Madej, J.; Należyty, M.; Różańska, A.; Bełdycki, B. Precision of Mass and Radius Determination for Neutron Stars from the ATHENA Mission. Astrophys. J. Lett. 2020, 888, 123. [Google Scholar] [CrossRef]






| Hadronic EOS | 14.127 | 14.55 | 14.90 | −27.22 | 2.761 | 3.80 | 2.40 |
| EOS | Hadron Sector | Bag [MeV/fm3] | [MeV/fm3] | [MeV/fm3] | |
|---|---|---|---|---|---|
| HQ | ✓ | - | 350 | 2000 | 0.8 |
| QQ1 | ✗ | 36 | 70 | 1500 | 0.9 |
| QQ2 | ✗ | 48 | 240 | 1500 | 0.8 |
| CQQ1 | ✗ | 48 | 240 | 1500 | 0.8 |
| CQQ2 | ✗ | 50 | 230 | 1500 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mariani, M.; Ranea-Sandoval, I.F. How Neutron Star Observations Point Towards Exotic Matter: Existing Explanations and a Prospective Proposal. Symmetry 2026, 18, 27. https://doi.org/10.3390/sym18010027
Mariani M, Ranea-Sandoval IF. How Neutron Star Observations Point Towards Exotic Matter: Existing Explanations and a Prospective Proposal. Symmetry. 2026; 18(1):27. https://doi.org/10.3390/sym18010027
Chicago/Turabian StyleMariani, Mauro, and Ignacio F. Ranea-Sandoval. 2026. "How Neutron Star Observations Point Towards Exotic Matter: Existing Explanations and a Prospective Proposal" Symmetry 18, no. 1: 27. https://doi.org/10.3390/sym18010027
APA StyleMariani, M., & Ranea-Sandoval, I. F. (2026). How Neutron Star Observations Point Towards Exotic Matter: Existing Explanations and a Prospective Proposal. Symmetry, 18(1), 27. https://doi.org/10.3390/sym18010027

