Categories of Harmonic Functions in the Symmetric Unit Disk Linked to the Bessel Function
Abstract
1. Introduction
2. Bessel Function
3. Useful Lemmas
4. Inclusion Relations of the Class
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niedziela, J. Bessel Functions and Their Applications; Paper; University of Tennessee: Knoxville, TN, USA, 2008; Available online: http://sces.phys.utk.edu/~moreo/mm08/niedzilla.pdf (accessed on 10 November 2015).
- Choquet, G. Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques. Bull. Sci. Math. 1945, 89, 156–165. [Google Scholar]
- Kneser, H. Losung der Aufgabe 41. Jahresber. Dtsch. Math.-Ver. 1926, 36, 123–124. [Google Scholar]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fen. Series A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Jahangiri, J.M. Noshiro-type harmonic univalent functions. Sci. Math. Jap. 2002, 6, 253–259. [Google Scholar]
- Ahuja, O.P. Planar harmonic univalent and related mappings. J. Inequal. Pure Appl. Math. 2005, 6, 122. [Google Scholar]
- Duren, P. Harmonic Mappings in the Plane; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2004; Volume 156. [Google Scholar]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
- Frasin, B.A. Comprehensive family of harmonic univalent functions. SUT J. Math. 2006, 42, 145–155. [Google Scholar] [CrossRef]
- Silverman, H. Harmonic univalent function with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef]
- Porwal, S.; Ahamad, D. Mapping properties of some integral operators associated with generalized Bessel functions. Malaya J. Mat. 2020, 8, 1092–1098. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Kasthuri, M. A Note on Subclasses of Starlike and Convex Functions Associated with Bessel Functions. J. Nonlinear Funct. Anal. 2014, 2014, 11. [Google Scholar]
- Ahuja, O.P.; Jahangiri, J.M. A subclass of harmonic univalent functions. J. Nat. Geom. 2001, 20, 45–56. [Google Scholar]
- Sokół, J.; Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. Inequalities of harmonic univalent functions with connections of hypergeometric functions. Open Math. 2015, 13, 691–705. [Google Scholar] [CrossRef]
- Porwal, S.; Vijaya, K.; Kasthuri, K. Connections between various subclasses of planar harmonic mappings involving generalized Bessel functions. Le Mat. 2016, 71, 99–114. [Google Scholar] [CrossRef]
- Ahmad, M.; Frasin, B.A.; Murugusundaramoorthy, G.; Al-khazaleh, A. An application of Mittag–Leffler-type Poisson distribution on certain subclasses of analytic functions associated with conic domains. Heliyon 2021, 7, e08109. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Taşar, N.; Sakar, F.M.; Frasin, B.A. Connections between various subclasses of planar harmonic mappings involving Mittag-Leffler functions. Afr. Mat. 2024, 35, 33. [Google Scholar] [CrossRef]
- El-Ashwah, R.M.; Hassan, A.H. Some characterizations for a certain generalized Bessel function of the first kind to be in certain subclasses of analytic functions. Int. J. Open Probl. Complex Anal. 2017, 9, 14–37. [Google Scholar] [CrossRef]
- Mondal, S.R.; Swaminathan, A. Geometric properties of Generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2012, 35, 179–194. [Google Scholar]
- Bulboaca, T.; Murugusundaramoorthy, G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35, 867–877. [Google Scholar]
- Frasin, B.A.; Alb Lupas, A. An Application of Poisson Distribution Series on Harmonic Classes of Analytic Functions. Symmetry 2023, 15, 590. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Taşar, N.; Sakar, F.M.; Şeker, B. A Study on Various Subclasses of Uniformly Harmonic Starlike Mappings by Pascal Distribution Series. J. Math. Ext. 2023, 17, 1735–8299. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taşar, N.; Sakar, F.M.; Frasin, B.; Aldawish, I. Categories of Harmonic Functions in the Symmetric Unit Disk Linked to the Bessel Function. Symmetry 2025, 17, 1581. https://doi.org/10.3390/sym17091581
Taşar N, Sakar FM, Frasin B, Aldawish I. Categories of Harmonic Functions in the Symmetric Unit Disk Linked to the Bessel Function. Symmetry. 2025; 17(9):1581. https://doi.org/10.3390/sym17091581
Chicago/Turabian StyleTaşar, Naci, Fethiye Müge Sakar, Basem Frasin, and Ibtisam Aldawish. 2025. "Categories of Harmonic Functions in the Symmetric Unit Disk Linked to the Bessel Function" Symmetry 17, no. 9: 1581. https://doi.org/10.3390/sym17091581
APA StyleTaşar, N., Sakar, F. M., Frasin, B., & Aldawish, I. (2025). Categories of Harmonic Functions in the Symmetric Unit Disk Linked to the Bessel Function. Symmetry, 17(9), 1581. https://doi.org/10.3390/sym17091581